
PHYSICAL REVIEW B 107, 144201 (2023)

Slow dynamics of a mobile impurity interacting with an Anderson insulator
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We investigate dynamics of a single mobile impurity immersed in a bath of Anderson localized particles
and focus on the regime of relatively strong disorder and interactions. In that regime, the dynamics of the
system is particularly slow, suggesting, at short times, an occurrence of many-body localization. Considering
longer timescales, we show that the latter is a transient effect and that, eventually, the impurity spreads
subdiffusively and induces a gradual delocalization of the Anderson insulator. The phenomenology of the system
in the considered regime of slow dynamics includes a subdiffusive growth of mean square displacement of the
impurity, power-law decay of density correlation functions of the Anderson insulator, and a power-law growth
of entanglement entropy in the system. We observe a similar regime of slow dynamics also when the disorder in
the system is replaced by a sufficiently strong quasiperiodic potential.
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I. INTRODUCTION

Dynamics of quantum many-body systems is actively in-
vestigated in synthetic quantum matter such as ultracold
atoms [1,2]. Eigenstate thermalization hypothesis (ETH)
[3–6] describes how quantum systems, which are initially
prepared in far-from-equilibrium states, evolve in time to an
equilibrium state. The equilibrium state is determined by the
global constants of motion such as the energy, total momen-
tum, etc., but otherwise, it is independent of the details of
the initial state. This ergodic behavior of quantum many-body
systems is similar, in spirit, to thermalization of isolated clas-
sical systems that explore all possible configurations allowed
by global conservation laws. Importantly, the investigations
of dynamics of quantum many-body systems have provided
us with counterexamples to ETH, i.e., with classes of systems
that do not thermalize under their own dynamics, such as: inte-
grable models [7]; strongly disordered, many-body localized
(MBL) systems [8–14]; disorder-free systems such as tilted
lattices [15–24]; models with global constraints [25–30]; or
implementations of lattice gauge theories [31–37].

Quantum impurity models, which describe a small quan-
tum system coupled to a reservoir of particles, appear
naturally in various situations, constituting another class of
systems whose dynamics is a fundamental problem in many-
body physics, see, e.g., Refs. [38,39]. One particular example
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of a quantum impurity system is an electron in a dielectric
crystal. The motion of the electroc distorts the spatial configu-
ration of its surrounding, which effectively screens its charge.
The resulting system, which consists of the electron and the
surrounding phonon cloud, is called a polaron, as coined by
Pekar [40–42], see also Refs. [43,44]. The concept of polaron
has been extended to describe a generic particle, the impurity,
in a generic material, e.g., a conductor, a semiconductor or a
gas [45,46].

One important example is that of an impurity embedded in
an ultracold gas. This system has been widely studied both
theoretically and experimentally, in the case of a ultracold
Fermi [47–54] or Bose gas [55–65]. The problem of the impu-
rity in a Bose-Einstein condensate [66–73] can be viewed as
an example of Quantum Brownian motion [74–77]. Recently,
there has been a considerable interests in studying impurities
in strongly correlated systems with topological order, such
as fractional quantum Hall systems [78] or topological Mott
insulators [79].

The reach physics of quantum impurity models, in con-
nection with the phenomenon of MBL, gives rise to new
dynamical phenomena. Typically, coupling to external baths
delocalizes the system [80], as shown for bosonic baths [81]
or for t-J model [82–84], leading to a subdiffusive [85] (or dif-
fusive) spread of the initially localized particle. Interestingly,
the localization in the system can be restored by by driving
the system to a nonequilibrium steady state in presence of a
coupling to a bath [86].

Recently, a scenario of a single mobile impurity interacting
with a system of Anderson localized particles was consid-
ered in a series of works [87–89]. It was shown that, in
certain parameter regimes, the impurity acts as an ergodic
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seed enabling thermalization of the system. In contrast, for
sufficiently large disorder strength W and sufficiently strong
coupling U between the impurity and the Anderson insulator,
the mobile impurity becomes localized [89] and the system
becomes MBL [88]. The investigations of time evolution in
[88,89] have been performed up to time t1 = 200J−1, where
J denotes the nearest neighbor tunneling amplitude. While
the timescale t1 is significant from the perspective of ex-
periments with ultracold atoms in optical lattices (note that
times of the order of 1000J−1 are presently reachable [20]),
it appears to be relatively short given the strong interactions
U and large disorder strength W in the system. Moreover,
the recent study [90] of time evolution in disordered XXZ
spin chain shows the crucial role of taking the limit of long
times when assessing whether the system is MBL. This limit
is directly connected to strong finite size effects at the MBL
transition, which prevent present exact numerical studies from
an unambiguous answer to a question of whether a stable
dynamical MBL phase can be observed in the thermodynamic
limit [91–101] and what is the critical disorder strength for the
transition [102–105].

Motiviated by the importance of quantum impurity prob-
lems, their experimental relevance [106], and by the recent
controversies around MBL, we revisit the problem of mobile
impurity interacting with an Anderson insulator [87–89]. We
show that extending the analysis of time evolution to longer
times yields a different perspective on the localization in the
system. We find, that the impurity boson, after an initial tran-
sient dynamics suggesting its localization, eventually spreads
subdiffusively across the system inducing its slow thermaliza-
tion and possibly shifting the boundary of the MBL regime to
larger W and U than anticipated in [88,89].

The remainder of this work is structured as follows.
In Sec. II, we give a precise definition of the considered
model of mobile impurity interacting with Anderson insu-
lator. In Sec. III, we present our numerical results showing
the spreading of the impurity in the system. Subsequently,
in Sec. IV, we show the impact of the spreading impurity
on the Anderson insulator and discuss the growth of entan-
glement entropy in the system in Sec. V. Slow dynamics
of the system in presence of quasiperiodic potential is in-
vestigated in Sec. VI. We conclude in Sec. VII and show
details about convergence of our numerical calculations in
Appendix A.

II. THE MODEL

We consider the model of mobile impurity interacting with
Anderson insulator described by the Hamiltonian

H = J
L−1∑

i=1

(d̂†
i d̂i+1 + H.c.) +

L∑

i=1

hin̂d,i

+ J
L−1∑

i=1

(ĉ†
i ĉi+1 + H.c.) + U

L∑

i=1

n̂c,in̂d,i, (1)

where d̂i, d̂†
i and ĉi, ĉ†

i are annihilation and creation operators
respectively of clean (c) or disorder (d) hardcore boson at site
i, whereas n̂x,i with x ≡ c, d are the corresponding occupation
number operators. The tunneling amplitude J ≡ 1 is fixed as

the energy unit, U denotes the interaction strength between
the two species of bosons, and the on-site potential hi are
independent random variables taken from uniform distribution
on the interval [−W,W ] where W is the disorder strength, and
L is the system size.

In absence of interactions (U = 0), the d-bosons form an
Anderson insulator, whereas the c-boson propagates freely on
the lattice. When the interactions are present (U �= 0), the
system is in one of a two distinct dynamical regimes. For
relatively weak disorder and interactions, e.g., W = 1 and
U = 1, the system thermalizes due to to correlated hops of
the c bosons and the localized d bosons [87]. In that regime,
the impurity becomes an ergodic seed which propagates
throughout the lattice delocalizing the system. In contrast, for
stronger disorder and interactions, the c-boson may remain
exponentially localized around its initial position [89]. This, in
consequence, induces a logarithmic growth of entanglement
entropy [88] reminiscent of the behavior of MBL systems
[107–110].

In this work, we focus on the slow dynamics of the sys-
tem in the latter regime. We consider two initial states: (i)
|ψcent (0)〉 in which the c-boson is placed initially in the
middle of the chain (at i0 = L/2) and the d-bosons form a
density wave state |0, 1, 0, 0, 1, 0, 0, 1, . . .〉 at 1/3 filling and
(ii) |ψleft (0)〉 in which the c-boson is placed initially on the
leftmost site of the chain (at i0 = 0) and the d-bosons form a
density wave state |0, 0, 1, 0, 0, 1, 0, 0, 1, . . .〉. The first initial
configuration matches precisely the initial state considered in
Ref. [88], whereas the second allows for a longer distance of
propagation of the c-boson, similarly to Ref. [111], enabling
further insights into the dynamics of the system. We consider
quantities averaged over 50 disorder realizations for L = 60
(similar number was considered in [88]) and over 200 disorder
realizations for L � 30.

We also investigate a situation when the disorder (1)
is introduced via quasiperiodic potential, for which hj =
WQP cos(2πk j + φ), where k = (

√
5 − 1)/2 and φ is a ran-

dom phase taken from the uniform distribution between
[0, 2π ]. In that case, in the absence of interactions (U = 0),
the system of d-bosons undergoes Aubry-André localization
at WQP > 2 [112]. In presence of density-density interactions
between the d-bosons, this system behaves similarly to dis-
ordered Heisenberg spin chain [113–122], although certain
features, such as an appearance of persistent oscillations of
the imbalance at large WQP [90], are specific to the quasiperi-
odic potential. In this work, we focus on the regime of slow
dynamics that occurs at WQP = 6 and interaction between the
c-bosons and d-bosons taken as U = 12.

To calculate the time evolution generated by the Hamilto-
nian (1), we use two complementary approaches. For smaller
system sizes, we employ expansion of the evolution opera-
tor e−iHt into Chebyshev polynomials [123]. This approach
relies on the sparse structure of the Hamiltonian matrix (1)
and allows us to obtain numerically exact results for system
comprised of up to L = 30 sites, i.e., with dimension of
the Hilbert space ≈901×106. For larger system sizes (L =
60), we use tensor network based algorithms TEBD [124]
and TDVP [125–129] implemented in ITENSOR [130,131].
In the latter case, we check the convergence of our results
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FIG. 1. Slow dynamics of the c-boson. The top row show the results for the c-boson starting in the center site of the chain; (a) average
density 〈n̂i,c〉 of the c-boson for interaction strength U = 12, disorder strength W = 6.5, times t = 20 and 500, and system sizes L = 24 and 60,
where x is the number of the site with respect to the initial position of the c-boson, x ≡ i − i0; (b) the MSD of the c-boson for system
size L = 24 as function of time t for various interaction amplitudes U at fixed disorder strength W = 6.5, the black dashed lines show the
power-law fits MSD(t ) ∼ tα with α < 1; (c) MSD for different system sizes L at fixed U = 12, W = 6.5. The dashed line shows a logarithmic
fit MSD(t ) ∼ log(t ), whereas the inset shows data on a log-log scale demonstrating that a power law fit MSD(t ) ∼ tα works well for L = 60
result. (d)–(f) the same as (a)–(c) but for the c-boson initially occupying the leftmost site of the chain. The shaded regions denote statistical
uncertainties in the data associated with the finite number of disorder realizations. Data for L = 60 were obtained with TDVP with bond
dimension χ = 800.

with respect to the bond dimension χ , details are given in
Appendix A.

III. DYNAMICS OF THE IMPURITY

In this section, we characterize the dynamics of the
impurity, i.e., the c-boson. We start by investigating the
disorder averaged density profile 〈n̂i,c〉 ≡ nc(x) of the c-
boson after certain time t of time evolution, where x ≡
i − i0 determines the position in the 1D lattice. The re-
sults for interaction amplitude U = 12 and disorder strength
W = 6.5 are presented in Fig. 1(a) for the initial state
|ψcent (0)〉 and Fig. 1(d) for |ψleft (0)〉. In both cases, we ob-
serve that the density profile of the c-boson is approximately
exponentially decaying 〈n̂i,c〉 ∼ e−|x|/ξ (t ) where ξ (t ) is time-
dependent localization length, consistently with the results
of Ref. [89]. On top of the overall exponential envelope,
there are also small characteristic oscillations with period of
3 sites, associated with the initial density wave state of the
d-bosons.

In order to understand the dynamics of the impurity, we
could try to investigate the time dependence of the localization
length ξ (t ). However, in the course of slow delocalization of
the system, the density profile 〈n̂i,c〉 gets increasingly nonex-
ponential, see, e.g., data for L = 60 and t = 500 in Fig. 1(d).
For that reason, to have a more quantitative measure of the

spread of the c-boson, we calculate the mean square displace-
ment (MSD) defined as

MSD(t ) ≡
L∑

i=1

(i − i)2〈n̂i,c〉, (2)

where i = ∑L
i=1 i 〈 n̂i,c〉 is the mean position of the c-boson.

The MSD is closely related to the second moment of density
propagator studied in Refs. [120,132] in the context of MBL
in disordered Heisenberg spin chain. The growth in time of
MSD ∼ tα would indicate a diffusive spreading of the c-
boson for α = 1 and a subdiffusive dynamics for 0 < α < 1.
In contrast, for the Anderson localized system, the density
profile admits an exponentially decaying envelope with ξ (t )
saturating in time to localization length in the system and,
consequently, MSD saturates in time to a disorder strength
dependent constant.

We fix the disorder strength as W = 6.5 and investi-
gate time evolution of MSD varying the interaction strength
U . The results for system size L = 24 initialized in the
states |ψcent (0)〉 and |ψleft (0)〉 are shown in Figs. 1(b)
and 1(d), respectively. For interaction amplitudes U =
3, 6, and 9, we observe an algebraic increase MSD(t ) ∼ tα

where α ≈ 1, 0.8, 0.8 for |ψcent (0)〉 (and α ≈ 0.9, 0.55, 0.45
for |ψleft (0)〉), showing that the c-boson spreads subdiffu-
sively throughout the lattice. We note that the powers α are
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smaller if the c-boson is initially placed at i0 = 0 than in the
center of the lattice i0 = L/2. Consequently, the interval of
times in which the power-law increase of MSD(t ) persists
is wider for |ψleft (0)〉. Moreover, when the system size is
increased between L = 18 and 24, the subdiffusive growth of
MSD persists to longer times and with exponent α that stays
approximately constant or increases with L (data not shown).
Those results indicate that for U � 9 the c-boson remains
mobile and propagates throughout the lattice, enabling the
thermalization of the system [87].

The situation is not so clear cut for U = 12, the interac-
tion strength considered in Ref. [88], for which, in Fig. 1(b),
we observe that MSD is saturating at a value significantly
smaller than the maximal value allowed at L = 24. At the
same time, for |ψleft (0)〉, in Fig. 1(d), we see an approximately
logarithmic growth of MSD in time. The understanding of
the dynamics in this regime of parameters is particularly
challenging and requires a careful examination of the in-
fluence of system size on time evolution at late times. To
that end, we show the time dependence of MSD(t ) for
system sizes ranging from L = 21 to L = 60 in Figs. 1(c)
and 1(f), for the initial states |ψcent (0)〉 and |ψleft (0)〉,
respectively.

When the c-boson is initially placed in the center of
the lattice (i0 = L/2), Fig. 1(c), we observe that, for L =
21 and 24, the mean square displacement grows logarithmi-
cally in time MSD(t ) ∼ ln(t ) only in a narrow time interval
t ∈ [10, 50] and then deviates from that behavior, which
could suggest its localization. However, the time at which
the deviation occurs increases with system size L, and al-
ready at for L = 27, we observe that MSD(t ) ∼ ln(t ) in a
much wider time interval t ∈ [10, 1000]. Finally, for L = 60,
we observe that the MSD(t ) increases more quickly than
logarithmically in time and is well fitted by a power-law
MSD(t ) ∼ tα with α ≈ 0.37. We note while the data for
L = 21, 24, 27 overlap at small times, this is not the case for
L = 60 due to a smaller number (50) of disorder realization
used.

If the c-boson is initially placed at the leftmost site of the
lattice (i0 = L/2), Fig. 1(f), we observe that the logarithmic
growth of MSD persist in the interval of times t ∈ [10, 2000]
already for L = 21, 24. The data for L = 27 deviate from the
logarithmic behavior, being instead fitted better by a power
law MSD(t ) ∼ tα with α ≈ 0.22 for L = 27. Similarly, for
L = 60, we observe an algebraic growth of MSD with power
α ≈ 0.28.

In conclusion, the numerical results presented in this sec-
tion indicate that for W = 6.5 and U = 12, the c-boson
spreads subdiffusively throughout the system, and MSD(t ) ∼
tα at sufficiently large times and system sizes. This is in
contrast with the localization of the c-boson reported, at the
same values of W and U , in Ref. [89]. The latter results were
inferred from numerical simulations for times up to t1 = 200,
which demonstrates the importance of a careful taking of the
limit of large system sizes and long times when examining
the slow dynamics of strongly disordered system. At the same
time, we would like to emphasize that our results do not
exclude the localization of the c-boson at larger values of
W or U at which the phenomenology discussed in [88,89]

could apply.1 Nevertheless, to obtain numerical results that
can be unambiguously interpreted as indicating MBL or ther-
malization in the system for larger W or U requires even
longer times and larger system sizes. This remains out of
reach with our present computational resources. We note that
the dynamics of the c-boson in the transient regime of the
slow, logarithmic growth of MSD is analogous to dynamics of
spin trapping effect relevant for impurities strongly interacting
with one-dimensional clean systems [133–137]. Moreover, a
recent work [138] finds a logarithmic growth of MSD that
precedes approach to the final, infinite-temperature state in a
one-dimensional Anderson insulator in the presence of a local
noise.

IV. DYNAMICS OF THE DISORDERED BOSONS

In this section, we investigate the dynamics of the d-
bosons. In absence of interactions (U = 0), the d-bosons form
an Anderson insulator. For a nonvanishing U , the interactions
with the c-boson induce a nontrivial many-body dynamics
of d-bosons. To probe it, we consider the disorder averaged
density correlation function

Cd (t ) = 1

D

l2∑

i=l1

〈ψ (0)|n̂i,d (t )n̂i,d |ψ (0)〉, (3)

where n̂i,d (t ) = eiHt n̂i,d e−iHt are the time-evolved number
operators for the d-bosons in the Heisenberg representation,
|ψ (0)〉 is the initial state, taken either to be |ψleft (0)〉 or
|ψcent (0)〉), D is a normalizing constant that assures Cd (t =
0) = 1, and l1, l2 limit the sites taken into account. For the ini-
tial product states considered in this work, the above formula
simplifies into

Cd (t ) = 1

D

l2∑

i=l1

ni,d (t )ni,d (0), (4)

where ni,d (t ) = 〈ψ (t )|n̂i,d |ψ (t )〉, |ψ (t )〉 = e−iHt |ψ (0)〉 is the
state of the system at time t . The density profile of the c-boson
is highly nonuniform, hence, the various parts of the system
thermalize at different rates. For that reason, we consider
various choices of l1 and l2 in the following.

We start by fixing the system size to L = 24 and take
|ψleft (0)〉 as the initial state of the system. We calculate the
correlation function Cd (t ) taking l1 = 1 and l2 = 9, focus-
ing on the part of the chain close to the initial position
of the c-boson. The results are shown in Fig. 2(a). We
observe a strong impact of the interaction strength U on
the decay of the correlation function and consequently on
the thermalization of the system. The time evolution of

1We note that the region in which the localization in the considered
system is perturbatively stable extends towards larger values of W
and U , as shown in [89]. However, increasing the disorder strength
W at fixed U may lead to an increase of a pertubatively derived
localization length of the c-boson, favoring delocalization in the
system. The value W = 6.5 assumed in this work is close to the
minimum of the localization length in a broad interval of U .
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FIG. 2. Slow dynamics of d-bosons, initially, the c-boson is
placed on the leftmost site of the chain. (a): the density correlation
function Cd (t ) for system size L = 24 as function of time t for
various interaction amplitudes U at fixed disorder strength W = 6.5
for l1 = 1 and l2 = 9, the red dashed lines show the power-law fits
Cd (t ) ∼ t−β with β > 0. The inset compares the correlation function
for U = 3 and W = 6.5 in a left subsystem of the chain (l1 = 1,
l2 = 9, blue line) and in the central part (l1 = 9, l2 = 18, orange
line). (b) Cd (t ) for different system sizes L at fixed U = 12, W = 6.5,
and l1 = 1, l2 = 9. The dashed line shows power-law fits. For clarity,
the results for L = 27 and L = 60 are shifted down respectively by
0.04 and 0.07. Data for L = 60 was obtained with TDVP with bond
dimension χ = 800.

the correlation function is well approximated in the inter-
val t ∈ [100, 1000] by an algebraic decay, Cd (t ) ∼ t−β with
β ≈ 0.048, 0.033, 0.015, and 0.006 respectively for U =
3, 6, 9, and 12. For U = 3, the decay of Cd (t ) becomes
more rapid at longer times. For larger values of U , the slow
power-law decay persists to longer times, similarly to what
is observed for density correlation functions in disordered
Heisenberg spin chain [90]. Importantly, there is a strong
relationship between the slow down of the spreading of the c-
boson with increasing interaction strength U , recall Fig. 1(e),
and the slow down of decay of density correlation function
of d-bosons. Moreover, the dynamics of density correlations
of d-bosons is highly nonuniform as shown in the inset of
Fig. 2(a). Initially, the decay of Cd (t ) for l1 = 1 and l2 = 9 is
faster than the decay in the middle of the system (l1 = 9 and
l2 = 18), but then, at times t > 100, the decay in the middle
becomes faster. A similar delay of the decay of Cd (t ) with

the distance from the original position of the c-boson is also
observed for larger values of U .

While the data for L = 24 indicate the thermalization of
the system for smaller values of U , the strongly interact-
ing case, U = 12, is less straightforward to understand: the
power β governing the decay of Cd (t ) is very small. To
shed further light on the dynamics of the system for U =
12 and W = 6.5, we show Cd (t ) for various system sizes
ranging from L = 21 to L = 60 in Fig. 2(b). We observe
that the decay of Cd (t ) in the interval t ∈ [100, 1000] (or up
to t = 700 for L = 60) is well approximated by a power-
law with a coefficient β that increases with system size:
β ≈ 0.004, 0.008, 0.008, and 0.011 respectively for L =
21, 24, 27, and 60. This behavior of the Cd (t ) indicates a
thermalization of the system at U = 12 and W = 6.5, provid-
ing a complementary view on the dynamics of the system to
the subdiffusive growth of MSD of the c-boson reported in
the preceding section. Importantly, the thermalization of the
system slows down considerably with the distance from the
original position of the c-boson. For instance, taking l1 = 10,
l1 = 18 for L = 60 we obtain, in the interval t ∈ [100, 700],
that Cd (t ) ∼ t−β with exponent β ≈ 0.005 that is approxi-
mately twice smaller than the exponent governing the decay
of density correlation functions on the none leftmost sites of
the chain. The thermalization of the system at U = 12 and
W = 6.5 is an extremely slow process, even in the vicinity
of the original position of the c-boson. Finally, we note that
the results for the density correlation function Cd (t ) are fully
analogous when |ψcent (0)〉 is used as the initial state of the
system, the results are shown in Appendix B.

V. ENTANGLEMENT IN THE SYSTEM

In this section we investigate the entanglement entropy of
the system. We consider a bipartition of the 1D lattice into
two subsystems A and B, so that A ∪ B is the full system
and A consists of sites i = 1, . . . , ib. Using the time evolved
state |ψ (t )〉, we calculate the reduced density matrix ρA of the
subsystem A by tracing out the degrees of freedom associated
with the subsystem B, ρA = TrB(|ψ (t )〉 〈ψ (t )|) and obtain the
von Neumann entanglement entropy as

S(t ) = Tr[ρA ln ρA]. (5)

To simplify the numerical calculations, we employ the conser-
vation of the total number of c-bosons and d-bosons but we do
not resolve the associated number entropies [139–144].

To start our investigation of dynamics of entanglement
entropy in the regime of slow dynamics in the considered
system, we set U = 6 and calculate S(t ) for system sizes
L = 21 and 27 taking |ψleft (0)〉 as the initial state. The results,
shown in Fig. 3(a), indicate a power-law growth of entan-
glement entropy S(t ) ∼ tγ , similarly to the regime of slow
dynamics close to the MBL regime [145]. Close to the original
position of the c-boson, for bonds ib � 10, the entanglement
entropy starts to saturate in time to a value of the order of
the thermal value, consistently with the thermalization of the
system in the limit of long times and large L. The time at
which S(t ) starts to grow increases with the distance from
the leftmost site of the chain. In particular, for ib = 15 and
L = 21, the entanglement entropy S(t ) seems to follow a
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FIG. 3. Entanglement entropy S(t ) in the system. (a) S(t ) for
cut at bonds ib = 7, 9, 10, 12, 15, solid lines denote data for L = 27,
the dashed lines denote data for L = 21, the red dashed lines show
power-law fits S(t ) ∼ tγ . The interaction strength U = 6, disorder
strength W = 6.5, the initial state is |ψleft (0)〉. (b) S(t ) for cuts at
various ib, colored solid lines denote data for L = 27, the dashed
lines denote data for for L = 21, data for L = 60 are denoted by
black solid lines. The red dashed lines show power-law fits S(t ) ∼
tγ , the interaction strength is U = 12, disorder strength W = 6.5,
the initial state is |ψleft (0)〉. The inset shows the time ti such that
S(ti ) = s0 versus the position of the cut ib, the threshold value s0 is
taken as 0.6, the dashed line shows an exponential fit ti ∼ e0.42id .
(c) S(t ) for cuts at various ib, colored solid lines denote data for
L = 60 and χ = 800 whereas black dots show data for L = 60
and χ = 256, the initial state is |ψcent (0)〉. The red dashed lines
show power-law fits S(t ) ∼ tγ , note that a log-log scale is used
here.

logarithmic in time growth, similarly as in the MBL regime of
disordered Heisenberg spin chain [107,108]. However, when
the system size is increased to L = 27, we observe a power-
law growth in the interval of times t ∈ [50, 2000], with power
γ ≈ 0.42. Similarly, for ib = 12, we get γ ≈ 0.40. Therefore,
for U = 6, we see clear signatures of thermalization in the
system.

The behavior of entanglement entropy is similar also
for U = 12. While the results for ib = 7, 9 could sug-
gests a logarithmic increase of S(t ), the growth of S(t )
is more rapid for ib � 10. Performing fits in the inter-
val t ∈ [80, 2000] we find a power-law dependence S(t ) ∼
tγ with γ ≈ 0.29, 0.26, and 0.17 respectively for ib =
10, 12, and 15. Interestingly, in the interval of times for
which data for L = 60 are available, we find that S(t ) for L =
27 and L = 60 almost overlap, see the black lines in Fig. 3(b).
Finally, we note that the value of S(t ) ≈ 1.5 at t = 1000 (for
ib = 7) is comparable to the value (S ≈ 1.7) of the entangle-
ment entropy obtained after t = 1000 tunneling times in the
disordered Heisenberg spin chain at WXXZ = 4 [146]. At that
value of the disorder strength the disordered Heisenberg spin
chain is believed to be still in the thermal phase [102,104].
Notably, this value of S(t ) is significantly larger than the
value S(t ) ≈ 0.25 of entanglement entropy observed at sim-
ilar times in disorder Heisenberg chain at disorder strength
WXXZ = 10 at which one still observes a nontrivial dynamics
of density correlation functions at experimentally relevant
timescales [90].

In conclusion, the time evolution of the entanglement en-
tropy S(t ) offers a third perspective, along the behavior of
MSD(t ) and Cd (t ), on the thermalization that occurs in the
system at U � 12. The dependence of the moment of the
start of entanglement increase on the distance between the
bond and the initial position of the c-boson reflects the high
nonuniformity of the initial condition. This rapidly introduces
long timescales into the dynamics of the system. For instance,
the time at which the entanglement entropy S(t ) exceeds
a threshold value s0 = 0.6 increases exponentially with the
distance from the left side of the chain, as shown in the
inset of Fig. 3(b). In particular, already for ib = 22, up to
the time t = 1000 reached for L = 60, we observe no traces
of the increase of S(t ) beyond the value characteristic for
Anderson insulator (admitted after t ∼ 5). This highlights that
the process of thermalization of the system is very slow in
the considered parameter regime, and parts of the system in
which the density of the c-boson is negligibly small remain
in Anderson insulating state at practically relevant timescales.
Finally, we note that we observe a similar behavior of the
entanglement entropy when |ψcent (0)〉 is used as the initial
state. The entanglement entropies for L = 60 obtained TDVP
algorithm, shown in Fig. 3(c), practically overlap for bond
dimensions χ = 256 and χ = 800, confirming the conver-
gence of the algorithm with χ . The data are well approximated
by a power-law dependence S(t ) ∼ tγ in time interval t ∈
[tmin, 800], respectively with tmin = 30, γ ≈ 0.18 for ib = 30;
tmin ≈ 50, γ = 0.27 for ib = 34; tmin = 50, γ ≈ 0.31 for ib =
35; tmin = 100, γ ≈ 0.38 for ib = 37; tmin = 150, γ ≈ 0.40
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for ib = 39; tmin = 240, γ ≈ 0.33 for ib = 43. The power-law
fits to S(t ), consistent with the thermalization of the system
work in wider time intervals than logarithmic fits (which are
consistent with MBL in the system). Reaching times beyond
t = 200 is crucial to demonstrate this behavior. For instance,
looking at data for ib = 34, we see a downward curvature
in the interval t ∈ [20, 200]. However, the curvature disap-
pears as one considers the S(t ) in the wider time interval
t ∈ [50, 800]. This highlights the importance of taking the
long time limit when assessing the properties of slow dynam-
ics in strongly disordered systems and is the main source of
discrepancies between the results of the present work and of
the works [88,89] at the parameters U = 12 and W = 6.5.

VI. SLOW DYNAMICS IN A QUASIPERIODIC POTENTIAL

We now turn to investigation of the dynamics of the system
in presence of quasiperiodic potential h j = WQP cos(2πk j +
φ) described in Sec. II. To consider the regime of slow dy-
namics, we fix the interaction strength as U = 12, and we set
WQP = 6.

We start by studying the spreading of the c-boson. The
MSD(t ), shown in Fig. 4(a) nearly saturates at system size
independent value ≈7 for L = 21 and 24. For that reason,
one could infer that the c-boson remains localized in the
quasiperiodic potential. However, this is not the case in the
large system size limit as the data for L = 60 shows. Instead,
we observe a slow increase of MSD in time, which is well
fitted with a logarithmic time dependence. The overlapping of
data for χ = 256 and 384 indicates that the results of TDVP
algorithm are well converged up to time ≈500. A comparison
with results for the disordered case, together with subdiffusive
behavior of of MSD(t ) at smaller values of U , suggests that
at even larger times and system sizes the logarithmic increase
of MSD(t ) will be replaced by a power-law dependence at
U = 12.

The behavior of the density correlation function Cd (t )
around the initial position of the c-boson (l1 = L/2 − 3, l2 =
L/2 + 3), presented in Fig. 4(b), provides complementary
perspective on the dynamics of the system. We observe a
slow decay of Cd (t ), well fitted by a power-law Cd (t ) ∼ t−β

with β ≈ 0.006, ≈0.004, and ≈0.008 respectively for L =
21, 24, and 60 and time intervals t ∈ [30, tmax] with tmax =
4000, 4000, and 1000 (note that the data for Cd (t ) are con-
verged to larger times than MSD(t )). Finally, similarly to
the disordered case, the entanglement entropy S(t ) increases
according to a power-law in time, S(t ) ∼ tγ , as shown in
Fig. 4(c).

All in all, the results for quasiperiodic potential indicate a
presence of a regime of slow dynamics similar to the case of
disordered system. The gradual thermalization of the system
is manifested by subdiffusive spreading of the c-boson, the
power-law decay of density correlation function of d-bosons
and a power-law increase of the entanglement entropy.

VII. CONCLUSIONS

We have considered a single mobile impurity interacting
with an Anderson insulator and investigated a regime of slow
dynamics that appears in the system in presence of strong

FIG. 4. Slow dynamics in presence of quasiperiodic potential
with amplitude WQP = 6 for initial state |ψleft (0)〉 and interaction
strength U = 12. (a) The MSD(t ) as function of time for various
system sizes (for TDVP data, at L = 60, the bond dimension χ is
indicated). While for L � 24, we observe a saturation of MSD, the
data for L = 60 are well approximated by MSD(t ) ∼ ln(t ). (b) the
density correlation function Cd (t ) calculated around the middle site
of the chain (for i ∈ [L/2 − 3, L/2 + 3]) for various system sizes,
fitted with a power-law decay Cd (t ) ∼ t−β . (c): The entanglement
entropy S(t ) for various cuts ib and system size L = 60. Data ob-
tained with TDVP with bond-dimension χ = 384 are denoted by
solid lines, whereas data obtained with χ = 256 are denoted by
dots. The dashed lines show power-law fits S(t ) ∼ tγ with γ ≈
0.11, 0.15, 0.20, 0.22, 0.25, 0.29, and 0.27 respectively for ib =
30, 32, 34, 35, 37, 40, and 43.

disorder and interactions. To probe the dynamics of the sys-
tem, we have studied time evolution of MSD of the impurity,
the density correlation functions of the particles subject to
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disorder that initially form the Anderson insulator as well
as the entanglement entropy. Due to the slowness of the dy-
namics of the system, we find that reaching times beyond
t = 200J−1 is crucial for understanding the physics of the sys-
tem for interaction strength U = 12 and disorder amplitude
W = 6.5, considered previously in Refs. [88,89]. Combining
numerically exact simulations at system sizes L � 30 with
tensor network approaches at larger L, we observe thermal-
ization of the system at longer times for that parameters. In
particular, we find that MSD grows algebraically in time,
consistently with subdiffusive spreading of the impurity. This
behavior is intercontected with a slow, consistent with a
power-law in the considered time interval, decay in time of
the correlation functions of the particles subject to disorder.
Consequently, the entanglement entropy grows algebraically
in time. We have also considered smaller values of interac-
tion strength U showing that the regime of slow dynamics
extends in a wide parameter space of the system. Finally, we
have demonstrated an appearance of a similar regime of slow
dynamics in the quasiperiodic potential.

The slow dynamics of the impurity interacting with An-
derson insulator is reminiscent of the regime of the slow
dynamics preceding the MBL phase [145]. Therefore, similar
problems appear in both cases when one tries to understand
the behavior of the system in the asymptotic limit of large
times and system sizes [90]. Our simulations reveal the ten-
dencies towards thermalization of the system (at U = 12 and
W = 6.5) on experimentally relevant timescale t = 1000J−1.
The trends in the behavior of MSD, correlation functions and
entanglement entropy suggest that the dynamics of the system
speeds up when time and length scales are increased (for
instance the logarithmic growth of MSD crossover for system
size L = 27 crossovers to a power-law growth at L = 60).
On the other hand, our results do not exclude a scenario in
which a certain increase of U or W will lead to even bigger
slow down of the dynamics of the system that will lead to
an asymptotic localization of the impurity and MBL of the
disordered particles, as discussed in Refs. [88,89].

Regardless of the asymptotic fate of the system, the slow
spreading of the impurity in the considered dynamical regime
induces thermalization of the Anderson insulator at timescale
that increases exponentially with the distance from the ini-
tial position of the impurity. This indicates that parts of the
Anderson insulator distant from the initial position of the im-
purity will remain in the insulating state at practically relevant
timescales. Finally, we would like to note that the consid-
ered system is interesting in the context of the avalanche
mechanism of destabilization of MBL [147,148]. From that
perspective, the impurity is a L-level system that induces a
thermalizing avalanche in the system. Our result emphasize
the reach physics of that process that appears on relatively
long but experimentally relevant timescales.
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APPENDIX A: CONVERGENCE
OF NUMERICAL RESULTS

In this section, we discuss the convergence of our numer-
ical results. The results for L � 30, obtained with expansion
of the evolution operator e−iHt into Chebyshev polynomials
are numerically exact, the details of the scheme are given
in Ref. [90]. On the other hand, the tensor network based
TDVP algorithm approximates the time evolved state |ψ (t )〉
with accuracy that depends on the bond dimension χ of the
underlying MPS state [149]. In order to probe the convergence
of the algorithm, we have shown results for two bond dimen-
sion in Figs. 3 and 4. The data for entanglement entropies
[Fig. 3(c) for χ = 256, 800] as well as for MSD(t ), Cd (t ) and
S(t ) (Fig. 4 for χ = 256, 384) practically overlap, indicating
that the numerical results are well converged with the bond
dimension χ .

In order to further illustrate the convergence of TDVP, we
compare numerically exact results obtained with Chebyshev
time propagation for L = 30 with TDVP results. As we show
in Fig. 5(a), the MSD(t ) is predicted with accuracy 1% up
to time t ≈ 400 for χ = 384 and t ≈ 700 for χ = 768. The
errors in MSD(t ) are associated with overestimation of the
tails of the density profile nc(x) of the c-boson as shown if
Fig. 5(b). Nevertheless, up to times t ≈ 800, the quantitative,
logarithmic in time, behavior of MSD(t ) is well reproduced
by TDVP algorithm. The same applies to data presented
in Fig. 1. Finally, Fig. 5(c) shows that the convergence of
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FIG. 5. Convergence of TDVP vs numerically exact results from
Chebyshev time propagation scheme. System size L = 30, inter-
action strength U = 12, disorder amplitude W = 6.5, initially, the
c-boson ocucpies the left-most site of the chain. (Top) MSD as
function of t obtained with Chebyshev method (statistical error,
calculated by resampling over disorder realizations is denoted by
shaded blue region) is compared against TDVP results. The inset
shows the difference between TDVP result (MSDχ ) and Chebyshev
data (MSDCH ); Middle: density of the clean boson nc(x) as function
of the site number x for various times t = 10, 70, and 970, Cheby-
shev results denoted by solid lines, TDVP results by dashed dotted
lines; Bottom: the same as top panel, but for the density correlation
function Cd (t ) of d-bosons.

the density correlation function Cd (t ) with χ is much bet-
ter and already χ = 384 practically reproduces the exact
result.

FIG. 6. Slow dynamics of d-bosons, initially, the c-boson is
placed in the middle of the chain. (a) Density correlation function
Cd (t ) for system size L = 24 as function of time t for various interac-
tion amplitudes U at fixed disorder strength W = 6.5, the red dashed
lines show the power-law fits Cd (t ) ∼ t−β with β > 0; (b) Cd (t ) for
different system sizes L at fixed U = 12, W = 6.5. The dashed line
shows power-law fits. For clarity, the results for L = 60 are shifted
down by 0.07.

APPENDIX B: DYNAMICS OF DISORDERED BOSONS:
FURTHER RESULTS

In this section we consider the density correlation function
Cd (t ) of the d-bosons, calculating it close to the center of the
chain: l1 = L/2 − 3, l2 = L/2 + 3. We find that Cd (t ) decays
in time, and that the decay is well approximated by a power
law: Cd (t ) ∼ t−β . For fixed system size L = 24, see Fig. 6(a),
the decay slows down considerably with U : we obtain β ≈
0.12, 0.05, 0.022, 0.015, and 0.010 respectively for U =
3, 6, 9, and 12. Fixing the interaction strength as U = 12,
we find β ≈ 0.031, 0.022, 0.021, and 0.030 respectively
for L = 21, 24, 27, and 60 (performing the fit in interval
t ∈ [100, 700]). The latter suggests that the decay of Cd (t )
is converged with system size at the considered timescales.
It also confirms the gradual thermalization of the system at
U = 12 and W = 6.5.

[1] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics
with ultracold gases, Rev. Mod. Phys. 80, 885 (2008).

[2] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A.
Sen(De), and U. Sen, Ultracold atomic gases in optical lattices:

144201-9

https://doi.org/10.1103/RevModPhys.80.885


PIOTR SIERANT et al. PHYSICAL REVIEW B 107, 144201 (2023)

mimicking condensed matter physics and beyond, Adv. Phys.
56, 243 (2007).

[3] J. M. Deutsch, Quantum statistical mechanics in a closed sys-
tem, Phys. Rev. A 43, 2046 (1991).

[4] M. Srednicki, Chaos and quantum thermalization, Phys. Rev.
E 50, 888 (1994).

[5] M. Rigol, V. Dunjko, and M. Olshanii, Thermalization
and its mechanism for generic isolated quantum systems,
Nature (London) 452, 854 (2008).

[6] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, From
quantum chaos and eigenstate thermalization to statistical me-
chanics and thermodynamics, Adv. Phys. 65, 239 (2016).

[7] L. Vidmar and M. Rigol, Generalized Gibbs ensemble in inte-
grable lattice models, J. Stat. Mech. (2016) 064007.

[8] I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Interacting
Electrons in Disordered Wires: Anderson Localization and
Low-T Transport, Phys. Rev. Lett. 95, 206603 (2005).

[9] D. Basko, I. Aleiner, and B. Altshuler, Metal–insulator tran-
sition in a weakly interacting many-electron system with
localized single-particle states, Ann. Phys. 321, 1126 (2006).

[10] A. Pal and D. A. Huse, Many-body localization phase transi-
tion, Phys. Rev. B 82, 174411 (2010).

[11] V. Ros, M. Mueller, and A. Scardicchio, Integrals of motion
in the many-body localized phase, Nucl. Phys. B 891, 420
(2015).

[12] J. Z. Imbrie, Diagonalization and Many-Body Localization
for a Disordered Quantum Spin Chain, Phys. Rev. Lett. 117,
027201 (2016).

[13] F. Alet and N. Laflorencie, Many-body localization: An intro-
duction and selected topics, C. R. Phys. 19, 498 (2018).

[14] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Collo-
quium: Many-body localization, thermalization, and entangle-
ment, Rev. Mod. Phys. 91, 021001 (2019).

[15] M. Schulz, C. A. Hooley, R. Moessner, and F. Pollmann,
Stark Many-Body Localization, Phys. Rev. Lett. 122, 040606
(2019).

[16] E. van Nieuwenburg, Y. Baum, and G. Refael, From Bloch
oscillations to many-body localization in clean interacting sys-
tems, Proc. Natl. Acad. Sci. USA 116, 9269 (2019).

[17] S. R. Taylor, M. Schulz, F. Pollmann, and R. Moessner, Exper-
imental probes of Stark many-body localization, Phys. Rev. B
102, 054206 (2020).

[18] T. Chanda, R. Yao, and J. Zakrzewski, Coexistence of lo-
calized and extended phases: Many-body localization in a
harmonic trap, Phys. Rev. Res. 2, 032039(R) (2020).

[19] R. Yao and J. Zakrzewski, Many-body localization of bosons
in an optical lattice: Dynamics in disorder-free potentials,
Phys. Rev. B 102, 104203 (2020).

[20] S. Scherg, T. Kohlert, P. Sala, F. Pollmann, B. H.
Madhusudhana, I. Bloch, and M. Aidelsburger, Observing
non-ergodicity due to kinetic constraints in tilted Fermi-
Hubbard chains, Nat. Commun. 12, 4490 (2021).

[21] Q. Guo, C. Cheng, Z.-H. Sun, Z. Song, H. Li, Z. Wang,
W. Ren, H. Dong, D. Zheng, Y.-R. Zhang, R. Mondaini, H.
Fan, and H. Wang, Observation of energy-resolved many-body
localization, Nat. Phys. 17, 234 (2021).

[22] W. Morong, F. Liu, P. Becker, K. S. Collins, L. Feng, A.
Kyprianidis, G. Pagano, T. You, A. V. Gorshkov, and C.
Monroe, Observation of Stark many-body localization without
disorder, Nature (London) 599, 393 (2021).

[23] R. Yao, T. Chanda, and J. Zakrzewski, Many-body localization
in tilted and harmonic potentials, Phys. Rev. B 104, 014201
(2021).

[24] R. Yao, T. Chanda, and J. Zakrzewski, Nonergodic dynamics
in disorder-free potentials, Ann. Phys. 435, 168540 (2021).

[25] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and
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