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Ring compaction as a mechanism of densification in amorphous silica
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The structure of permanently densified silica glass is investigated by neutron and x-ray diffraction, and by the
production of atomistic models that reproduce the diffraction results. The focus is on the nature of the ordering
on an intermediate length scale that originates from the formation of n-rings, where n is the number of Si or O
atoms within a ring. The densification process has a large effect on this ordering, as identified by pronounced
changes to the first sharp diffraction peak (FSDP) in the measured structure factors. A clear and systematic
dependence of the distribution of ring sizes on the position and shape of the FSDP could not be found, i.e., the
ring statistics are not directly encoded into the form of this peak. Instead, a significant contribution to the glass
densification originates from compaction of the n-rings, a metric that is quantified by the radius of gyration and
lifetime of the rings. We thereby uncover and quantify a key densification mechanism in amorphous materials.
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I. INTRODUCTION

Amorphous networks provide the foundation for a broad
swath of functional glasses in energy and information tech-
nology [1] and provide the basis for the silicate magmas
encountered in geoscience [2]. Fundamental to understanding
the structure-function relationships is knowledge of the net-
work structures and how they adapt as the state conditions are
changed. Here, densification by pressure at room or elevated
temperature is an important process that is encountered in
the likes of sharp contact loading, when glass is indented or
scratched, and when magma is confined below the Earth’s sur-
face. It is therefore important to understand the mechanisms
of pressure-induced deformation as a first step in predicting
the material’s response.

The structural organization of the atoms in amorphous
network-forming materials such as silica occurs on three dif-
ferent length scales, which manifest themselves as separate
peaks in the structure factor S(k) measured in a diffraction
experiment, where k is the magnitude of the scattering vec-
tor. Three peaks appear at k1r0 = 2–3, k2r0 = 4.6–4.9, and
k3r0 = 7.8–8.9, where r0 is the nearest-neighbor distance,
and correspond to ordering on real-space length scales that
are associated with the nearest-neighbor distance (i = 3), the
size of the local structural motifs (i = 2), and the size of
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the ring structures that are formed by the agglomeration of
these motifs on an intermediate length scale (i = 1) [3,4]. In
general, there will be a distribution of ring sizes that depends
on the chemical composition of the glass and its temperature
and/or pressure history. It is therefore appealing to search for
a measure of this distribution in the shape of the i = 1 peak in
S(k), which is often known as the first sharp diffraction peak
(FSDP) [5–7].

The ring structures can be identified by a closed path search
along the chemical bonds in a material [8–13]. The ring size
is defined by the number of nodes n that it contains. In silica
glass, these nodes are usually identified with the Si atoms
at the center of corner-sharing tetrahedral SiO4/2 units. In
general, each ring will have a characteristic length scale �n that
increases with the number of nodes. If there is a large propor-
tion of such rings, they are anticipated to modulate the number
density of the material on this length scale. Hence there should
be a contribution to the FSDP from a peak at position 2π/�n.
This idea forms the basis of the recent work of Shi et al.
[14] on silicate glasses, where the proportion of rings with
n � 4, n = 5, and n � 6 was estimated from the shape of the
FSDP measured in neutron diffraction experiments by using
a fitting procedure in which the contribution from n-rings is
assumed to scale with the proportion of those rings present in
the network structure. The results were found to correlate with
the Guttman ring statistics obtained from molecular dynamics
(MD) simulations.

The findings of Shi et al. [14] are, however, far from
obvious.

First, they require that the structural information repre-
sented by n-body ring correlations is “collapsed” into S(k),
which is a two-body correlation function. It is, however, no-
toriously difficult to gain accurate information on three-body
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(bond-angle distributions), four-body (dihedral angle distribu-
tions), and higher body correlations simply from knowledge
about the ensemble averaged distances between pairs of
atoms. Indeed, it is possible to generate substantially different
structural models that have an identical S(k) function [15],
i.e., there is no reason to presuppose a one-to-one correspon-
dence between the shape of the FSDP and the ring statistics.
This scenario is supported by previous work on fused silica
[16] and is illustrated by the recent work of Shi et al. [17]
in which MD simulations, designed to reproduce measured
neutron diffraction patterns, deliver an identical FSDP to
experiment, but also deliver substantially different ring-size
distributions to those obtained from an analysis of the mea-
sured FSDP using the fitting procedure described in Ref. [14].
Additionally, the periodic real-space density fluctuations that
give rise to the FSDP will not, in general, emanate from a set
of connected rings having the same length scale as supposed
in Ref. [14]. Instead, rings of different sizes will be intercon-
nected, so the periodic density fluctuations that originate the
FSDP must depend on the nature of this connectivity.

Second, the shape of the FSDP will depend on whether
neutron or x-ray diffraction is used to measure the structure
of the glass (Sec. III). Here, it is not obvious why the ring
statistics should be encoded solely in the neutron diffraction
results and why x-ray diffraction results should be precluded
from the analysis [14]. Indeed, even in the case of neutron
diffraction, the amplitude and shape of the measured FSDP
can be altered substantially by changing the isotopic enrich-
ment of the elements that are present—a variation that will
have no effect on the chemical bonding or network structure
[15]. This feature provides the cornerstone for the method of
neutron diffraction with isotope substitution, which can be
used to unravel the structural complexity of network-forming
glasses such as SiO2 and GeO2 [18,19].

We have therefore been motivated to investigate the depen-
dence of the FSDP on the ring statistics for vitreous silica, a
prototypical network-forming glass that provides the founda-
tion for the silicate class of amorphous materials. Specifically,
we consider the recent diffraction work by Onodera et al.
[20] in which the hot versus cold compression routes were
used to systematically manipulate the network structure and
thereby deliver FSDPs with significantly different positions
and shapes. If the working hypothesis of Shi et al. [14] holds
true, an increase in the proportion of smaller n-rings with
density must facilitate an increase in the position k1 of the
FSDP.

This paper is organized as follows. The x-ray and neutron
diffraction results of Onodera et al. [20] are summarized in
Sec. II and are supplemented by new results for the pristine
glass. New atomistic models for the glass structures are then
developed in Sec. III. The ring statistics are presented in
Sec. IV. The glass densification mechanisms are discussed in
Sec. V where measures of the ring compaction are introduced.
Conclusions are drawn in Sec. VI.

II. X-RAY AND NEUTRON DIFFRACTION

Cold compressed glasses were compacted at room tem-
perature (RT) and a pressure of either 7.7 GPa or 20 GPa
before they were recovered to ambient conditions [20]. Hot

TABLE I. Density, compaction, and oxygen packing fraction for
the silica glasses. The compaction is given by the reduced density
ρ/ρ0, where ρ0 is the density of the pristine (RT/0 GPa) glass. The
oxygen packing fraction ηO [21] is calculated for tetrahedral SiO4/2

motifs with an Si-O bond length of 1.614 Å. The measurement error
on the density is ±0.01 g cm−3.

Glass Density ρ (g cm−3) ρ/ρ0 ηO

RT/0 GPa 2.21 1.000 0.425
RT/7.7 GPa 2.24 1.014 0.430
400 ◦C/7.7 GPa 2.54 1.149 0.488
600 ◦C/7.7 GPa 2.66 1.204 0.511
800 ◦C/7.7 GPa 2.68 1.213 0.515
1000 ◦C/7.7 GPa 2.69 1.217 0.517
1200 ◦C/7.7 GPa 2.72 1.231 0.523
RT/20 GPa 2.71 1.226 0.521

compressed glasses were compacted at a pressure of 7.7 GPa
and a temperature in the range from RT to 1200 ◦C before they
were recovered to ambient conditions. The glasses are des-
ignated by the processing procedure, e.g., RT/20 GPa refers
to the glass compacted at room temperature and a pressure
of 20 GPa. The sample preparation conditions lead to glass
densities that are up to 23% greater than the density of the
pristine material, which will be designated by RT/0 GPa

FIG. 1. Total structure factors S(k) for the silica polyamorphs in-
vestigated using both (a) x-ray diffraction and (b) neutron diffraction
(black solid curves). The red solid curves show the structure factors
obtained from the MD-RMC models. The green vertical broken line
marks the position of the FSDP for the RT/0 GPa glass.
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FIG. 2. X-ray and neutron S(k) functions measured for the
(a) cold and (b) hot compressed SiO2 glasses in the region of the
first three peaks with the positions k1, k2, and k3. The green vertical
broken lines mark the position of these peaks in the neutron S(k)
function for the RT/0 GPa glass.

(Table I). The structure factors for the pristine glass were
measured using the high-energy x-ray diffraction beamline
BL04B2 at SPring-8 [22] and the neutron diffractometer GEM
at ISIS [23]. The structure factors for the densified glasses are
taken from Ref. [20].

Figure 1 shows the measured x-ray and neutron total struc-
ture factors for the pristine and several of the densified SiO2

glasses, where [15]

S(k)=1 + 1

|〈w(k)〉|2
∑

α

∑
β

cαcβw∗
α (k)wβ (k)[Sαβ (k) − 1],

(1)

cα is the atomic fraction of chemical species α (Si or O),
wα (k) is the x-ray atomic form factor with dispersion terms
or the neutron coherent scattering length of chemical species
α, Sαβ (k) is a partial structure factor for the chemical species
α and β, and |〈w(k)〉|2 = ∑

α

∑
β cαcβw∗

α (k)wβ (k).
Figure 2 zooms into the region of the first three peaks

in S(k). The position of the FSDP increases monotonically
with the density as shown in Fig. 3(a). On cold compression,
the height of the FSDP decreases with increasing pressure
as the peak broadens. In contrast, on hot compression the
height of the FSDP first decreases and then increases with the
processing temperature, i.e., there is a broadening followed by
a sharpening of this feature [Fig. 3(b)].

The corresponding real-space total-correlation functions
are shown in Fig. 4. They were obtained from the Fourier
transform

T (r) = 4πn0r + 2

π

∫ ∞

0
dk[S(k) − 1]M(k) k sin(kr), (2)

where r is a distance in real space, n0 is the atomic number
density, and M(k) is the Lorch [24] modification function
given by M(k) = sin(πk/kmax)/(πk/kmax) for k � kmax and
M(k) = 0 for k > kmax, where kmax is the maximum value of

FIG. 3. Reduced density dependence of (a) the position k1 and
(b) the full width at half maximum �k1 of the FSDP for the different
polyamorphs of silica glass extracted from the x-ray S(k) functions.
In (a), the error bars are smaller than the symbol size and the fitted
line k1(Å−1) = 1.41(4)ρ/ρ0 + 0.10(5) shows an approximately lin-
ear relationship between the peak position and density. In (b), the
lines are drawn as guides to the eye.

k. The first peak in the measured T (r) functions originates
from Si-O correlations and gives an Si–O coordination num-
ber of four within the experimental error, which indicates a
network built from tetrahedral SiO4/2 units. The Si-O bond
length remains invariant within the experimental error, with
a mean value of 1.614(3) Å, and there is little change to

FIG. 4. X-ray and neutron T (r) functions measured for the
(a) cold and (b) hot compressed SiO2 glasses (kmax = 23.45 Å−1).
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FIG. 5. Partial structure factors Sαβ (k) obtained from the MD-
RMC models for the different polyamorphs of silica glass.

the shape of the first peak in T (r). Glass densification does
not therefore originate from a large change to the tetrahedral
SiO4/2 units, e.g., it does not originate from the compression
of those units. The packing of the tetrahedral units does,
however, increase with the glass density, as manifested by an
increase in the oxygen packing fraction ηO [21] (Table I).

III. ATOMISTIC MODELS

The atomistic structure of the pristine and densified ma-
terials was also probed by performing MD simulations on
systems of 9000 atoms and by employing the diffraction
data to refine the models thus obtained via the reverse
Monte Carlo (RMC) method. The models were developed
using the protocols described in Ref. [20], except that the
large-scale atomic/molecular massively parallel simulator
(LAMMPS) code [27] was used for the MD simulations and
the system size was three times larger in order to improve
the statistical significance of the modeled parameters. In the
MD method, a model for the pristine glass was first created. It
was then either cold or hot compressed, following a procedure
designed to mimic the experimental work. Bond-switching
(or other) restrictions were not applied, i.e., a given system
was allowed to evolve according to the state conditions and
was free to change the connectivity of its silicon-centered
structural motifs. The simulation timescale under cold com-
pression (∼100 ps) was sufficiently long to enable a substantial
reorganization of the ring statistics, provided the state con-
ditions allow for it [28]. In the RMC refinements, the Si-O
coordination number distributions and intratetrahedral O-Si-
O bond angle distributions from the MD simulations were
used as constraints. These restrictions ensured the creation of
networks of predominantly corner-sharing tetrahedral SiO4/2

FIG. 6. Contributions of the weighted partial structure factors
Sαβ (k) [see Eq. (1)] towards the (a) and (b) x-ray versus (c) and
(d) neutron total structure factors S(k) for identical MD-RMC struc-
tural models of either the pristine (left column) or RT/20 GPa (right
column) glass. The weighting factors were calculated using neutron
scattering lengths of bSi = 4.1491(10) fm and bO = 5.803(4) fm
[25] or neutral atom x-ray form factors taken from Ref. [26]. To
emphasize the different FSDP shapes measured by x-ray and neutron
diffraction for a given glass, the neutron S(k) functions are shown by
the broken magenta curves in (a) and (b), and the x-ray S(k) functions
are shown by the broken magenta curves in (c) and (d).

units, consistent with the experimental findings. The models
give a good account of the diffraction data as shown in Fig. 1.

The results show that all the partial structure factors con-
tribute towards the FSDP (Fig. 5), with weighting factors that
depend on whether the structural probe is x-ray or neutron
diffraction (Fig. 6). This weighting accounts for the difference
in amplitude and shape of the FSDPs measured by x-ray
versus neutron diffraction. It also accounts for the presence
of a principal peak at k2 in the neutron S(k) functions but
an absence of this feature in the corresponding x-ray S(k)
functions. We note that there will also be a contribution to
the different peak shapes from the k-space resolution function
of the x-ray or neutron diffractometer [29]. In the case of
neutron diffraction, the shape of the FSDP in S(k) can also
be changed by altering the isotopic enrichment of Si and/or
O and hence the relative weighting of the contributing partial
structure factors [19,30].

Figure 7 shows the bond angle distributions B(θ ) obtained
from the MD-RMC models, where this distribution is either
(a) un-normalized or (b) normalized by a factor of sin(θ ).
Each distribution B(θ ) is proportional to the number of bonds
found between angles of θ and θ + �θ , which will depend
on the solid angle subtended at that value of θ during the
sampling procedure. The latter is proportional to sin(θ ) and
it is therefore appropriate to remove its effect by plotting the
distribution as B(θ )/ sin(θ ) so that peaks are not distorted,
e.g., a finite bond angle distribution at θ � 180◦ will not be
artificially suppressed [31,32].

The MD-RMC models give intratetrahedral O–Si–O bond-
angle distributions with a peak position around 109◦, which is
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FIG. 7. Bond angle distributions (a) B(θ ) and (b) B(θ )/ sin(θ )
obtained from the MD-RMC models for the different polyamorphs of
silica glass. In (b), the normalization by sin(θ ) takes into account the
solid-angle subtended when sampling the bond angles and avoids an
artificial suppression of distributions that contain large bond angles
(see Sec. III).

consistent with a network built from tetrahedral SiO4/2 units.
These units are not, however, uniform as indicated by the finite
width of the intratetrahedral O–Si–O bond-angle distribution
and by the finite width of the nearest-neighbor Si-O peak in
T (r) (Fig. 4). The intertetrahedral Si–O–Si bond-angle distri-
bution indicates corner-sharing motifs. The maximum in B(θ )
at θ � 154(2)◦ for the pristine glass compares to a value in the
range 148–153◦ reported in previous work [33,34]. The peak
position decreases with increasing density, consistent with the
findings from experiment [35] and with previous MD [36,37]
and Monte Carlo [38] simulations of compacted silica glass.
As discussed below, the SiO4/2 units will connect to form
n-rings, where the shape of a given ring will depend on the
precise shape of the SiO4/2 tetrahedral units from which it
is formed and the value of the intertetrahedral Si–O–Si bond
angle.

IV. RING STATISTICS

The ring statistics in the MD-RMC models were probed
by using the R.I.N.G.S. code [12,13]. In this analysis, King

FIG. 8. Full (left-hand column) versus grouped (right-hand col-
umn) distributions of ring sizes for the different polyamorphs of
silica glass. The distributions correspond to (a) and (b) King rings,
(c) and (d) Guttman rings, or (e) and (f) primitive rings.

rings [8], Guttman rings [9], and primitive rings [10] were all
calculated. For a given starting node, Guttman rings are found
by following the Si-O bonds and tracing the shortest path
back to the starting node from a specified nearest-neighbor,
whereas King rings are found by following the Si-O bonds
and tracing the shortest path between two specified nearest
neighbors of the starting node. Primitive rings also represent

FIG. 9. Distributions of (a) and (b) King rings, (c) and
(d) Guttman rings, or (e) and (f) primitive rings for the different
polyamorphs of silica glass under cold compression at RT (left col-
umn) or hot compression at 7.7 GPa (right column).
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FIG. 10. Silicon-centric scatter plot of the squared radius of gy-
ration Rg( j)2 versus the lifetime l j of the primitive n-rings found for
the cold compressed (first column) versus hot compressed (second
column) SiO2 glasses. The sloped straight lines mark the approxi-
mate envelope of the data sets for the RT/0 GPa glass.

closed paths, but they cannot be decomposed into smaller
rings [11].

The results show that it is hard to associate the dramatic
changes that occur to the position and shape of the FSDP
under hot or cold compression (Fig. 2) with systematic trends
in the ring statistics that are independent of the ring definition
(Figs. 8 and 9).

On hot compression at 7.7 GPa, for example, the pro-
portions of n = 4 and n = 5 rings both increase with the
temperature (or density) irrespective of the ring definition,
but the proportion of n = 6 rings either increases (King and
primitive) or decreases (Guttman) and the proportion of n = 7
rings either increases (King), decreases (Guttman), or first
increases and then decreases (primitive) (Fig. 8). If the rings
are placed into groups with n � 4, n = 5, or n � 6 (as in
Ref. [14]), the proportion of n � 6 rings either increases (King
and primitive) or decreases (Guttman) with increasing density.
On cold compression at RT, a similar variation in behavior can
be observed. For example, the proportion of n = 7 rings ei-
ther decreases then increases (King), increases then decreases
(Guttman), or remains more-or-less invariant (primitive) as
the pressure is increased (Fig. 8). The proportion of n � 6
rings either increases then decreases (Guttman) or remains
constant before increasing (King and primitive) with increas-
ing density.

For the most compacted similar-density 1200 ◦C/7.7 GPa
and RT/20 GPa glasses (Table I), where the FSDP positions
are similar but there is contrast between the peak widths
(Fig. 3), the relative proportion of n � 6 rings is larger or

FIG. 11. Oxygen-centric scatter plot of the squared radius of gy-
ration Rg( j)2 versus the lifetime l j of the primitive n-rings found for
the cold compressed (first column) versus hot compressed (second
column) SiO2 glasses. The sloped straight lines mark the approxi-
mate envelope of the data sets for the RT/0 GPa glass.

smaller, depending on the choice of ring type (Fig. 8). The
large density of these glasses is, however, associated with a
shift in the ring-size distributions towards smaller ring sizes
(Fig. 9).

The observed increase in the number of n = 3 and n = 4
rings with density (Fig. 8) is consistent with a measured
increase of intensity associated with the D1 and D2 “defect”
lines in the Raman spectra for silica at 495 and 606 cm−1, re-
spectively [35,39], which originate from the n = 4 and n = 3
rings, respectively [40,41]. According to Rahmani et al. [42],
however, the peak areas are not simply proportional to the
concentration of these small rings.

In comparison, a variety of behavior is indicated from
previous MD and Monte Carlo models of silica glass, which
reflects the use of different atomic interaction models and/or
sample preparation procedures. Investigations show, for ex-
ample, (i) a monotonic shift towards smaller ring sizes at
pressures up to 57.5 GPa on cold compression at 27 ◦C for
models that reproduce the measured equation of state [28],
(ii) no discernible change to the ring-size distribution from
15 to 20 GPa at 227 ◦C [36], (iii) a shift of the distribution
towards larger ring sizes over the 15 to 20 GPa pressure
range as the temperature is raised from 727 to 1727 ◦C [37],
(iv) a shift towards larger ring sizes on cold compression at
�5 GPa and 27 ◦C [38], (v) a shift towards larger ring sizes
at pressures �16 GPa on “cold” compression at 727 ◦C or on
hot compression at 8 GPa and a higher temperature [43], or
(vi) a shift towards larger ring sizes on quenching from the
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FIG. 12. Silicon-centric scatter plot of the squared radius of gy-
ration Rg( j)2 versus the lifetime l j of the primitive n-rings found for
the cold compressed SiO2 glasses with n = 4–9. For each glass, the
small squares show the individual data points and the large square
marks the mean values of 〈Rg( j)2〉 and 〈l j〉. The horizontal and
vertical bars show the standard deviation of each distribution about
the mean.

melt at 3727 ◦C for pressures up to 18 GPa followed by a
shift towards smaller ring sizes on quenching from the melt
at larger pressures [28].

Overall, the results do not support the notion that the
ring statistics can be reliably obtained from the position
and shape of the FSDP. For instance, the RT/7.7 GPa and
400 ◦C/7.7 GPa materials have contrasting FSDPs (Fig. 2)
but essentially the same ring statistics (Fig. 9). It is not clear
that the FSDP in the diffraction patterns is particularly sensi-
tive to the presence of Guttman rings as reported elsewhere
[14,17,44].

V. MECHANISMS OF GLASS DENSIFICATION

The present analysis shows that the ring-size distribution
does not change substantially for the different network struc-
tures, although there is a shift towards smaller ring sizes
for the highest density materials (Fig. 9). An explanation lies
with the pressure range covered in the compression procedure,
in that few fivefold or sixfold Si sites are created at pressures
up to 20 GPa [28,45–47]. There will also be relaxation of
the network structure when the glass is recovered from high-
pressure to ambient conditions and a corner-sharing network
of tetrahedral SiO4/2 motifs is regained. Nevertheless, the

FIG. 13. Oxygen-centric scatter plot of the squared radius of
gyration Rg( j)2 versus the lifetime l j of the primitive n-rings found
for the cold compressed SiO2 glasses with n = 4–9. For each glass,
the small squares show the individual data points and the large square
marks the mean values of 〈Rg( j)2〉 and 〈l j〉. The horizontal and
vertical bars show the standard deviation of each distribution about
the mean.

network is permanently densified, so the shape of the rings
must adjust in response to the reduced volume.

To quantify the degree of ring compaction, the radius of
gyration Rg( j) was calculated for each of the primitive rings
j, where

Rg( j)2 = 1

N

N∑
k=1

[rk ( j) − 〈rk ( j)〉]2, (3)

N is the number of designated atoms (Si or O) within ring
j, rk ( j) is the position of the kth atom within ring j, and
〈rk ( j)〉 is the mean position of these atoms. A more compact
ring will have a smaller radius of gyration as compared to
a less compact ring with the same number of nodes. The
persistent homology technique [48] was also applied to each
of the primitive rings. Here, a sphere is centered on the co-
ordinates of each of the selected atoms (Si or O) forming
a given ring j. The radius of the sphere is then uniformly
increased from zero. The radius r(b j ) at which all the spheres
touch defines the birth coordinate b j = r(b j )2 of that ring
and is commensurate with the nearest-neighbor Si-Si or O-O
distance. The radius r(dj ) at which the hole in the ring is
first covered by the overlapping spheres defines the death
coordinate d j = r(d j )2 of that ring and is commensurate with
its overall size. The lifetime l j = d j − b j will depend on the
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FIG. 14. Silicon-centric scatter plot of the squared radius of gy-
ration Rg( j)2 versus the lifetime l j of the primitive n-rings found for
the hot compressed SiO2 glasses with n = 4–9. For each glass, the
small squares show the individual data points and the large square
marks the mean values of 〈Rg( j)2〉 and 〈l j〉. The horizontal and
vertical bars show the standard deviation of each distribution about
the mean.

ring size and its shape. For example, a regular planar 6-ring
will have a longer lifetime than (i) a regular 6-ring with a
shorter distance between the nodes or (ii) an elongated planar
6-ring having the same distance between the nodes [49].

Figures 10 and 11 show the Si- and O-centric scatter plots
of Rg( j)2 versus l j for each of the glasses, respectively. The
n-rings manifest themselves by distinct bands, showing that
the ring lifetime increases with the radius of gyration. As
compared to their Si-centric counterparts, the n-ring distribu-
tions in the O-centric scatter plots are shifted towards smaller
Rg( j)2 and l j values. This difference between the Si- and
O-centric viewpoints is anticipated. For example, in α-quartz
under ambient conditions, the mean O-O and Si-Si distances
within the 6-rings are 2.66 Å and 3.06 Å, respectively [50],
i.e., the 6-ring formed by the Si sites is larger than that formed
by the O sites. The radius of gyration is therefore smaller for
the more compact ring formed by the O sites and the lifetime
of this ring is correspondingly shorter. In either the Si- or
O-centric representation, almost all the bands shift towards
smaller Rg( j)2 and l j values with increasing density, which
indicates ring compaction or buckling.

In order to elucidate the structural changes that occur,
a scatter plot of Rg( j)2 versus l j was constructed for each
glass for every ring size. The mean values 〈Rg( j)2〉 and 〈l ( j)〉

FIG. 15. Oxygen-centric scatter plot of the squared radius of
gyration Rg( j)2 versus the lifetime l j of the primitive n-rings found
for the hot compressed SiO2 glasses with n = 4–9. For each glass, the
small squares show the individual data points and the large square
marks the mean values of 〈Rg( j)2〉 and 〈l j〉. The horizontal and
vertical bars show the standard deviation of each distribution about
the mean.

were calculated, along with the standard deviations about the
mean.

Figures 12 and 13 show the Si- and O-centric scatter plots
for the cold compressed glasses, respectively. Overall, there
is little change to either 〈Rg( j)2〉 or 〈l ( j)〉 as the pressure
increases from ambient to 7.7 GPa. A reduction in the values
of these parameters then occurs for almost all ring sizes as the
pressure is increased further to 20 GPa. Hence compression
has comparatively little effect on the shape of the rings until
a threshold pressure >7.7 GPa is attained, consistent with the
findings for the other structural parameters. A large change in
ring compaction then occurs, which accounts for the shift in
position of the FSDP towards a larger value of k1 [Fig. 2(a)].

Figures 14 and 15 show the Si- and O-centric scatter plots
for the hot compressed glasses, respectively. Here, the behav-
ior of the n-rings is more complex, reflecting the ability of
the ring structures to relax with increasing temperature. From
the Si-centric viewpoint, the 〈Rg( j)2〉 and 〈l ( j)〉 values for the
n = 4 and 5 rings first decrease as the temperature is increased
from ambient to 400 ◦C, and then either adjust or remain ap-
proximately the same as the temperature is increased further to
1200 ◦C. In comparison, the values of these parameters for the
n � 6 rings decrease more steadily as the temperature is raised
from ambient to 1200 ◦C. From the O-centric viewpoint, the
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largest changes to the 〈Rg( j)2〉 and 〈l ( j)〉 values for all the
n-rings generally occur as the temperature is first increased
from ambient to 400 ◦C. In the case of the n � 6 rings, the
〈Rg( j)2〉 and 〈l ( j)〉 values decrease with increasing tempera-
ture. The story for the n = 4 and 5 rings is more complex. The
〈Rg( j)2〉 value for the n = 4 rings enlarges as the temperature
is increased from 400 ◦C to 1200 ◦C, reflecting a longer mean
intraring O-O distance.

Overall, on hot compression the initial increase in tem-
perature to 400 ◦C affects the shape of all the rings. This
compaction leads to a density for the 400 ◦C/7.7 GPa
glass that is greater than its cold compressed counterpart
RT/7.7 GPa, resulting in an FSDP that is broader and shifted
to a larger value of k1 (Fig. 2). The subsequent increase in
temperature to 1200 ◦C and the concomitant sharpening of the
FSDP [Fig. 2(b))] is related to further compaction of the larger
n � 6 ring sizes.

We note that GeO2 glass has been investigated under cold
compression by in situ high-pressure neutron diffraction with
isotope substitution, and the results were modeled using MD
simulations with interaction potentials that include dipole-
polarization effects [51]. For the pressure regime in which the
glass network remains tetrahedral, corresponding to reduced
densities ρ/ρ0 � 1.16, the measured and simulated mean Ge-
O-Ge bond angle decreases from 134.7(1.6)◦ to 128.5(1.6)◦
as the density is increased from its ambient value, but there is
no change to the Ge-O bond length and little change to the ring
statistics. The results therefore point to a pressure-induced re-
duction in the mean Ge-Ge distance within a ring, thereby sup-
porting the notion that ring compaction is an important mecha-
nism of densification in amorphous network-forming systems.

VI. CONCLUSIONS

In summary, the permanent densification of SiO2 glass
does not originate from a major change to the distribution
of ring sizes. The ring statistics are not, therefore, directly
encoded into the position and shape of the FSDP in S(k), a

finding that is supported by the difference in shape between
the peaks measured by x-ray versus neutron diffraction for a
given polyamorph and by the ability to change the shape of
the FSDP in neutron diffraction for a given polyamorph by
changing the isotopic enrichment of the elements.

Densification proceeds primarily via ring compaction, as
assessed from the reduction in both the radius of gyration
and lifetime of the rings with increasing density. On cold
compression, there is little effect on the shape of the rings until
a threshold pressure >7.7 GPa is attained. On hot compres-
sion, the sharpening of the FSDP at a temperature >400 ◦C is
related to the compaction of the rings with n � 6.

The process of ring compaction or buckling under pressure
should be common to silicates and other amorphous network-
forming systems. It is, therefore, a likely mechanism for the
mechanical deformation of these materials, for example, on
sharp-contact loading [52–56] or in a geophysical environ-
ment where glass is often used as a proxy for uncovering the
structural transformations [2,57,58]. The mechanism provides
a pathway by which network modifiers can increase their
coordination number.

The data sets created during this research are openly avail-
able from the University of Bath Research Data Archive [59].
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