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Quasicrystals are long-range ordered, yet not periodic, and thereby present a fascinating challenge for
condensed matter physics, as one cannot resort to the usual toolbox based on Bloch’s theorem. Here, we present
a numerical method for constructing the Hubbard Hamiltonian of nonperiodic potentials without making use
of Bloch’s theorem and apply it to the case of an eightfold rotationally symmetric two-dimensional optical
quasicrystal that was recently realized using cold atoms. We construct maximally localized Wannier functions
and use them to extract onsite energies, tunneling amplitudes, and interaction energies. In addition, we introduce
a configuration-space representation, where sites are ordered in terms of shape and local environment, that leads
to a compact description of the infinite-size quasicrystal in which all Hamiltonian parameters can be expressed
as smooth functions. The configuration-space picture serves as an aperiodic analog of the Brillouin zone, and
allows one to efficiently describe the quasicrystal in the thermodynamic limit, enabling new analytic arguments
on the topological structure and many-body physics of these models. For instance, we use it to conclude that this

quasicrystal will host unit-filling Mott insulators in the thermodynamic limit.
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Quasicrystals represent a fascinating middle ground be-
tween periodic and disordered materials: they are perfectly
long-range ordered without being periodic [1]. Quasicrys-
talline order can naturally arise from an incommensurate
projection of a higher-dimensional periodic lattice and thereby
enables the investigation of physics of higher dimensions,
in particular in the context of topology [2-6], where the
resulting structures can inherit topologically protected edge
states [3,4,6]. Quasicrystals host fractal, self-similar structures
both in momentum space [1] and in their energy spectrum [7].
They also exhibit Anderson localization [8], broadly similar
to disordered systems. However, there are crucial differences:
in randomly disordered systems in one and two dimensions
(1D and 2D), the noninteracting spectrum is always fully
localized [9]. Quasiperiodic systems, on the other hand, can
host mobility edges and localization transitions at finite po-
tential strengths [10-14]. In the interacting case, localization
can subsist in the form of many-body localization, whose
nonergodic nature has been the subject of significant attention
over the last few years [15-19]. There is strong interest in the
differences in many-body localization between quasiperiodic
and disordered systems [20], in particular in more than one di-
mension, where avalanche effects are predicted to destabilize
many-body localization in the latter case [21].

To study phase transitions and localization phenomena,
it is convenient to describe the continuum lattice potential
as a tight-binding model, i.e., as a collection of discrete
lattice sites. This tremendously reduces the computational
complexity of diagonalizing the Hamiltonian, and therefore
allows for the study of far larger system sizes. The key step
in constructing a tight-binding Hamiltonian is to generate
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a set of localized Wannier functions. In periodic lattices,
these are constructed as an appropriate superposition of Bloch
waves [22] which, however, do not exist for nonperiodic
potentials. For general nonperiodic lattices, existing generic
methods for calculating Wannier functions are based on
imaginary-time evolution of trial wave functions [23], or rely
on full band projections [24].

Constructing exact tight-binding models for general qua-
sicrystals is difficult because (a) one cannot use Bloch’s
theorem to construct appropriate Wannier functions and (b)
the lack of periodicity typically prevents one from efficiently
describing their thermodynamic limit. Several quasiperiodic
models, such as Aubry-André models [10,13,14,25-27], are
explicitly constructed using quasiperiodic perturbations of
an initially periodic lattice and thereby inherit the original
Wannier functions. These models, however, represent only
particular limits of general quasicrystalline potentials.

In this paper, we present a method for generating nonperi-
odic Hubbard Hamiltonians without using Bloch’s theorem,
and apply it to the two-dimensional eightfold rotationally
symmetric optical quasicrystal (8QC) (see Fig. 2), which
has recently been realized with ultracold atoms [28,29]. In
addition, we introduce a configuration-space description of
this quasicrystal, where sites are ordered according to their
shape and local environment, which serves as an aperi-
odic analog of the Brillouin zone, and allows to describe
the infinite-size quasicrystal in terms of smooth functions
in a compact parameter space. This method is similar to
configuration-space descriptions employed for stacked bilayer
systems [30-32] and the resulting description directly corre-
sponds to perpendicular spaces widely used in the field of
discrete quasicrystals [33-37].

In Sec. I, we present a method for the generation of max-
imally localized Wannier functions that is applicable to a
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broad class of quasicrystalline or disordered potentials. We
then apply it in Sec. II to construct the lowest-band Hubbard
Hamiltonian of the 8QC. In Sec. III, we address the descrip-
tion of the quasicrystal in the infinite-size limit. We show in
Sec. IIT A how the 8QC Hubbard Hamiltonian is greatly sim-
plified when reexpressed in configuration space. In Sec. III B,
we discuss how the validity of the single-band picture is im-
pacted by interparticle interactions. Finally, in Sec. III C, we
use the insight gained from the configuration-space expression
of the 8QC Hubbard Hamiltonian to conclude on the existence
of unit-filling Mott-insulating phases in the thermodynamic
limit.

I. TIGHT-BINDING MODEL FOR
NONPERIODIC POTENTIALS

Let us consider a nonperiodic lattice described by the con-
tinuum single-particle Hamiltonian

. | 2N
Hcont = E + V(r),

where p is the momentum operator, m the particle mass, and
V (r) the nonperiodic lattice potential. To generate the tight-
binding Hamiltonian, the key step is to obtain an appropriate
set of localized single-particle basis states {|w;)} on each
site of the lattice, as represented in Fig. 1. We will refer to
these states as Wannier functions, even though we are dealing
with nonperiodic systems where Bloch’s theorem does not
apply. Our numerical method can be summarized as follows:
First, nonorthogonal maximally localized Wannier functions
(NOWF) are generated individually on each lattice site by
minimizing the width of a linear combination of eigenstates
of the potential (see below). Second, a Lowdin transformation
is applied onto the resulting nonorthogonal set, producing a
set of maximally localized and orthogonal Wannier functions
(WF). If applied onto a periodic lattice, our method produces
the same Wannier functions that would be obtained using the
typical Bloch wave formalism.

After constructing the Wannier functions, we generate the
Hubbard Hamiltonian (Fig. 1) in the usual way by the explicit
evaluationAof its matrix elements, namely, onsiteA energies
€ = (w;| Heone [w;), hopping amplitudes Ji; = (w;| Heont [w}),
and onsite interactions U; = gf dr|w;(r)|*, where g = 4”77’261
and a is the scattering length of the considered atomic species.
Off-site interactions can also be obtained through the eval-
uation of integrals involving neighboring Wannier functions
(see Appendix E) [38].

Maximally localized Wannier functions
in real-space formulation

Given the nonperiodicity of the lattice potential, we cannot
rely on Bloch waves for the generation of WFs. Instead, we
start by numerically calculating the single-particle eigenstates
|Ey) of the continuum Hamiltonian in a domain of radius R
centered around the lattice site at position r;. We can then
express the localized NOWF |[wNC) as a linear combination
of the single-particle eigenstates within the energy band of
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FIG. 1. Hubbard models are expressed in terms of onsite en-
ergies, tunneling amplitudes, and onsite interactions, which we
compute by constructing maximally localized Wannier functions. In
nonperiodic systems, all Wannier functions and therefore parameters
are site dependent.

interest (Emin < Er < Emax):

W) =) " |Ex) . (1
k

We note that, contrary to periodic crystals, the existence of
band gaps separating individual bands is not guaranteed for
nonperiodic potentials and must be checked individually for
each specific lattice potential.

The coefficients ¢; are determined by minimizing the lo-
calization criterion [22]

Qi = (WOl (r — 1;)* [wN°)

subject to the normalization constraint ), lck]? = 1. We can
recast this expression as a double sum over all eigenstates
|Ek):

Qi =Y cier (Bl (r — 1) |Ey)

Kl
= Zc,’:cl (Riz)kz
Kl

= c'Ric, )

where we combine the coefficients ¢, into the vector ¢ and de-
fine the Hermitian and positive-definite matrix R? with matrix
elements (R? )y = (Ex| (r — 1;)? |E)).

|wlNO), i.e., the most localized state that can be generated
on the lattice site r;, is then directly obtained as the eigenvec-
tor of (Riz) with the lowest eigenvalue (which is real valued
thanks to Hermiticity). While being maximally localized, the
resulting states |wlNO) on different sites will not yet be orthog-
onal.

To obtain an orthogonal set of localized basis states
|w;), the nonorthogonal basis must now be transformed in a
way that maintains its localized properties. This is achieved
through a Lowdin transformation [39]

wi) =51 |wh), 3)
J
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FIG. 2. Two-dimensional eightfold optical quasicrystal. (a) The
optical quasicrystal is formed by superimposing two square optical
lattices in a single plane with a 45° angle between them. (b) The
resulting optical potential is quasiperiodic.

where S;; = (wN°|wh9) is the overlap matrix between
NOWFs. The Lowdin transformation ensures a minimal
distance between the orthogonalized and nonorthogonal

sets [40], i.e.,

Z (w wNO w; — wlNO) = min. )
Therefore, applying a Lowdin transform onto the nonorthog-
onal maximally localized basis provides us with a maximally
localized orthogonal and real-valued basis set. We note that
the Lowdin transform fails in case of overcompleteness of
the nonorthogonal basis, where the overlap matrix does not
have maximal rank and therefore cannot be inverted. The
success of the Lowdin transform is therefore a good check
for overcompleteness of the initial nonorthogonal basis set.
In practice, the single-particle eigenstates |E;) are ex-
tracted from a finite-difference formulation of the continuum
Schrédinger equation using Lanczos’ algorithm [41] (see Ap-
pendix A for details). The presented method for constructing
WFs becomes exact in the limit of R — oo and vanishing step
size for the discretization, but fine grids limit the calculation
in practice to relatively modest cutoff radii (typically on the
order of 10 lattice sites, i.e., including around 250 to 300
neighboring lattice sites in the 2D case). The resulting approx-
imate WFs converge towards the exact WFs when the cutoff
radius R becomes much larger than the characteristic size
of the WF and we found empirically that implementing the
boundary conditions as a hard wall of finite height (cf. Fig. 13
in Appendix B) significantly speeds up the convergence (see
Appendix C). We note that the NOWFs on all lattice sites are
generated independently of each other; this step can therefore
trivially be parallelized.

II. TWO-DIMENSIONAL EIGHTFOLD
OPTICAL QUASICRYSTAL

We now apply the above method to the two-dimensional
eightfold quasicrystal (8QC) shown in Fig. 2, which has
recently been realized using ultracold atoms [28,29]. This
continuum quasiperiodic lattice is closely related to the dis-
crete eightfold Ammaan-Beenker lattice [42,43]. It is formed
by superimposing two square optical lattices that are rotated
by 45° with respect to each other and its optical potential
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FIG. 3. Low-energy single-particle energy spectrum of the 8QC
continuum Hamiltonian H,.y. Different colors represent the ~750
lowest bulk eigenstates of 30 different patches of diameter 9 A that
contain around 250 local minima each. Between V) ~ 1-10E,, a
clear energy gap separates the lowest bulk band from higher states.
To minimize finite-size effects, boundary conditions are set similarly
to Fig. 13(b). The inset shows the width of the gap for 30 different
patches.

(Fig. 2) is given by
V)=V Y sin’(kior+¢);

i=x,y,+,—

{05050

Here, V; denotes the lattice depths and the k; and ¢; are
the wave vectors and offset phases of the individual lattices
created by superimposing laser beams of wavelength . This
potential is clearly long-range ordered, as it is fully determin-
istic and contains no randomness. At the same time, it cannot
be periodic, as eightfold rotational symmetries are forbidden
in periodic lattices [28]. The relative phases ¢; account for the
phasonic degrees of freedom, which are relevant in the context
of topological pumping [44]. However, for large static lattices,
the phases become irrelevant for bulk properties of the 8QC,
see Sec. III.

For the remainder of the paper, we will express all energies

and lattice depths in units of the recoil energy Ei. = %,
and all distances in terms of A. For the calculation of U, we
assume a 20 E,.. deep retroreflected lattice generated using the
same wavelength A along the transverse direction. While we
focus on the Bose-Hubbard model, we note that other types of
Hubbard models (e.g., including longer-range interactions, or

describing fermions with spin) can be similarly derived.
A. Extracting Wannier functions

The generation of WFs for the 8QC presents several chal-
lenges. In contrast to, e.g., the Aubry-André model [10], the
present model cannot be expressed as a perturbation of a
periodic model. Therefore, it is a priori not clear whether
the lowest part of its single-particle energy spectrum can be
described in terms of a single isolated band. Moreover, even
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FIG. 4. (a) 8QC potential highlighting two different local min-
ima for Vy = 2.5 E.. (b), (c) Corresponding orthogonalized Wannier
functions plotted on linear and logarithmic scales. As in periodic sys-
tems, WFs exhibit oscillating side lobes with exponential decaying

amplitudes that are clearly visible when plotted on a logarithm scale.

provided such a lowest band exists, it is a priori not clear
whether it would correspond to one Wannier function per local
minimum.

To investigate whether an isolated lowest band exists, we
compute the noninteracting energy spectrum of the bulk of
the 8QC by direct numerical diagonalization of the continuum
Hamiltonian (see Fig. 3). To obtain the bulk energy spectrum,
we exclude eigenstates localized on the outer edge of the
simulated finite-size patches. We find that for lattice depths
Vo = 1-10 Ey¢, the lowest part of the bulk spectrum indeed
forms an isolated band that is separated from the rest of the
spectrum by a robust gap, independent of the chosen patch.
Strikingly, we find that the lowest-energy subspace always
contains essentially as many states as there are local minima
in the finite patch (up to well-understood exceptions, treated
in Appendix G). This implies that, for V; between 1 to 10 Ej.,
we can construct a Wannier basis for the lowest band by
using one localized Wannier function per local minimum of
the potential, analogous to conventional periodic lattices. We
note that the 8QC contains less sites per area than a corre-
sponding 2D square lattice, the ratio is equal to the inverse of

the silver mean ﬁ ~ (0.8284 (see Appendix F for details).

We construct the corresponding NOWFs by following the
method presented in Sec. I starting from the eigenstates in
the lowest band. In order to facilitate the convergence of the
NOWEF already for small cutoff radii R, we apply specifically
tailored boundary conditions that follow the shape of the out-
ermost minima; see Appendix B for detailed discussion and
Appendix C for numerical convergence checks. Afterwards,
we apply a Lowdin transform on the NOWFs to obtain an or-
thogonal set of maximally localized WFs [Eq. (3)]. Examples
of the resulting Wannier functions are shown in Fig. 4 and,
similarly to periodic lattices, exhibit exponentially decaying
oscillating side lobes that ensure orthogonality.

B. Bose-Hubbard model

We next obtain the 8QC Bose-Hubbard Hamiltonian by
explicitly computing its matrix elements in the basis of WFs
(see Fig. 5). We assume a scattering length of a = 100 ay,
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FIG. 5. Hubbard parameters for the 8QC for Vy = 2.5 E,. corre-
sponding to the potential shown in Fig. 2. Tunneling amplitudes J;;
(both negative and positive) are shown up to second-order neighbors.
Onsite interactions assume a scattering length of a = 1004a, and a
20 E ... transverse lattice.

where ay denotes the Bohr radius, and a transverse lattice
of depth 20 E\... We observe that contrary to simpler models
such as Aubry-André models, it is quasiperiodic in all three
parameters. Furthermore, onsite energies ¢; and interaction
energies U; are anticorrelated: sites with high ¢; correspond to
shallow minima and hence also have a low U;, and vice versa;
the same tendency was also noticed in optical lattices with
weak quasiperiodic modulation [45]. While the most signifi-
cant tunneling amplitudes have negative sign, the Hamiltonian
also exhibits some small but non-negligible longer-range tun-
neling amplitudes with positive sign. Finally, we show in
Appendix E that off-site interactions between neighboring
sites can be safely neglected.

(a) Noninteracting energy spectrum. As an initial bench-
mark of the resulting Bose-Hubbard (BH) model, we use
exact diagonalization in the noninteracting (a = 0 a) case to
compute the energy spectrum and eigenstates of a finite-sized
lattice containing around 2800 sites, i.e., 10 times more than
in the continuum calculation in Fig. 3. The resulting spectra
(Fig. 6) contain a series of minigaps at intermediate lattice
depths typical for quasiperiodic models.

The noninteracting physics of the 8QC is governed by the
interplay between the tunneling elements J;; and the energy
differences (detunings) A;; = ¢€; — €; between lattice sites.
Resonances, i.e., high ratios J;;/A;; between sites, favor hy-
bridization of the corresponding Wannier functions and will
lead to delocalization of the eigenstates. While all eigen-
states are extended for weak lattices, increasing lattice depths
Vo leads to decreasing tunneling amplitudes and increasing
detunings (cf. Fig. 7). Combined, these two mechanisms
strongly decrease the number of resonances and eventually
localize all eigenstates.
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FIG. 6. 8QC: Noninteracting energy spectrum of the BH Hamil-
tonian. Color encodes the IPR of the eigenstates. Inset: IPR of the
lowest (0) and the 13th, 36th, and 136th eigenstates, highlighting the
localization transition.

To quantify the localization properties of the noninteract-
ing eigenstates |E;) = ), c; |wk), we compute their inverse
participation ratio (IPR):

PR, = > |ci|". (6)

k

An IPR of 1 means that the state is localized on a single lattice
site, while the IPR of a fully delocalized state vanishes in an
infinitely large system. The color code in Fig. 6 represents the
IPR of all energy eigenstates as a function of the lattice depth
Vo. The inset focuses on the IPR of some of the lowest-lying
states. It shows that the ground-state undergoes a localization
transition at a critical lattice depth in excellent agreement
with the value V, = 1.77 E\. reported in [29,46,47]. More-
over, Fig. 6 demonstrates that the excited states exhibit a
mobility edge separating localized and delocalized states. This
is consistent with what is seen in generalized Aubry-André
models [13,14,27].

(b) Hubbard parameters. While numerical simulations
based on the interacting BH Hamiltonian will be left to future
work, we can already gain physical insight by inspecting the
distributions of onsite energies p(e), interactions p(U), and
tunneling amplitudes p(J;;) (see Fig. 7). The shape of these
distributions is very different from what is observed in truly
disordered lattice, such as lattices with speckle potentials [48].

For instance, the distribution of onsite energies contains
a sharp maximum reminiscent of a Van Hove singularity
[Fig. 7(a)] and increasing the lattice depth V, causes the width
of p(e) to increase in an almost linear fashion [Fig. 8(a)]. In
addition, the onsite energies form a continuous distribution
without any sizable gaps.
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FIG. 7. (a)—(c) Histograms of 8QC Hubbard parameters (1600
sites) for various lattice depths Vj. Tunneling amplitudes are included
up to second-order neighbors (see Appendix H for definition), and
for |J;;| > 1073 E,.c. Onsite interactions computed for a scattering
length a = 100 ap and a 20 E.. transverse lattice. (d)—(f) Examples
of lattice sites possessing different onsite and interaction energies.
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FIG. 8. (a)—(c) Distribution of 8QC Hubbard parameters (1600
sites) as a function of lattice depth V. Black dots and bars de-
note mean values and standard deviations of the distribution. Onsite
energies are plotted relative to the lowest onsite energy. Onsite in-
teractions computed for a scattering length a = 100 gy and a 20 E,..
transverse lattice.
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Increasing lattice depths also leads to increasing interaction
strengths, with their mean scaling approximately as U o +/Vp
[see Figs. 7(b) and 8(b)], as expected from the decreasing
width of the Wannier functions. The upper limit of p(U)
closely resembles the value of U expected for a 2D square
lattice of depth 2V{. Indeed, the lattice sites sitting at the
top of p(U) distribution [Fig. 7(d)] are locally similar to the
well of a square lattice of depth 2Vj: both are surrounded by
potential barriers of heights close to 4V;. In addition, Fig. 7
illustrates that irrespective of the lattice depth, the sites located
in the deepest potential wells [Fig. 7(d)] are characterized
by the lowest onsite energies and highest onsite interaction.
Conversely, the highest onsite energies and lowest interaction
occur in the shallowest potential wells [Fig. 7(f)].

Finally, the average tunneling amplitude [Figs. 7(c) and
8(c)] decreases broadly exponentially with increasing lattice
depth, which is expected from the increasing potential barriers
separating lattice sites and the narrower Wannier functions.
We also note that a significant share of weak tunneling am-
plitudes is positive, which we attribute to tunneling between
higher-order neighbors (see Appendix H for details).

III. CONFIGURATION SPACE: DESCRIBING THE
QUASICRYSTAL IN THE INFINITE-SIZE LIMIT

There are two main motivations to try to find an alternative
description of the quasicrystalline lattice: the absence of peri-
odicity means that there is no simple reciprocal space descrip-
tion, and it would be ideal to have a suitable replacement, i.e.,
an aperiodic analog of the Brillouin zone suitable for studying
thermodynamic or topological properties of the system. In
addition, the sites of the 8QC all differ in shape and local
surrounding and any finite patch will only contain a subset
of all possible sites. A priori, one can therefore never be sure
whether increasing the simulated system size might introduce
additional rare types of lattice sites, changing the results of the
simulation.

To overcome this limitation and arrive at a powerful,
compact representation, we sort the lattice sites based on
their shapes and local environments and arrive at a bounded
configuration space that enables us to describe the infinite
quasicrystal. This procedure is similar to configuration-
space descriptions of stacked bilayer systems [30-32] and
we demonstrate in Appendix I that it directly corresponds
to the perpendicular space of discrete octagonal quasicrys-
tals [33-37].

We start by recalling that the 8QC is formed by super-
imposing two square lattices rotated by 45° (Fig. 2), which
is reminiscent of a stacked bilayer system. We refer to the
lattice oriented along the x and y axes as the XY lattice. The
other square lattice is referred to as the diagonal (D) lattice.
Figure 9 shows a finite patch of the 8QC potential, where
the minima of the XY and D lattices are indicated by red
and blue dots. Deep wells in the quasicrystal correspond to
closely spaced minima in the XY and D lattices. Conversely,
more separated minima of the XY and D lattices result in a
shallower minimum in the quasicrystal. Therefore, our map-
ping procedure characterizes each 8QC lattice site in terms
of the local displacement ® between the XY and D square
lattices.

Position y/A

¢ %o 9 o o 8 g8 2
-1 0 1 2

Position z/\

FIG. 9. The 8QC potential (background) is formed by superim-
posing two square lattices (red and blue grids). Insets: For every
minimum r; of the 8QC, the vector ®(r;) denotes the displacement
between the closest minima of the two square lattices and thereby
uniquely defines the local potential. Deep sites correspond to small
local displacements @, while large ® indicate shallow sites.

For every minimum in the potential r; = (x;, y;), we com-
pute its coordinates ®xy(r;) and ®p(r;) within the unit cells
of both the XY and D lattices:

Pyy(r) = |:<x + %)mod d} e,

+ [(y + %)mod di| e, 7
Op(r) = [(% + %)mod di| e,
+ [(x\;zy + %)mod d} e . (8)

Here, d = 1/2 denotes the lattice constant of the square

lattices, e, e, are the unit vectors along the x and y direc-

e*i;", and the ¢; are the four phases introduced

tions, eL =
in Eq. (5). For every site rj, the vector ®(r;) = ®xy(rj) —
@ (r;) then encodes the local displacement between the XY
and D lattices and thereby fully describes the shape of the
minimum and its local surroundings. As shown in Fig. 10,
the vectors @®(rj) describing the sites of the 8QC form an
octagon of inscribed radius d/2, where the size stems from
the periodicity of the two square lattices.

This configuration-space representation has the following
properties: (1) In the infinite-size limit, the octagon is densely
and uniformly populated with lattice sites (see Appendix H)
and can therefore be used to derive statistical estimates about
the lattice. We notice that this is identical to the perpendicular
spaces of octagonal discrete quasiperiodic lattices [37,49]. (2)
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(b)

d=\/2

FIG. 10. In the infinite-size limit, the configuration-space posi-
tions @ of the 8QC lattice sites densely and uniformly populate an
octagon, whose periodic boundaries are given by the mod operations
in Eq. (7). (a)—(f) Show the 8QC potential for various positions
on the octagon. Dots in the octagon denote the configuration-space
positions of 2800 lattice sites.

Due to the aperiodicity of the lattice, every point ® within the
octagon corresponds to one unique lattice site. (3) Analogous
to the Brillouin zone in periodic crystals, the mod d operation
implies periodic boundary conditions for this configuration
space, i.e., every edge of the octagon can be identified with
the opposing edge. These periodic boundary conditions imply
that the octagon possesses the topology of a two-hole torus:
it is an orientable surface with genus 2 [50]. In particular,
the eight corners of the octagon are one unique point. (4)
Symmetry points or lines of the octagon directly correspond
to symmetry points or lines of the quasicrystal. For example,
the center and corners of the octagon correspond to the two
possible global eightfold rotational symmetry centers of the
lattice [Figs. 10(f) and 10(a)]. By construction, these two can
never be found together in the same realization of the 8QC,
and most choices of ¢; will lead to none of them.

This configuration-space construction allows one to draw
several conclusions regarding the infinite-size 8QC and will
enable novel studies on topology in quasicrystals, as it pro-
vides a compact manifold on which, e.g., Berry curvature
and related quantities can be defined. The concept of con-
figuration space generalizes directly to other quasiperiodic
lattices. For example, the configuration space of the one- and
two-dimensional Aubry-André models can be constructed as a
circle and a torus [51], respectively). While we cannot provide
a general criterion, we expect that such constructions can
be applied generically to quasiperiodic models that can be
constructed via a cut-and-project procedure.

A. Hubbard model in configuration space

We can now reexpress the BH Hamiltonian of the 8QC
entirely in the compact and densely populated configuration
space. This is achieved by mapping the real-space coordinates
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FIG. 11. 8QC: The Hubbard Hamiltonian can be reexpressed
in configuration space, i.e., in the space of local displacements ®.
In this representation, the Hubbard parameters form smooth and
eightfold-symmetric surfaces e(®), U(®), and J(®, ®'). The «, B,
and y points are shown in (a). Figures show 2800 sites. Onsite inter-
actions are computed for a scattering length a = 100 ay and 20 E .
transverse lattice. For clarity, (b) shows the total tunneling amplitude
per site Jiow (®;) = Zi ” |/ij|. The individual tunneling amplitudes
J(®, @) in configuration space are discussed in Appendix H.

r; of all sites of the 8QC to the corresponding ®(r;):

Hgy = Ze(q))a;a@ + Z J(®, ®)alae
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Here, ag is the annihilation operator for the WF at the site
with coordinate @ in configuration space. This expression
emphasizes that in configuration space, which is a compact
and uniformly dense space with periodic boundaries, the 8QC
is entirely described by the functions €(®), J(®, @), U(®).
These are shown in Fig. 11 and reveal a striking property:
contrary to the fractal structure in real space, the Hubbard pa-
rameters form smooth functions in configuration space. This
directly follows from the construction of configuration space,
where an infinitesimal move in ® implies an infinitesimal rel-
ative displacement between the XY and D square lattices and
hence a smooth change of the resulting potential. In turn, the
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Wannier function hosted on the corresponding lattice site will
also undergo an infinitesimal change, resulting in the observed
smooth changes of all local properties. As a consequence,
onsite energy, interaction, tunneling amplitudes, or any other
local property must be smooth in configuration space.

Two important consequences follow from the smoothness
of Hubbard parameters in configuration space. First, arbitrary
large Hubbard Hamiltonians can now be obtained at negligi-
ble computational cost, for example, by computing Wannier
functions for a finite number of points in configuration space
and interpolating between them, or by direct interpolation
of the Hubbard parameters. Second, the physics of the qua-
sicrystal is, for sufficiently large system sizes, unaffected by
the specific values of the phases ¢;. While they amount to
global translations in configuration space, the dense sampling
ensures that Eq. (9) remains effectively unaffected.

Turning to the shape of these surfaces, we observe that the
sites close to the center of the octagon [Fig. 10(f)] correspond
to almost perfectly overlapping minima of both square latices
and are hence located within the deepest potential wells in real
space. Therefore, they possess low onsite energy €(®), high
onsite interaction energy U (®), and low total tunneling ampli-
tudes Jio1(®;) = Y, £ |/ij|. Conversely, sites corresponding
to the corners of the octagon [Figs. 10(a) and 10(f)] are lo-
cated on shallow and high-lying potential wells. They possess
the highest onsite energies, the lowest onsite interaction, and
highest tunneling amplitudes.

As a side note, we notice that the onsite energies
[Fig. 11(a)] can be approximated by a simple analytical ex-
pression:

4
k;

(@)~ Ay + A § sin’ (m : <1>) (10)
i=1 i

for Vy between 1.5 to 10 E\.. This approximation, whose
form is surprisingly reminiscent of the lattice potential in
Eq. (5), has an average relative root-mean-square error smaller
than 1%. The individual tunneling amplitudes J(®, ®') are
more intricate and are discussed in Appendix H, where we
also show how the configuration space picture allows us
to unambiguously define a hierarchy of first-, second-, and
higher-order neighbors in a matter reminiscent of the fractal
structure found in momentum space [28]. First-order neigh-
bors and the lines connecting them form the well-known
Ammaan-Beenker tiling. We emphasize, however, that there
can be significant tunneling elements also connecting second-
order neighbors. In contrast to the Ammaan-Beenker tiling,
the 8QC is hence not bipartite. In future studies, it will be of
interest to determine whether exact closed-form solutions can
be obtained for the functions € (®), U(®), and J(®, ®').

B. Validity of single-band picture

The BH Hamiltonian presented in this work only considers
the lowest band, i.e., one WF per lattice site. This is sufficient
as long as temperature, chemical potential, and onsite interac-
tion energies are smaller than the energy difference to the first
excited WFs. The extension to more WFs per lattice site is
left to future research, but we can extract the approximate
onset of the second band already from the spectra of the
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FIG. 12. 8QC: Estimation of maximal interaction energy achiev-
able without exciting atoms into the higher bands using configuration
space. The blue spectrum indicates the onsite energies €(®), while
the red dots correspond to the energy needed for a second particle
on the same site, i.e., €(®) + U(®). We consider 20 E,.. transverse
confining lattice and a scattering length a = 400 ay.

continuum Hamiltonian for small systems (see Fig. 3). These
are indicated by the black dashed line in Fig. 12, where the
blue dots indicate the onsite energies €(®), and the red dots
indicate the energy needed for a second particle on the same
site, i.e., €(®) + U (P). We consider a transverse confining
lattice of depth V, = 20 E,.. and find that for lattice depths
Vo between 1 and 9 E..., we can reach a scattering length
amax ~ 400 a( before doubly occupied sites begin to overlap
with higher bands (Fig. 12). This indicates the validity of the
single-band model in the relevant regimes.

C. Mott-insulating phases

The precise ground-state phase diagram of the interact-
ing 8QC will require large-scale numerical simulations (e.g.,
quantum Monte Carlo [52]) that will be facilitated by the
Hubbard model developed in this work. One might, in analogy
to other disordered or quasiperiodic lattices, expect it to con-
tain superfluid and Mott-insulating phases that are separated
by the compressible Bose-glass phase [45,47,53—-63]. While
the existence of Mott-insulating phases is a priori not clear,
we can already draw some conclusions from the developed
Hubbard model.

In the atomic limit, where tunneling can be neglected, and
in the presence of a band gap above the lowest band, an
incompressible Mott-insulating (MI) phase with one atom per
site [i.e., —>= ~ 0.83 atoms per (1/2)?, see Appendix F] will

) > 1442
exist whenever

€(®) +U(®) > max[e(®)] V@, (11)

i.e., whenever the interaction dominates over the spread in
onsite energies (see Fig. 12). This suggests that for relatively
large lattice depths (but with Vy < 10 El. such that a finite
band gap exists) and sufficiently high scattering lengths, there
will always be an incompressible MI phase with unit filling.
We note, however, that excitations of this Mott insulator or its
extension to finite temperatures would likely not be accurately
described by the current BH model, as double occupancies
could hybridize with the excited band.

Furthermore, Fig. 8 highlights that with increasing lattice
depth, the spread in € (®) grows faster than the average onsite
interaction. Equation (11) therefore implies that the transition

144202-8



HUBBARD MODELS FOR QUASICRYSTALLINE ...

PHYSICAL REVIEW B 107, 144202 (2023)

from Bose glass to MI will for deeper lattices shift to larger
scattering lengths. This is in stark contrast to a periodic lattice,
where the transition from superfluid to MI shifts to smaller
scattering lengths for deeper lattices.

As a third important conclusion, the continuous distri-
bution of onsite energies €(®) in the thermodynamic limit
directly implies that, at least in the atomic limit, there are no
incommensurate Mott phases below unit filling, as such states
would always be gapless and compressible. This suggests that
the MI states with fractional fillings found in recent quantum
Monte Carlo simulations of the continuum model [47] might
be limited to finite system sizes, where configuration space by
necessity is only sampled coarsely.

IV. CONCLUSION

We presented a general numerical method for computing
the Wannier functions and Hubbard Hamiltonians of nonperi-
odic potentials. This method was then applied to construct the
Bose-Hubbard Hamiltonian of the two-dimensional eightfold-
symmetric optical quasicrystal (8QC). As a benchmark, we
reproduced the localization transition in the noninteracting
ground state and obtained excellent agreement with earlier
results [29,46,47].

In a second part, we introduced a configuration-space
representation of the 8QC. This representation, inspired by
existing schemes for incommensurate bilayer systems, is an
aperiodic analog of the Brillouin zone, and as such enables
the description of the quasicrystal in the infinite-size limit by
ordering the lattice sites in terms of their shape and local sur-
roundings. We showed that the Hubbard model of an infinite
8QC can be reexpressed on a dense and compact octagonal
configuration space with periodic boundary conditions. In
this representation, the Hubbard parameters take the form of
smooth functions.

This Hubbard model opens the door to large-scale nu-
merical simulations of quasicrystalline optical lattices, and
the developed configuration space enables new analytic argu-
ments about the many-body physics and topological structure
of these models.

In future studies, it will be of interest to apply the
configuration-space picture to other quasiperiodic lattices,
such as Aubry-André models and models interpolating be-
tween quasicrystalline and Aubry-André limits.

All the data regarding the Hubbard Hamiltonian of the 8QC
and the associated Wannier functions are available for public
access [64].
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APPENDIX A: FINITE-DIFFERENCE
SCHRODINGER EQUATION

We use the finite-difference Schrodinger equation (FDS)
for the numerical solution of the Schrodinger eigen-
value equation H |v;) = E; |;), illustrated below in the
one-dimensional case for simplicity. Deriving the FDS
Hamiltonian consists of writing the matrix elements of the
Hamiltonian H = —#A + V(x) (written in units of Ey.) in
a discretized position basis |x;) with grid spacing §x = 1%,
where L is the system size and N the number of grid points.

Using a finite-difference approximation, we can write the
Laplacian as

Y(x + 0x) — 29 (x) + ¥ (x — 6x)
(8x)? '

AY(x) ~

Therefore, its matrix elements in the discretized basis are

Siv1,j — 28 +8i—1;

(xil Alx;) = x)?

The potential operator V is diagonal in the discretized basis
and its matrix elements are (x;|V lxj) =V(x;) & ;. Con-
sequently, we can write the matrix elements of the FDS
Hamiltonian as

1 N
(il H |x;) = —m<xi|A|Xj>+(Xi|V|xj) (AD)
1 8iv1,; — 28+ 61

=73 T +V(x)8ij. (A2)

We use a numerical matrix eigenvalue solver based on Lanc-
soz’ algorithm [41] to obtain the lowest eigenvalues E; and
corresponding eigenvectors |E;) = ) c; |x;) of the finite-
difference Hamiltonian H with open boundary conditions.

The FDS algorithm is naturally limited by Nyquist’s the-
orem. In order for the algorithm to be accurate, the inverse
of the discretization step should always be at least twice the
maximal momentum contained in the Fourier transform of
the considered state. Consequently, for a given discretization
step size, the precision of the obtained solution decreases for
higher-lying states.

APPENDIX B: BOUNDARY CONDITIONS FOR
GENERATING THE WANNIER FUNCTIONS

The boundary conditions for calculating the NOWFs con-
sist of a hard wall of height 4 Vj;, whose shape is generated in
two steps. We first compute the convex hull of the set of all
lattice sites within the cutoff radius R, and then enlarge it by
0.17 A (blue line on Fig. 13). This results in a boundary that
still strongly affects the wave function on the wells closest to
the cutoff radius. Therefore, we calculate a second boundary
that closely matches the shapes of the wells (red line on
Fig. 13). This is created from the contour line sitting 15%
of the total amplitude of the optical potential (which is 4V;)
above the bottom of the potential wells, and enlarged by a
factor of 2.5. Joining these two then leads to the boundary
condition shown in Fig. 13(b) that improves convergence for
small cutoff radii.
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FIG. 13. (a) The boundary conditions for generating the NOWF
(b) are generated by combining two criteria. One is the convex hull
of the set of all sites within the cutoff radius enlarged by 0.17 A
(blue line). The second combines individual boundaries around each
lattice site (red), that consist of the contour lines sitting 15% above
the bottom of the potential wells, enlarged by a factor of 2.5. The
resulting boundary wall is shown in (b). Afterwards, a nonorthogonal
Wannier function (c) is constructed by localizing a linear combina-
tion of eigenstates around the central minimum (dark circle).

APPENDIX C: CONVERGENCE CHECKS

The convergence of the BH parameters is controlled by two
parameters: the grid spacing éx and the cutoff radius R for the
generation of NOWFs.

Figure 14 shows the result of a convergence study in the
grid spacing at a lattice depth of 9E,... We estimate the
convergence by comparing the Hubbard parameters (onsite
energies, interaction, and nearest-neighbor tunneling ampli-
tudes) to a “converged” solution computed with the smallest
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FIG. 14. Convergence of onsite energies (a), onsite interaction
(b), and nearest-neighbor tunneling amplitudes up to second-order
neighbors (c) as a function of the numerical grid spacing éx at
Vo = 9 Eie.. System containing 63 lattice sites. Errors are obtained
by comparing the results with a “converged” solution computed for
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FIG. 15. Convergence of an 8QC Wannier function as a function
of cutoff radius R on linear (a) and logarithmic (b) scales. Figure only
shows the horizontal cross section of the 2D Wannier function.
Vo = 1.5 Ep..

grid spacing of 8xpin = 4.76x 1073 A on a system of 63 lattice
sites. In the case of the tunneling elements, we considered
the absolute error instead of the relative error, as very small
tunneling amplitudes can have large relative errors without
affecting the physics of the model. As a result, we set the grid
spacing for all lattice depths to éx = 0.03 A, resulting in an
accuracy of ~1%. This requirement in grid spacing is most
stringent at the highest lattice depth, as deeper lattices reduce
the spread of the WFs.

Figure 15 illustrates the convergence of a Wannier function
for increasing cutoff radii R, for a relatively shallow depth of
Vo = 1.5 Ejec. As seen on a logarithmic scale, the relevant side
lobes (and thereby the tunneling elements) quickly converge
when R is increased.

To assess the convergence of the WF more quantitatively,
Fig. 16 shows the effect of varying the cutoff radius R on
the convergence of onsite energies, interaction, and nearest-
neighbor tunneling amplitudes of 66 lattice sites for Vo =
1.5 E... We estimate convergence by comparing them with
the result of a “converged” solution computed with a cutoff
radius of 7 A. We expect the requirement in cutoff radius R to
be more stringent at low lattice depth where the Wannier func-
tions are more spread out. As a result, we set the cutoff radius
to R = 4 X for all lattice depths (except where stated otherwise
in the text). As an additional test, we used the same §x and
R to generate the Hubbard Hamiltonian of a finite-size square
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FIG. 16. Convergence of the onsite energies (a), onsite inter-
action (b), and tunneling amplitudes up to second-order neighbors
(c) as a function of the cutoff radius R. Vj = 1.5 Ej... System con-
taining 66 lattice sites. Errors are obtained by comparing the results
with a “converged” solution computed for a cutoff radius of 7 A.
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FIG. 17. Cross section of 1600 different Wannier functions on
linear (a) and logarithmic (b) scales. V; = 1.5 E... Red lines indicate
the exponentially decaying side lobes.

periodic lattice, and compared the nearest-neighbor tunneling
amplitudes to the result expected from maximally localized
Wannier functions computed using Bloch waves. In the range
Vo = 2 to 10 E., the relative error in onsite interaction and
nearest-neighbor tunneling was always below 3x1072.

APPENDIX D: EXPONENTIAL LOCALIZATION
OF THE WANNIER FUNCTIONS

Figure 17 shows cross sections of 1600 different 8QC
Wannier functions, obtained for a low lattice depth of Vy =
1.5 Ei., i.e., below the ground-state localization transition.
These exhibit exponentially decaying side lobes that are
clearly visible as a linear decay in logarithmic scale (red
lines).

APPENDIX E: OFF-SITE INTERACTIONS

Atoms on neighboring sites can in principle interact
through various two-body processes due to the overlap of
the corresponding Wannier functions [38,65,66]. The matrix
elements of these processes involve integrals of the form

Vst o / Pt (0w Owow ), (E1)

which considers Wannier functions located on different lattice
sites. The most significant processes involve just one pair of
sites (U;;j; and Uy;j). To check whether these off-site pro-
cesses could be significant for the 8QC, we explicitly compute
the overlap integrals for pairs of neighboring sites, in a shal-
low lattice (Vp = 1.5 E,.) containing around 1600 sites. As
seen in Fig. 18, these off-site processes are always at least one
order of magnitude smaller than the lowest onsite interaction
energies. We can therefore safely neglect them for all lattice
depths above 1.5 E\.., where the off-site processes are even
further suppressed due to the increased confinement of the
WFs.

APPENDIX F: DENSITY OF SITES OF THE EIGHTFOLD
OPTICAL QUASICRYSTAL

The configuration-space picture can be employed to derive
the exact density of lattice sites in the eight-fold optical qua-
sicrystal: we first note that in the limit of vanishingly weak
beams in the diagonal k; and k_ directions, the resulting
potential contains as many sites as the usual square lattice,
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FIG. 18. (a), (b) Histograms of two-body amplitudes between
neighboring sites. First-order neighbors in blue and second-order
neighbors in green. (c) Corresponding histogram for two-body onsite
interaction. Lattice depth is Vy = 1.5 Ej...

which has a density ngquaee Of 1 site per (A/Z)z. In addition,
the configuration space of this lattice with weak diagonal
beams now constitutes a densely populated square of side d.
Increasing the weak diagonal beams to restore the eightfold
symmetry adds new periodic boundary conditions along the
diagonal directions in configuration space and reduces the
square to the octagon shown in Fig. 10. Since the density in
configuration space remains constant, we can directly infer
that the ratio of the density of sites in the 8QC (ngqc) to the
square lattice is given by the ratio of the area of the octagon
to the square, i.e., the inverse of the silver mean:

ngQc
Nsquare 1+ \/E

~ (.8284. (F1)

APPENDIX G: EXCEPTIONAL MINIMA AT THE
BOUNDARY OF CONFIGURATION SPACE

As mentioned in Sec. II, the lowest band of the 8QC lattice
contains one state per local minimum of the potential, up to
some exceptional lattice sites. Indeed, some very shallow local
minima exist that do not host a Wannier function in the lowest
band [for an example see the red cross in Fig. 19(c)]. Careful
inspections shows that in configuration space these minima
are always located just outside the edge of the octagon and that
they correspond to the higher minima of asymmetric double
wells [see the inset on Fig. 19(c)]. The other minimum of the
double well is then always located inside the octagon. Nu-
merically diagonalizing a patch containing such a double well
shows that only the lower state of this double well contributes
to the ground band, while the higher state can be found in
the excited band. The code accounts for the lowest band state
hosted in the double well by generating one Wannier function
localized around the minimum lying inside the octagon. By
construction, this state will correspond to the lower eigenstate
of the double well.

The minima sitting exactly on the boundaries of the oc-
tagon form perfectly symmetric double wells in real space
[see Figs. 19(a) and 19(b)]. In this configuration, the sym-
metric combination belongs to the lowest band, while the
antisymmetric combination is part of the excited band. Such
configurations of lattice sites have also been observed in dis-
crete octagonal quasicrystals obtained from cut-and-project
procedures from hypercubic four-dimensional lattices [67].
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FIG. 19. Sites (crosses) located close to the edges of the octagon
(right) correspond to very shallow double wells in real space (left),
which contain only one state in the lowest band. (a), (b) Show the
case of a perfectly symmetric double well, lying exactly on the
edge of the octagon. Both minima (black crosses) are separated by
a shallow barrier of height ~0.01V;. (c), (d) Show an asymmetric
double well, one of the minima (red cross) lies outside of the octagon.
Insets show a 1D cross section of the double-well potentials.

As these constitute a set of measure zero in configuration
space they are statistically irrelevant in the thermodynamic
limit and hence require no special treatment.

Another specific case arises for the minima located exactly
on the eight corners of the octagon. In this case, the po-
tential forms a perfectly eightfold-symmetric ring containing
eight local minima separated by very weak potential barriers
(see Fig. 20). This configuration is a center of global rotational
symmetry of the 8QC, and can hence occur only once.

We can obtain an estimate for the energies of the states
hosted on this ring using exact diagonalization of a patch
containing the ring. Figure 21 shows the energies of theses
states as a function of lattice depth, and compares them to the
typical energy spectrum of the rest of the lattice. As we see,
the ring contains three low-energy states that are located at the
upper limit of the lowest band. The five higher-lying states are
instead located within the excited bands.

Using the classification of first-order neighbors developed
below, we can see that in situations close to, but not equal
to, the eightfold-symmetric ring (or the corner of the oc-
tagon), there will naturally be three minima within the octagon
while the other first-order neighbors lie outside of it. The
configuration-space construction hence in all cases automat-
ically selects the right number of minima to reproduce the
lowest band.
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FIG. 20. Sites (crosses) located on the eight corners of the oc-
tagon (right) form an eightfold-symmetric ring, separated by shallow
potential barriers. This constitutes one of the symmetry centers of the
8QC.

APPENDIX H: NEIGHBORS CLASSIFICATION
AND TUNNELING AMPLITUDES

In contrast to for instance the regular square lattice, it is
not possible to write an unambiguous definition for nearest
neighbors in the 8QC based on real-space distances. In con-
figuration space, however, nearest neighbors and higher-order
neighbors can be defined rigorously, identically to what is
done in the perpendicular space of discrete quasicrystals [49].
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FIG. 21. Blue and red circled dots: energy spectrum of a ring
containing eight minima (inset, lower right) obtained by exact di-
agonalization in continuum. Background: bulk energy spectrum of
the 8QC from Fig. 3. The lowest three states of the ring contribute
to the lowest band (blue circled dots), while the remaining higher-
lying states are located within the higher bands (red circled dots).
Upper left inset shows the energy spectrum and the eight lowest ring
eigenstates for Vy = 5 Ey..
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FIG. 22. Real-space neighbors (black dots) can be found around
adjacent lattice sites of the square lattices (red and blue dots) under-
lying the 8QC. Red and blue labels indicate the indices of some of the
sites adjacent to the (m,, m,) site of the XY lattice and (m3, my) site
of the D lattice. This illustrates that the nearest neighbor to the right
(black arrow) is offset by {Am;, Am,, Ams, Amg} = {1,0, 1, 1} so
that @' — ¢ =§,.

We start by rewriting the expressions for ®xy and ®p
[Egs. (7) and (8)] by stating the modulo operation explicitly,
and setting all ¢; to zero for simplicity:

Pxy(x,y) = (x —my d)e; + (y —my d)ey, (H1)
Dp(x,y) = (% —m3 d>e+ + <% —my d)e_.
(H2)

Here, m;, m, € Z (which are functions of x and y) label the
lattice sites of the XY lattice, while m3 and my label the sites
of the D lattice (see Fig. 22), and the e; with i € {x, y, +, —}
are unit vectors along the four lattice directions in Fig. 2. In
turn, we can re-write the expression for ® = ®&xy — ®p:

®(x, y) = d(—m1 n %)e

ms3 — my
+d<—m —i——)e.
2 \/E 'y

As an aside, we note that this form also makes it apparent
that the octagon is populated densely and uniformly, as the
equidistribution theorem [68] ensures that the decimal part
of sequences of the form x,, = an with « irrational and n the
sequence of natural numbers must be uniformly dense in the
interval [0, 1].

Let us now consider two neighboring sites of the 8QC that
correspond to the integers {m;, my, m3, ma}, {m}, my, mj, my}
(see Fig. 22) and local displacements @’ and ®. We can then
rewrite the vector connecting @' to ® as

Amsz + Amy
vz )e"
Am3 — Al’l’l4
)

(H3)

<I>/—<I>=d(—Am1+

+d (—Amz + (H4)

@ " - :
0 5

N
'

Position y/\
S

-3

Position /A

FIG. 23. First-, second-, and third-order neighbors of a given site
(black cross) in real (a) and configuration (b) space constructed by
Y =P+ ¢ withc; € Z and ) |¢;| = {1, 2, 3}. (Blue) First-
order neighbors. (Green) Second-order neighbors. (Red) Third-order
neighbors. Black lines connect first-order neighbors.

with Am; = m; — m;. In real space, nearest neighbors cannot
be more than one unit cell of the XY and D lattices away, i.e.,
|Am;| € {0, 1}.

This is clearly visible in Fig. 22. Here, the vector con-
necting the lattice site defined by {m;, my, m3, ms} to its
right-hand neighbor defined by {m; + 1, my, m3 + 1, my + 1},
amounts to ®' — & = —Hd—ﬁex. Thanks to eightfold symme-
try, the same reasoning can be applied in all eight directions,
leading to

et (H5)

d
m{ex, ey, e, e_}.

Figure 23 shows that vectors of the form ® 4 €, if they lie
within the octagon, do indeed correspond to close neighbors
in real space and we accordingly define first-order neighbors
as sites separated by the vectors & in configuration space.
This is identical to the definition of first-order neighbors in the
perpendicular space of eightfold discrete quasicrystals [49].

In turn, we can define the nth-order neighbors of a given
site as the set of surrounding sites that lie on the octagon
and are connected through the sum of at least n vectors
é,‘, i.e., P =0 + Zi Ciél’ with Ci € 7 and Z |C,'| =n. We
refer to the vector connecting nth-order neighbors as €.
Figure 23 shows an example of first-, second-, and third-order
neighbors. Using this definition, first-order neighbors sit on
the edges of the square and rhombuses of the corresponding
Ammann-Beenker tiling [43], while second-order neighbors
are separated via two edges. Pairs of sites along the short diag-
onals of the rhombuses are therefore second-order neighbors
even though they lie close to each other in real space and give
rise to significant (negative) tunneling amplitudes.

Similarly to the smooth surfaces formed by the onsite
energy €(®) and the onsite interaction U (®), the tunneling
amplitudes connecting two sites ®, ®' can be written as a
function J(®, ®’) in configuration space. If we restrict our-
selves to nth-order neighbors, we know that ® — &' = ej.
Therefore, for each e; we define a smooth function Je; (®) =
J(®, ® + €}) and plot a cut through this function in Fig. 24.

Finally, Fig. 25 shows the distributions and mean values for
the total tunneling amplitudes connecting first-, second-, and
third-order neighbors. While first- and second-order tunneling
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FIG. 24. Tunneling amplitudes Je2(<I>,~) =J(®, P +¢e)forVy =
2.5 E. along a cut through configuration space (see Fig. 11 for def-
inition of «, B, and y points). (Blue) First-order neighbors. (Green)
Second-order neighbors. (Red) Third-order neighbors. First-order
neighbors are always characterized by negative J. (b) Same as (a) but
zoomed in on positive tunneling amplitudes.

can have comparable amplitudes, tunneling amplitudes
connecting third-order neighbors are significantly weaker for
all lattice depths. This also highlights that even though the
Ammann-Beenker tiling is bipartite, the 8QC is not.

APPENDIX I: RELATION BETWEEN CONFIGURATION
AND PERPENDICULAR SPACES OF THE 8QC

Here we show that the 8QC configuration space introduced
in this work directly corresponds to the perpendicular space

° 1st order
° 2nd order
° 3rd order

L

2.5 5.0 7.5
Lattice depth Vi/E,cc

FIG. 25. Distributions of first-, second-, and third-order total tun-
neling amplitudes versus lattice depth. Circled dots show the mean
values of the distributions. (Blue) First-order neighbors. (Green)
Second-order neighbors. (Red) Third-order neighbors.

10.0

of discrete octagonal quasicrystals. Both form a densely and
uniformly populated octagon, where lattice sites are ordered
in terms of their local surroundings.

Let us first introduce the perpendicular space of discrete
octagonal quasicrystals. These quasicrystals can be obtained
using a cut-and-project method at an irrational angle of a four-
dimensional (4D) hypercubic lattice [42,67]

Let {e;, e;, e3, e4} be a basis of R*, and define the hy-
percubic lattice as the set of their integer combinations. We
then project the 4D hypercubic lattice into two orthogonal
subspaces: the “physical space” and “perpendicular” space,
using the projection maps 7 and 71, respectively. These are
defined as

1 o L L
=, 2o I

22

-1 o L L
=l A 1©2)

2 2

The 2D quasicrystalline lattice can then be obtained as the
set of physical space positions of the hypercubic lattice sites
whose perpendicular space image lies within a certain “accep-
tance window.” A common choice for this window is to set
it equal to the perpendicular space image of the hypercubic
Wigner-Seitz cell.

Let us now turn the the configuration space of the 8QC.
The optical potential can be obtained as an irrational cut of a
four-dimensional hypercubic optical potential (where we fixed
all phases ¢; to 0 for simplicity)

4
2
Vip(x1, %2, X3, x8) = Vo 3 sin? (T”x,-) 13)
i=1

X1 —X2
In turn, we can rewrite the configuration-space coordinates
in four dimensions:

by setting x3 = ’Lﬁ and x3 =
b = dxy — Op (14)
® x; mod d X 1)

xv = X2 mod d N )?2 ’

1 {x3 mod d + x4 mod d 1 (X343
®p = — =— (7). ao)
/2 \x3 mod d — x4, mod d 2 \x =3y

This directly leads to

with

X
= %3 % =L =L\ |-
o xl_Xi/;zt B 1 0 ﬁ ﬁ i -
ez~ lo 1 == Ll an
2 2 V2 V2 3
X4

which shows that, up to a sign change, the 8QC configuration
space is identical to the perpendicular space projection map
nt [Eq. (12)].
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