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Modified generalized Brillouin zone theory with on-site disorder

Hongfang Liu,1,2,3 Ming Lu,4,* Zhi-Qiang Zhang,1,2,† and Hua Jiang1,2

1School of Physical Science and Technology, Soochow University, Suzhou 215006, China
2Institute for Advanced Study, Soochow University, Suzhou 215006, China

3Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, China
4Beijing Academy of Quantum Information Sciences, Beijing 100193, China

(Received 2 January 2023; revised 24 March 2023; accepted 11 April 2023; published 24 April 2023)

We study the characterization of the non-Hermitian skin effect (NHSE) in non-Hermitian systems with on-site
disorders. We extend the applications of generalized Brillouin zone (GBZ) theory to these systems. By proposing
a modified GBZ theory, we give a faithful description of the NHSE. For applications, we obtain a unified β for
system with long-range hopping and explain the GBZ irrelevance of the magnetic suppression of the NHSE in
the previous study.
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I. INTRODUCTION

Systems described by non-Hermitian Hamiltonians have
been attracting intensive attention in recent years [1–81].
Many interesting phenomena have been reported [40–80],
among which the non-Hermitian skin effect (NHSE) [55–81]
has been the focus. The existence of the NHSE indicates
that the conventional bulk-boundary correspondence (BBC)
fails [55–59]. Meanwhile, the bulk spectrum shows distinct
features for the open boundary (OBC) and periodic bound-
ary (PBC) conditions, showing the collapse of the BBC. To
accomplish the BBC, the generalized Brillouin zone (GBZ)
theory [55,57,58] introduces a similarity transformation for
the Hamiltonian, which eliminates the NHSE.

Nevertheless, a recent study [37] showed that the con-
ventional GBZ theory fails to capture the features of the
NHSE for samples under a magnetic field where the BBC
still holds. Loosely speaking, such a model can be considered
a one-dimensional model with an on-site disorder [82–84].
Very recently, the modified GBZ theory for disordered sam-
ples was reported [36], which breaks the limitation of the
translational invariance required by the conventional GBZ
theory. The essence of the modified GBZ theory is to find the
minimum of a polynomial F (E , β ) = | det[E − HPBC(β )] −
det[E − HOBC]|. However, applying the modified GBZ theory
for samples with on-site disorder is still unreported, which
leaves the GBZ irrelevance of the magnetic suppression of
NHSE unsolved. Thus, there is an urgent need to study the
influences of on-site disorders on the GBZ theory.

In this paper, we give a faithful characterization of NHSEs
for samples with on-site disorders based on the modified GBZ
theory. We uncover that the transformation coefficient β =
βmin determined by the minimum of the polynomial F (E , β )
gives an interval instead of a single point. To unify the de-
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scription of NHSEs, we demonstrate that the modified GBZ
theory also requires the minimization of |βmin − 1|. Based
on these considerations, we clarify the applicability of the
GBZ theory in several prototypical disordered non-Hermitian
models. Explicitly, a unified transformation coefficient βmin

to achieve the global BBC for disordered samples with long-
range hopping is obtained. A faithful description of NHSEs
for samples under the magnetic field is also clarified, which
removes the ambiguity of the GBZ irrelevance reported there.

II. MODEL AND METHOD

We start from the disordered Hatano-Nelson model [85]
with the Hamiltonian:

H =
∑

i

εic
†
i ci + t+c†

i ci+1 + t−c†
i+1ci, (1)

where c†
i (ci) is the creation (annihilation) operator on the

site i. Here, t± = (t ± γ ) represents the nearest-neighbor hop-
ping, and γ encodes the non-Hermitian strength. We fix t =
1. Here, εi ∈ [−W/2,W/2] denotes the on-site disorder [86]
with W the disorder strength. The Hamiltonian under OBC
and PBC are marked as HOBC and HPBC, respectively.

Following the modified GBZ theory [36], we adopt the
transformation t± → t±β±1. Here, β is the transformation
coefficient, which gives a quantitative description of the
NHSE [36,55,58]. The transformed Hamiltonian under PBC
[HGBZ ≡ HPBC(β )] satisfies [36]

det[E − HGBZ;N×N ] = det[E − HOBC;N×N ] + fPBC, (2)

where fPBC = t+t− det[E − HOBC;N−2×N−2] + (t+)NβN +
(t−)Nβ−N . Here, N denotes the size of the Hamiltonian,
and E is the eigenvalue of HOBC;N×N . We mark
F (E , β ) = | det[E − HPBC(β )] − det[E − HOBC]| as
follows:

F (E , β ) ≡ | fPBC| = |F1 + F2|, (3)
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where F1 = t+t− det[E − HOBC;N−2×N−2] and F2 =
(t+)NβN + (t−)Nβ−N . For W = 0, one should notice
F1 is negligible where det[E − HOBC;N×N ] = 0 and
det[E − HOBC;N−2×N−2] ≈ 0 [36]. The modified GBZ theory
requires the minimum of F (E , β ) = |F2|, which gives rise
to βmin = √|t−/t+|, consistent with the conventional GBZ
theory [55,58]. Here, β = βmin gives the minimum of the
polynomial F (E , β ).

In fact, min[F (E , β )] is the requirement to implement the
BBC in non-Hermitian systems. The key for the BBC is to
ensure the following equation [36]:

det[E − HOBC] ≡ det[E − HOBC(β )] ≈ det[E − HPBC(β )].
(4)

Notably, the NHSE leads to det[E − HOBC] /≈ det[E − HPBC],
since | det[E − HPBC]| is significantly enhanced due to
the asymmetric hopping. It corresponds to the breakdown
of the BBC for H. To approach the BBC by adopting
HPBC(β ) [36,55], HPBC(β ), and HOBC should have a similar
eigenvalue E , which means | det[E − HPBC(β )]| should tend
to approach | det[E − HOBC]|. Thus, the BBC problem can be
considered a problem of finding the minimum of F (E , β ) =
| det[E − HPBC(β )] − det[E − HOBC]| in general [36].

In the following, we apply the modified GBZ theory
for samples with on-site disorders. When disorder is strong
enough, we demonstrate that F1 has considerable influence
on achieving the appropriate characterization of the NHSE
since [F1(E )]/min[|F2(β )|] ∝ [(E − εi )/t]N . We have to em-
phasize that F1 can be neglected for samples with hopping
disorder in our previous study [36] since NHSEs are mostly
contributed from eigenstates near E = 0 for considerable dis-
order strength. Noticing [F1(E )]/min[|F2(β )|] ∝ (E/t )N ∼
0, it is reasonable to neglect F1 in our previous study [36].
Notably, for the weak disorder strength, F1 is always negligi-
ble.

For illustration purposes, we first consider t ∼ γ , where
the Hamiltonian HOBC;m×m is roughly a triangular matrix. The
eigenvalue of HOBC;m×m can be considered to satisfy EOBC;m ∈
{Ei} ≈ {ε1, ε2, . . . , εi, . . . , εm} with EOBC;m ∈ [−W/2,W/2].
For |W/2| > |t±| and the thermodynamic limit N → ∞,
F1 = t+t− det[E − HOBC;N−2×N−2] can be rewritten as

F1 ≈
N−2∏
i=1

(E − Ei )t
+t− ≈

N∏
i=1

(E − Ei ). (5)

Here, Ei ∈ EOBC;N−2 is the eigenvalue of HOBC;N−2×N−2.
By considering the differences of the eigenvalues between
HOBC;N×N and HOBC;N−2×N−2, the analytical formula of F1

is obtained [see the Appendix A for more details]:

F1 =
[(

E − W

2

)[(1/2)−(E/W )]

×
(

E + W

2

)[(1/2)+(E/W )]

e−1

]N

. (6)

As plotted in Fig. 1(a), |F1| ∼ 2N for E = W
2 , which is com-

parable with F2. Thus, F1 should have distinct influences and
cannot be neglected.

FIG. 1. (a) The analytical (red line) and numerical (gray dots)
results of |F1/N

1 | vs the eigenvalue E for W = 5. (b) ln[F (E , β )] vs
β for different eigenvalues with E ∈ [−W/2,W/2] under disorder
strengths: W = 2 (green), W = 5 (blue), and W = 8 (purple). Pen-
tagrams mark the right boundary of the plateaus for E = W

2 . The
red dashed line is the plot of ln[|F2|] for clean samples. Inset is
the numerical results for F (E , β ) = | det[E − HPBC(β )] − det[E −
HOBC]| with W = 8. The real part Re[E ] vs the imaginary part Im[E ]
of the eigenvalues E for (c) W = 2, (d) W = 5, and (e) W = 8. β for
HGBZ is marked in (b). Other parameters are set as γ = 0.99 and
N = 60.

To better understand the influence of F1, we plot F (E , β )
vs β based on our analytical results, shown in Fig. 1(b). By
neglecting F1 in Eq. (3), the minimum of F (E , β ) = |F2| =
|(t+)NβN + (t−)Nβ−N | and βmin are W and E independent.
After considering F1, the global minimum of F (E , β ) =
|F1 + F2| is still βmin = √|t−/t+|. Nevertheless, F (E , β ) vs
β gives rise to some plateaus, which is distinct from the result
for clean samples [red dashed line in Fig. 1(b)]. Moreover,
the value of the plateau roughly equals the global minimum
F (E ,

√|t−/t+|). Such a feature is also identified by numerical
calculations directly based on Eq. (3), as shown in the inset of
Fig. 1(b). Due to the existence of the plateau for F (E , β ), βmin

should be extended from a single point βmin = √|t−/t+| to an
interval βmin ∈ [�−,�+] for a specific eigenvalue E . Here,
�± is determined at the boundary of the plateau.

Since βmin ∈ [�−,�+] roughly gives the same value
F (E , βmin), all βmin’s in the interval can be adopted to realize
the BBC with considerable accuracy, and every βmin gives a
correct description of the NHSEs. Nevertheless, to compare
the NHSE for different cases, we demonstrate that the best
choice of βmin should satisfy two key points: (1) It should
be in the range βmin ∈ [�−,�+], which captures a correct
description of the NHSEs; (2) βmin is the one closest to β = 1,
i.e., |βmin − 1| has the minimum value.

Physically, the criterion of BBC ensures [36,55]

HOBCψn = Enψn;

HPBC(βmin)ψ̃n(βmin) = Enψ̃n(βmin);

ψn ≈ Sψ̃n(βmin). (7)

Here, S = diag[βmin, β
2
min, . . . , β

N
min] is a diagonal similarity

transformation matrix. For a specific non-Hermitian sample,
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the wave function ψn is determined. In the clean limits,
ψ̃n(βmin) is always an extended state. Conversely, for dirty
samples, ψ̃n(βmin) goes from extended to localized by varying
βmin due to on-site disorders. Thus, the corresponding βmin

expands to an interval to restore the original extensibility of
ψ̃n(βmin), where ψn ≈ Sψ̃n(βmin) still holds. Notably, βmin

satisfying min|βmin − 1| gives rise to the most likely extended
ψ̃n(βmin), which is close to the clean limits. Additionally,
when the NHSE is absent, one always has β = 1. Therefore,
we suggest adopting the βmin satisfying min|βmin − 1| as the
best depiction of the NHSEs.

These characteristics can be identified by F (E , β ) and
the plot of eigenvalues for different disorder strength W , as
shown in Figs. 1(b)–1(e). Based on the proposed theory, one
anticipates the NHSE being destroyed when the right bound-
ary of the plateau [�+ marked by pentagram] crosses the
critical value β = 1. Such a feature is confirmed by the spectra
shown in Figs. 1(c)–1(e). Generally, the eigenvalues have the
NHSE if they form a closed loop with nonzero area in the
complex energy plane under PBC (black dots) [61]. When
the eigenvalues of HPBC and HOBC overlap, the corresponding
eigenstates are localized due to disorder. For clarity, we focus
on the eigenvalue E = W

2 .
According to our analytical results shown in Fig. 1(b),

W = 5 gives the critical point, and the eigenvalues of HPBC

and HOBC should overlap with βmin = 1. For W < 5, the BBC
requires βmin < 1, implying the existence of the NHSE for
such an eigenvector. It is consistent with the plot in Fig. 1(c).
When W = 5, the eigenvalues of HOBC and HPBC [βmin = 1]
overlap, as shown in Fig. 1(d). By further increasing W , the
tails of the eigenvalues for HPBC exist [see Fig. 1(e)], and
the correlated eigenstates are localized. However, the BBC
for E = W

2 remains available by adopting βmin ∼ 1.5. In the
clean limits, βmin 	= 1 predicts the existence of the NHSE.
It naively gives an inappropriate description of the NHSE,
where ψn and Sψ̃n(βmin) have no NHSEs. Thus, a faithful
characterization of the NHSE should minimize |βmin − 1| for
βmin ∈ [�−,�+] because, based on the modified GBZ theory,
the localization features are captured by the plot of F (E , β )
at β = 1, as shown in Fig. 1(b).

III. UNIFIED TRANSFORMATION COEFFICIENT FOR
DISORDERED SAMPLES WITH

NEXT-NEAREST-NEIGHBOR HOPPING

In previous section, we found that βmin is extended from
a single point to an interval for achieving the BBC for disor-
dered samples. As an application of such a feature, a unified
transformation coefficient β is available for samples with
long-range hopping even though it does not exist under the
clean limits.

We focus on samples with next-nearest-neighbor hopping,
shown in Fig. 2(a). Its Hamiltonian reads

H =
∑

i

εic
†
i ci + t±c†

i ci±1 + tc†
i ci±2. (8)

When disorder is absent (W = 0), βmin can be accurately
determined, and the plot of Re(β ) vs Im(β ) forms a closed
loop, as shown in the red curve in Fig. 2(b). Clearly, a unified
transformation coefficient |βmin| to achieve the global BBC

FIG. 2. (a) Schematic diagram of the model with next-nearest-
neighbor hopping (green lines). (b) The schematic plots of Re[βmin]
vs Im[βmin] for clean (red solid line) and disordered samples (area
in gray). The disorder effect leads to the broadening of βmin marked
by the error bar. Thus, a unified |β| is available as marked with the
blue solid line. (c) ln[F (E , β )]/ min{ln[F (E , β )]} vs β for disor-
der strength W = 7. The red dashed line presents the overlap of
βmin for different eigenvalues. (d) Re[E ] vs Im[E ] under periodic
boundary conditions (PBC; black dots), open boundary conditions
(OBC; blue dots), and generalized Brillouin zone (GBZ; PBC with
β = 0.77 [red dashed line in (c)]; red circles). Inset is the plot for
clean samples with β ≈ 0.854, which gives rise to the bulk-boundary
correspondence (BBC) for E ≈ −0.2 ± 1.6i. We fix t = 1, γ = 1.4,
and N = 60.

does not exist [55,57], where βmin is E dependent. For a
typical energy E = E0, βmin(E0) only ensures the BBC for
such a state [see the inset of Fig. 2(d) as an example]. Thus, a
global BBC cannot be obtained by simply utilizing a specific
βmin(E ) for the clean samples.

Nevertheless, after considering the disorder effect, the
broadening of βmin will significantly alter the plot of Re(β ) vs
Im(β ). To identify the unified transformation coefficient, we
calculate the F (E , β ) vs β for each eigenvalue E . As shown
in Fig. 2(c), the interval of βmin(E ) is determined by requir-
ing ln{F (E , βmin)}/ min{ln[F (E , βmin)]} ≈ 1. Remarkably,
all βmin(E )’s intersect at a single point, i.e., ∩i∈Eβmin(i) =
0.77. Since βmin(E ) ensures the BBC for the eigenvalue E , the
transformed Hamiltonian HGBZ with β = 0.77 will capture
all the eigenvalues under OBC [see Fig. 2(d)]. The interplay
between disorder effect and the BBC unveils one of the exotic
properties of non-Hermitian systems.

IV. APPLICATION OF THE MODIFIED GBZ THEORY
UNDER MAGNETIC FIELD

In this section, we apply the modified GBZ theory to the
system with a magnetic field. The Hamiltonian reads

H =
∑
x,y

t±c†
x,ycx±δx,y + tye±iφxc†

x,ycx,y±δy . (9)

Here, φ represents the magnetic flux. Recently, Lu et al. [37]
and Shao et al. [38] noticed that the strength of the NHSE
is significantly suppressed by increasing φ. However, the
strength of the NHSE under the magnetic field cannot be
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FIG. 3. (a) The plot of eigenstates ρx;n = ∑
y |ψn(x, y)|2 vs site

x for n = 3 and 101 with φ = 0. Inset plots the real eigenvalues
(Re[E ]) for φ = 0 (blue dots) and φ = 2π/(N − 1) (red dots), which
determines the choices of n. (b) and (c) F (En, β ) vs β for n = 3
and 101, respectively. (d)–(f) are the same as (a)–(c), except φ =
2π/(N − 1). We set t+ = 1.2, t− = 0.8, ty = 1, and Nx = Ny = N =
20.

correctly described by the conventional GBZ theory [37]. The
conventional GBZ theory seems to indicate that the NHSE
is irrelevant to the magnetic field. Since such a model is
closely related to a one-dimensional model with on-site dis-
order [82–84] [see the Appendix B for more details], we
next elucidate that a faithful description of the NHSE is still
available based on the proposed modified GBZ theory.

Significantly, the eigenequation gives rise to Hψn =
Enψn(x, y). Here, En stands for the nth eigenvalue shown in
the inset of Fig. 3(a). For clarity, we take n = 3 and 101 as two
typical examples. To unveil the universality of the modified
GBZ theory under magnetic field, we pay attention to the
evolution of F (En, β ) vs β. When the magnetic field is absent,
the eigenvectors for n = 3 and 101 should both show the
features of the NHSE, where a single point of βmin ∼ 0.81 is
obtained [see F (En, β ) in Figs. 3(b)–3(c)]. After considering
the influence of φ, we notice that F (En, β ) gives a plateau
for n = 3 with βmin ∈ [0.5, 1.1]. Based on the modified GBZ
theory, βmin = 1 should be adopted to characterize the NHSE,
and the NHSE for n = 3 should be destroyed. On the contrary,
a single point with βmin ∼ 0.81 is still available for n = 101.
These results are consistent with the plot of eigenvectors in
Figs. 3(a) and 3(d). The NHSE for n = 3 is destroyed with
n = 101 unaffected by increasing φ, which manifests the
magnetic-field-suppressed NHSE.

We close this section by clarifying why the GBZ theory
fails to describe the NHSE. The modified GBZ theory con-
siders the influence of F1 on the polynomial F (E , β ), which
smoothes its sharp dip. Nevertheless, such a process leaves
the global minimum of F (E , β ) unaffected. The applied GBZ
theory in the previous study [37] only concentrated on the
global minimum, which is almost unaffected by the mag-
netic field [see Fig. 3(e), the global minimum still gives β ∼

0.8]. However, the plateau of F (En=3, β ) suggests that both
β ∈ [0.5, 1.1] can capture the minimum of F (En=3, β ) and
the BBC with high accuracy. In short, a faithful description
of the NHSE should pay attention to not only the BBC but
also the additional restrictions of the modified GBZ theory.

V. SUMMARY AND DISCUSSION

In summary, we found that the minimum of F (E , β ) gives
an interval instead of a single point, which eases the re-
alization of BBC. Due to the extended choices of βmin, a
unified transformation coefficient β for samples with long-
range hopping can be obtained. To compare the NHSE for
different cases and eliminate the ambiguity, the strength of the
NHSE is unified to the minimum of |βmin − 1|. Notably, the
modified GBZ theory under strong on-site disorders should
fulfill two key points: (1) The transformation coefficient β =
βmin should ensure the correctness of BBC by minimizing
F (E , β ); (2) |βmin − 1| should also be minimized. Finally, we
clarified the paradox of the GBZ irrelevance of the NHSE un-
der magnetic field with the help of the modified GBZ theory.

In disordered non-Hermitian systems, the modified GBZ
theory means to find the minimum of F (E , β ) = |F1(E ) +
F2(β )|. We uncover that the relative quantity between F1(E )
and F2(β ) is very important. Here, F1(E ) has significant
influences when the on-site disorder is strong enough. The
global BBC can be realized for long-range hopping mod-
els, and the conventional GBZ irrelevance under magnetic
field is also illuminated by considering F1(E ), which are
distinct from the previous study [36]. Furthermore, the pro-
posed min[F (E , β )] to achieve the BBC has no restriction
on the concrete form of a Hamiltonian. Thus, the theo-
retical framework in our approach is quite universal for
almost all the disordered non-Hermitian systems. In the Ap-
pendix C, we present two more prototypical examples, the
non-Hermitian Su-Schrieffer-Heeger model [55] and the non-
Hermitian Chern insulators [21], to illustrate the universality
of our theory. Our work deepens the understanding of the
characterization of the NHSE for samples with on-site dis-
orders and extends the application of the GBZ theory.
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APPENDIX A: THE DERIVATION OF EQ. (6)

In this Appendix, we give the derivation of the analytical
formula of F1. For Eq. (5), we mark t+/− as (E − Ei ) 	=
0 since there is a high probability t+/− ∼ (E − Ei ). Here,
we suppose Ei and E are the eigenvalues of HOBC;N−2×N−2

and HOBC;N×N , respectively. One should also notice that the
eigenvalue of HOBC;N×N is also approximately the eigenvalue
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of HOBC;N−2×N−2, and only a slight deviation δ = |EOBC;N −
EOBC;N−2| → 0 exists [36].

By considering δ, the analytical formula of F1 is obtained:

ln(F1) ≈
N∑

i=1

ln(E − Ei )

= lim
δ→0

N

W

[∫ E−δ

− W
2

ln(E − x)dx +
∫ W

2

E+δ

ln(E − x)dx

]
.

(A1)

In the above deviation, we require Ei → x and |E − Ei| > δ

for Ei ∈ [−W
2 , W

2 ]. Thus, one finally has

ln(F1) = ln

{[(
E − W

2

)[(1/2)−(E/W )]

×
(

E + W

2

)[(1/2)+(E/W )]

e−1

]N
⎫⎬⎭. (A2)

APPENDIX B: THE SIMILARITY BETWEEN A
NON-HERMITIAN SYSTEM WITH A MAGNETIC FIELD

AND A ONE-DIMENSIONAL MODEL WITH ON-SITE
DISORDERS

In general, the similarity between a non-Hermitian sys-
tem with a magnetic field and a one-dimensional model with
on-site disorders can be identified based on the following
considerations.

Firstly, they show a similar Hamiltonian formula. The
Hamiltonian of a two-dimensional non-Hermitian rectangular
lattice in the presence of a uniform perpendicular magnetic
field with a irrational flux φ per unit cell is [37]

H =
∑
x,y

(tx ± γ )c†
x,ycx±δx,y + tye±iφxc†

x,ycx,y±δy . (B1)

The corresponding Harper Hamiltonian reads

H(ky) =
∑

x

2ty cos (ky + φx)c†
x,ky

cx,ky

+(tx + γ )c†
x,ky

cx+δx,ky

+(tx − γ )c†
x,ky

cx−δx,ky , (B2)

based on the Fourier transform cx,ky =∑
y exp(−ikyy)cx,y [83]. This is a one-dimensional

tight-binding model in which the quasiperiodicity appears as
an on-site (diagonal) modulation. Due to the existence of a
quasiperiodic potential 2ty cos (ky + φx) [84], such a model
looks similar to the models with on-site disorders, where the
localization feature exists in principle.

Furthermore, the similarities can be clarified based on the
proposed modified GBZ theory. Notably, the proposed mod-
ified GBZ theory is simplified to the calculation of a typical
integral correlated to the disorder [see Eq. (A1)]. For Ander-
son disorder [86], it gives rise to∫ W/2

−W/2
P(εi ) ln(E − εi )dεi. (B3)

Here, the random on-site energy for each site εi ∈
[−W/2,W/2] satisfies the uniform distribution P(εi ) =
1

W [87]. For the Harper model, the quasiperiodic potential
εx = 2ty cos (ky + φx) is a composite function, i.e., εx

2ty
=

cos(�) ranging from −1 to 1. Here, � ∈ [0, 2π ] and P(�) =
1

2π
. The above integral becomes

∫ 2ty

−2ty

P(εx ) ln(E − εx )dεx. (B4)

Here, P(εx ) = 1

2π
√

(2ty )2−(εx )2
, which is similar to the on-site

disorder cases.
Lastly, our theory is universal with a wide range of appli-

cabilities for different forms of Hamiltonians. Thus, we can
faithfully treat the quasiperiodic or random on-site potential
with an equal footing within our theory of framework.

Based on the above considerations, a two-dimensional
non-Hermitian model with a magnetic field can be roughly
considered as a one-dimensional model with on-site disorders.
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FIG. 4. (a) and (b) Non-Hermitian Su-Schrieffer-Heeger (SSH)
model and (c) and (d) non-Hermitian Chern insulator. (a) The evo-
lution of ln[F (E , β )] with the increase of β for the non-Hermitian
SSH model with W = 0 (red) and W = 3 (blue). The green lines are
the cases of n = 4 (top) and n = 30 (bottom) under disorder, and
dashed lines are β = 1 (black) and β = √

(t1 − γ )/(t1 + γ ) (red).
(b1) and (b2) Plots of eigenstates ρn = |ψn|2 for n = 4 and 30,
respectively. (c) and (d) are the same as (a) and (b), except W = 10
(blue), n = 120 (bottom), and ρx;n = ∑

y |ψn(x, y)|2.
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APPENDIX C: THE DISORDERED NON-HERMITIAN
SU-SCHRIEFFER-HEEGER MODEL AND
NON-HERMITIAN CHERN INSULATOR

To show the proposed theory is universal, we take two more
typical models as examples.

The first one is the non-Hermitian Su-Schrieffer-Heeger
(SSH) model [55]:

H =
N∑

i=1

εi(c
†
i;Aci;A + c†

i;Bci;B)

+ (t1 + γ )c†
i;Aci;B + (t1 − γ )c†

i;Bci;A

+ t2c†
i;Bci+1;A + t2c†

i+1;Aci;B, (C1)

where t1 ± γ and t2 represent intracell and intercell hopping,
respectively. Here, γ encodes the non-Hermitian strength.
Also, εi ∈ [−W/2,W/2] denotes the on-site disorder with
W the disorder strength. Here, we fix t1 = 1, t2 = 0.8, γ =
0.5, and N = 40. According to the proposed modified GBZ
theory, we plot the evolution of F (E , β ) vs β, as shown
in Fig. 4(a). For clean samples (W = 0, red), the minimum
of F (E , β ) is a single point βmin = √

(t1 − γ )/(t1 + γ ) (red
dashed line), which agrees with the GBZ theory. Thus, βmin

can rebuild the BBC and characterize the NHSE. When dis-
order is strong enough (blue), the plateau for the minimum
of ln[F (E , β )] exists, and an interval βmin ∈ [�−,�+] re-
places a single point βmin for the nth eigenvalue En (Hψn =
Enψn). Note that it is distinct from the result for W = 0.
All βmin ∈ [�−,�+] can realize the BBC with considerable
accuracy due to F (E , βmin) ≈ F (E ,

√
(t1 − γ )/(t1 + γ )).

Furthermore, min|βmin − 1| can depict the NHSE best for
βmin ∈ [�−,�+] according to our theory. Here, min|βmin −
1| = 0 means the NHSE disappears due to localization of
the skin mode caused by disorder. For clarity, we take n = 4
and 30 as two typical examples [see Figs. 4(b1) and 4(b2)].

When disorder is absent (red), the features of the NHSE
remain for both states. However, the NHSE for n = 4 is
destroyed, while n = 30 is almost unaffected after consid-
ering disorder strength W = 3 (blue). It is consistent with
Fig. 4(a): min|βmin − 1| = 0 due to the right boundary of the
plateau �+ > 1 for the eigenstate n = 4 (top green line), but
min|βmin − 1| 	= 0 for n = 30 (bottom green line).

Next, we also study the non-Hermitian Chern insula-
tor [21]. The corresponding Hamiltonian reads

H =
∑
x,y

[(m + 2)σz + εx,yσ0]c†
x,ycx,y

+
[

(t1 + γ )

(−σz − iσx

2

)]
c†

x,ycx+ex,y

+
[

(t1 − γ )

(−σz + iσx

2

)]
c†

x,ycx−ex,y

+
[

(t2 + γ )

(−σz − iσy

2

)]
c†

x,ycx,y+ey

+
[

(t2 − γ )

(−σz + iσy

2

)]
c†

x,ycx,y−ey , (C2)

where εx,y ∈ [−W/2,W/2] denotes the on-site disorder with
W the disorder strength. Here, we fix m = 1, t1 = t2 = 1, γ =
0.3, and N = 12. As shown in Figs. 4(c) and 4(d), the mini-
mum of F (E , β ) becomes the plateau with βmin ∈ [�−,�+]
due to on-site disorder. Taking n = 4 and 120 as examples
(green lines), some features can be identified. The NHSE
of the mode n = 4 is destroyed for �+ > 1. These results
are similar to the non-Hermitian SSH model. Therefore, the
proposed modified GBZ theory is highly universal and can be
adopted to achieve a systematic understanding of the NHSE
in non-Hermitian systems.
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