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Exceptional points in cylindrical elastic media with radiation loss
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Exceptional points (EPs) are singular points on a parameter space at which some eigenvalues (scattering poles)
and their corresponding eigenmodes coalesce. This study shows the existence of second- and third-order EPs in
cylindrical elastic systems with radiation loss. We consider multilayered cylindrical solids under the plane-strain
condition placed in a background elastic or acoustic medium. Elastic and acoustic waves propagating in the
background media experience radiation loss. We optimize the radii and the material constants of the multilayered
solids, such that some scattering poles coalesce on the complex frequency plane. Some numerical experiments
are performed to confirm that the coalescence originates from EPs. We expect that this study provides a new
approach for enhancing mechanical sensors.
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I. INTRODUCTION

Exceptional points (EPs) are singularities in a parameter
space at which both eigenvalues and eigenmodes coalesce
[1–3]. This simultaneous degeneracy is a unique phenomenon
of non-Hermitian systems. Unlike Hermitian systems, non-
Hermitian systems have complex eigenvalues, and their
imaginary part represents the rate of exponential decay or di-
vergence of resonances in time. Around an EP, two (or more)
eigenvalues are associated with each other and draw a Rie-
mann surface of a multivalued root function on the parameter
space. This special structure can be observed by continuously
changing the parameters around an EP and tracking the corre-
sponding eigenvalues, called EP encircling [4]. As the rootlike
behavior improves the sensitivity of the eigenvalue splitting, a
promising application of the non-Hermitian degeneracy is the
enhancement of optical and mechanical sensors [5–11].

Parity-time (PT) symmetry is one of the most successful
approaches for realizing EPs [12–15]. A system is said to
be PT symmetric if the same amount of gain and loss is
symmetrically distributed in space. Due to these gain and
loss, PT-symmetric systems are non-Hermitian and possibly
exhibit EPs. If a system is PT symmetric, the non-Hermitian
degeneracy occurs at the PT phase transition points, which can
be easily found by tuning the amount of gain and loss [16].

Although the PT symmetry is an important property when
discussing non-Hermitian physics, the EP itself is ubiquitous
for various non-Hermitian systems. For example, dielectric
microcavities can induce the non-Hermitian degeneracy with-
out gain by tuning the dielectric constant and/or the system
geometry [17]. Kullig et al. recently showed the existence
of second- and third-order EPs in two-dimensional multilay-
ered microdisk cavities [18]. They optimized the radii and
refractive indices of the layered cavities such that two or
three whispering gallary modes coalesce at a single complex
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frequency. Bulgakov et al. proved that a spheroid exhibits
a second-order EP [19]. Abdrabou and Lu studied EPs that
arise in two-dimensional multiple scattering systems [20].
Meanwhile, Gwak et al. realized steady EPs by deforming
circular microcavity [21]. Photonic crystal slabs also exhibit
EPs without material gain [22–26].

EPs can also be observed in acoustic and elastic systems.
As mentioned, PT symmetry is a convenient platform for
discussing non-Hermitian effects on acoustic and elastic wave
propagation. Recent studies revealed that the well-known
anomalies of PT symmetric systems (e.g., phase transition,
asymmetrical reflectance, lasing/antilasing, negative refrac-
tion, and enhanced sensitivity) are observed in such systems
[27–41]. However, the existence of EPs in two- and three-
dimensional passive elastic systems is still uncertain, except
for an open periodic system [42].

In this study, we numerically show that second- and third-
order EPs exist in cylindrical elastic media without gain. The
system comprises a multilayered cylindrical solid and back-
ground elastic or acoustic medium. The background medium
is unbounded in space and induces the energy loss due to the
radiation in the radial direction. The solid-solid and solid-fluid
coupled problems are solved via Helmholtz decomposition
and cylindrical functions. Following Ref. [18], we optimize
the radii and material constants such that two or three eigen-
values (scattering poles) coalesce on the complex frequency
plane. Subsequently, the EP encircling is performed around
the optimized parameters to confirm that the coalescence
originates from the non-Hermitian degeneracy. Moreover, we
show that the degenerate poles behave as multivalued root
functions around EPs, which is an important property for
enhancing mechanical sensors.

II. MODEL

We consider the time-harmonic oscillation of a multilay-
ered solid embedded in a background elastic or acoustic
medium as shown in Fig. 1. Each solid layer, indexed by
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FIG. 1. Multilayered elastic solid embedded in an elastic or
acoustic medium. The figure illustrates the case of N = 3.

the integer l = 1, . . . , N (from innermost to outermost), is a
linear, homogeneous, and isotropic elastic medium with mass
density ρ (l ) and Lamé constants (λ(l ), μ(l ) ). We also assume
that the solid is under the plane-strain condition. The in-plane
displacement u and stress σ are subject to the following two-
dimensional Navier-Cauchy equations:

∇ · σ + ρ (l )ω2u = 0, (1)

where ω is the angular frequency. The stress tensor σ is
associated with the displacement u via the following linear
relations:

σi j = λ(l )(∇ · u)δi j + 2μ(l )εi j, (2)

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
, (3)

where δi j is the Kronecker delta. The displacement u and the
normal component σ · n of the stress are continuous on the
solid–solid interfaces, where n is the unit normal vector.

In what follows, we assume that the solid is a cylinder, i.e.,
the cross section 	(l ) of Layer l is given by 	(l ) = {x ∈ R2 |
R(l−1) < |x| < R(l )} with outer radius R(l ) (R(0) = 0).

A solution of the Navier-Cauchy Eq. (1) can be sought via
Lamé potentials φ(l ) and ψ (l ) defined as

ui = ∂φ(l )

∂xi
+ e3i j

∂ψ (l )

∂x j
in 	(l ), (4)

where ei jk is the Levi-Civita symbol [43]. The potentials
decompose the Navier-Cauchy Eq. (1) into the following
Helmholtz equations:

∇2φ(l ) + (
ω/c(l )

L

)2
φ(l ) = 0 in 	(l ), (5)

∇2ψ (l ) + (
ω/c(l )

T

)2
ψ (l ) = 0 in 	(l ), (6)

where c(l )
L =

√
(λ(l ) + 2μ(l ) )/ρ (l ) and c(l )

T =
√

μ(l )/ρ (l ) are
the phase speed of the longitudinal and transverse waves
in 	(l ), respectively. We can write a solution (φ(l ), ψ (l ) ) as

follows for each azimuthal index m ∈ Z:

φ(l ) = A(l )
L Jm

(
ωr/c(l )

L

)
exp(imθ )

+ B(l )
L H (1)

m

(
ωr/c(l )

L

)
exp(imθ ), (7)

ψ (l ) = A(l )
T Jm

(
ωr/c(l )

T

)
exp(imθ )

+ B(l )
T H (1)

m

(
ωr/c(l )

T

)
exp(imθ ), (8)

where (r, θ ) is the polar coordinate system. For l =
1, . . . , N − 1, the continuity at the interface r = R(l ) asso-
ciates the unknown coefficients A(l )

L , A(l )
T , B(l )

L , and B(l )
T as

M (l+1)(R(l ) )

⎛
⎜⎜⎜⎜⎜⎝

A(l+1)
L

A(l+1)
T

B(l+1)
L

B(l+1)
T

⎞
⎟⎟⎟⎟⎟⎠ = M (l )(R(l ) )

⎛
⎜⎜⎜⎜⎜⎝

A(l )
L

A(l )
T

B(l )
L

B(l )
T

⎞
⎟⎟⎟⎟⎟⎠, (9)

where the matrix M (l )(R) ∈ C4×4 is dependent on the
frequency ω, azimuthal index m, and material constants
ρ (l ), λ(l ), μ(l ). The explicit form of M (l )(R) is presented
in Appendix A. Equation (9) indicates that the matrix
(M (l+1)(R(l ) ))−1M (l )(R(l ) ) is the transfer matrix from Layer
l to l + 1. Any solution should be bounded at r = 0; thus,
we have B(1)

L = B(1)
T = 0. Accordingly, we can define a 4 × 2

matrix X that gives

X

(
A(1)

L

A(1)
T

)
=

⎛
⎜⎜⎜⎜⎜⎝

A(N )
L

A(N )
T

B(N )
L

B(N )
T

⎞
⎟⎟⎟⎟⎟⎠. (10)

A. Solid background

First, we formulate a radiation behavior in the background
r > R(N ). When the background medium is an elastic medium
with a mass density ρ and Lamé constants (λ,μ), we define
two potentials φ and ψ as follows in an analogous manner:

ui = ∂φ

∂xi
+ e3i j

∂ψ

∂x j
r > R(N ). (11)

We are interested in a radiating field that satisfies the
Kupradze–Sommerfeld condition; therefore, the potentials φ

and ψ are written as

φ = BBG
L H (1)

m (ωr/cL) exp(imθ ), (12)

ψ = BBG
T H (1)

m (ωr/cT) exp(imθ ), (13)

where BBG
L and BBG

T are constants, and cL and cT are defined
by cL = √

(λ + 2μ)/ρ and cT = √
μ/ρ, respectively. Similar

to Eq. (9), the continuity conditions at r = R(N ) equate the
coefficients as

Ys

(
BBG

L

BBG
T

)
= Zs

⎛
⎜⎜⎜⎜⎜⎝

A(N )
L

A(N )
T

B(N )
L

B(N )
T

⎞
⎟⎟⎟⎟⎟⎠, (14)
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where the 4 × 2 matrix Ys is defined in Appendix A, and Zs =
M (N )(R(N ) ). Equations (10) and (14) give the following linear
equations:

[ZsX − Ys]

⎛
⎜⎜⎜⎜⎝

A(1)
L

A(1)
T

BBG
L

BBG
T

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0

0

0

0

⎞
⎟⎟⎟⎟⎠. (15)

B. Fluid background

The fluid background can be modeled in a similar fashion.
Let p be a pressure field that satisfies

∇2 p + (ω/c)2 p = 0, r > R(N ), (16)

where the sound speed c is given by the mass density ρ and
bulk modulus κ of the background fluid as c = √

κ/ρ. In
analogy with the elastic case, due to the Sommerfeld radiation
condition, the pressure p admits the following solution with a
constant BBG:

p = BBGH (1)
m (ωr/c) exp(imθ ), r > R(N ). (17)

Elastic-acoustic coupling is established via the continuity
of the displacement and traction at r = R(N ):

σ · n = −pn, (18)

u · n = 1

ρω2
∇p · n. (19)

Using the polar coordinate system, these conditions are trans-
lated into

YfB
BG = Zf

⎛
⎜⎜⎜⎜⎜⎝

A(N )
L

A(N )
T

B(N )
L

B(N )
T

⎞
⎟⎟⎟⎟⎟⎠, (20)

where the 3 × 1 matrix Yf and 3 × 4 matrix Zf are given in
Appendix A.

Finally, we use Eqs. (10) and (20) to obtain

[ZfX − Yf ]

⎛
⎜⎜⎝

A(1)
L

A(1)
T

BBG

⎞
⎟⎟⎠ =

⎛
⎜⎝

0

0

0

⎞
⎟⎠. (21)

III. EXCEPTIONAL POINTS

Without any excitation, the time-harmonic oscillation of
the multilayered solid is characterized by either Eq. (15) or
Eq. (21). These linear systems always have a trivial solu-
tion (i.e., uniformly u = 0) and possibly nontrivial solutions
for discrete angular frequencies ω ∈ C when the determinant
of the coefficient matrices becomes zero. These (angular)
frequencies are often called quasinormal mode frequencies,
complex eigenvalues, or scattering poles. The imaginary part
of a scattering pole represents the reciprocal of the lifetime
of the corresponding resonance, i.e., exponential decay rate in
time induced by the radiation.

The scattering poles are dependent on the system param-
eters, e.g., the radii and material constants of the layered
structure. When two (or more) scattering poles and corre-
sponding resonant modes simultaneously coalesce on the
complex ω plane for certain system parameters, the param-
eters are called an exceptional point on the parameter space.

In contrast to typical non-Hermitian systems, the open
systems lack explicit parameters that quantify energy loss.
This is because the radiation conditions are equivalent to
distributing material loss (i.e., imaginary part of the elastic
constants) ε > 0 uniformly in the unbounded background
r > R(N ) and taking the limit ε ↓ 0. This limiting absorption
principle means that the amount of energy loss per volume
(area) is infinitesimal; however, it still yields a certain amount
of energy loss in total because the medium is infinitely large.
As we are taking the limits ε ↓ 0 and r → ∞, our formula-
tion eliminates explicit parameters that cause the systems to
be non-Hermitian. Nevertheless, the system is non-Hermitian
due to the intrinsic radiation loss.

In this study, we show that the multilayered elastic systems
exhibit EPs using an optimization algorithm.

To prove that the systems exhibit an EP, we first numeri-
cally seek a nontrivial solution of the linear systems Eq. (15)
and Eq. (21). The coefficient matrices depend on ω nonlin-
early; hence, this is a nonlinear eigenvalue problem in terms
of ω. We solve this nonlinear eigenvalue problem using the
Sakurai–Sugiura method [44]. Accordingly, we formally write
the nonlinear eigenvalue problem as A(ω)ξ = 0, where A is a
matrix-valued function. The Sakurai-Sugiura method converts
the nonlinear eigenvalue problem into a linear one using con-
tour integrals

∫
γ

W HA−1(ω)V dω for some full-rank matrices
W and V . The linear problem is then solved by a standard
eigenvalue solver, which yields the complex eigenvalues (ma-
trix poles) of A inside the contour path γ and corresponding
right eigenvector ξ . For more details, see [44]. A PYTHON

implementation is provided on GitHub [45].
Given M scattering poles ωi (i = 1, . . . , M), we solve the

following optimization problem:

min
ζ∈P

J (ζ ) =
∑
i �= j

|ωi(ζ ) − ω j (ζ )|2, (22)

where P denotes a parameter space. A solution ζ is an
EP of order M in P if the optimization attains J = 0 (i.e.,
ω1 = . . . = ωM), and all the corresponding resonant modes
are identical.

IV. RESULTS AND DISCUSSION

A. Solid background

In this subsection, we will show that the solid-solid sys-
tem exhibits second- and third-order EPs. First, we consider
the double-layered solid (N = 2) embedded in a background
medium with (ρ, λ, μ). In analogy with optical layered
systems [18], we expect that non-Hermitian degeneracy
is achieved when two whispering gallary modes coalesce
at the same frequency. This can be accomplished when
the refractive index of 	(1) is larger than that of 	(2).
In what follows, we limit the consideration to the case
of m = ±8. Poisson’s ratio ν (l ) is uniformly 0.3 for all
elastic media. Figure 2 shows the distribution of the scattering
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FIG. 2. Scattering poles and corresponding resonant modes of the double layers in the solid background. The top figure shows the
distibution of some scattering poles computed by solving the nonlinear eigenvalue problem Eq. (15) numerically. The corresponding resonant
modes are illustrated in the bottom.

poles and corresponding resonant modes for ρ (1) = 16ρ,
ρ (2) = 4ρ, μ(1) = μ(2) = μ, and R(2) = 2R(1) =: R. The re-
sult clearly indicates that the multilayered elastic system
exhibits whispering gallary modes around the solid inter-
faces. Furthermore, we observe no scattering pole degeneracy
for the prescribed parameters. We focus herein on the two
neighboring scattering poles, ω1R/cT = 5.2513 − 0.012416i
and ω2R/cT = 5.5130 − 0.026387i, and seek a second-order
EP on the R(1)–ρ (1) parameter plane. We performed a
two-variable optimization using the Nelder–Mead method
[46] and found an optimal solution R(1)/R = 0.34811 and
ρ (1)/ρ = 35.054. This optimized system has two scattering
poles at ωR/cT = 5.37067922 − 0.01744497i, 5.37067926 −
0.01744494i. The corresponding resonant modes, shown in
Fig. 3(b), also coalesce at the parameters. The simultaneous
degeneracy of the poles and resonant modes is a proof of the
existence of a second-order EP. The unique characteristics
of second-order EPs can be confirmed by encircling them on
a two-variable parameter space. Figure 3(a) defines a closed
elliptic path on the R(1)–ρ (1) plane. The center of the path is
the obtained EP. By tracing the path counterclockwise, we
compute the two scattering poles on the complex ω plane
and plot their trajectories in Fig. 3(c). The results show that
a single pole does not form a closed path on the ω-plane
although the parameter curve does on the R(1)−ρ (1) plane.
Instead, the pair of the two poles closes the trajectory. Equiv-
alently, a single pole forms a closed loop when the parameter
curve encircles the EP twice. This feature is analogous to the
multivalued square root function on the complex plane.

We discuss this square rootlike behavior by computing the
pole pair for various parameters R(1) and ρ (1) around the EP.
Figure 4 illustrates the result. The pair forms two crossed
sheets that branch off at the EP. This structure is similar to the
Riemann surfaces of the square root function. These results
imply that the obtained EP originates from a branch point
of a complex-valued function, although it is not explicit in
Eq. (15).

We now show that a triple-layered solid exhibits a third-
order EP by starting with the following parameters:

(1) mass density ρ (1) = 64ρ, ρ (2) = 16ρ, ρ (3) = 4ρ;
(2) shear modulus μ(1) = μ(2) = μ(3) = μ;
(3) radii R(1) = R/4, R(2) = R/2, R(3) =: R.
We chose three scattering poles ωR/cT = 5.2088 −

0.005504i, 5.3657 − 0.016873i, and 5.5851 − 0.017023i and
optimized the five parameters R(1), R(2), ρ (1), ρ (2), and ρ (3) to
find an EP.

The optimized parameters are R(1)/R = 0.11969, R(2)/R =
0.38351, ρ (1)/ρ = 270.69, ρ (2)/ρ = 25.971, and ρ (3)/ρ =
3.57568. The optimized system has three poles ωR/cT

at 5.6385 − 0.019254i, 5.6387 − 0.019293i, and 5.6386 −
0.019242i, which are almost degenerated. Moreover, Fig. 5(b)
show that not only the pole values but also correspond-
ing resonant modes coalesced at the point. We confirm that
the degeneracy arose from a third-order EP by performing
the EP encircling on the R(2)−ρ (2) parameter space. Namely,
we continuously change the values of R(2) and ρ (2) and
calculate the poles on the complex ω-plane while the other
parameters remain fixed.
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FIG. 3. Encircling a second-order EP (EP2) in the solid-solid
system. (a) Encircling path in the parameter space. We change the
parameters R(1) and ρ (1) continuously along the path and compute
the corresponding scattering poles. For each pair of the parameters,
the corresponding scattering poles are computed by numerically
solving the nonlinear eigenvalue problem Eq. (15). (b) Degenerate
resonant mode at the EP2. (c) Trajectory of the two scattering poles.
Each color corresponds to a single encircling shown in (a).

Figure 5 depicts the results. As with the previous discus-
sion on the second-order EP, we move the two parameters
counterclockwise along the elliptic path shown in Fig. 5(a).
Figure 5(c) plots the trajectories of the three poles. The three
trajectories form a single closed curve, which is a well-known
characteristic of third-order EPs. Another important property
is the asymptotic behavior of the degenerate poles when the
parameters are perturbed at the third-order EP. We fix the
parameter ρ (2) at the EP and perturb the other parameter
as R(2) = 0.38351R + �R, where �R is sufficiently small.
The three poles should deviate from the degenerate value as
the value of �R increases. We define the variation as �ω =
maxi �= j |ωi − ω j |, which is a function of �R, and plot its values
in Fig. 6. The result shows that the variation asymptotically
behaves as O(�1/3

R ), while the second-order EP exhibits the

FIG. 4. Real and imaginary parts of the scattering poles for vari-
ous parameters R(1) and ρ (1) around the EP2.

square-root behavior. This is another characteristic of third-
order EPs.

B. Fluid background

When the layered solid is immersed in a fluid medium, the
system loses its energy due to the acoustic wave radiation.
Here, we use the same optimization approach to show that the
solid-fluid coupled systems exhibit EPs.

In this section, we fix the mass density ρ > 0, bulk modu-
lus κ > 0, and outer radius R(N ) =: R. We first assume N = 2
and compute the scattering poles for ρ (1) = 16ρ, ρ (2) = 4ρ,
μ(1) = μ(2) = κ , and R(1) = R/2. Subsequently, we chose two
scattering poles ωR/c at 6.4436 − 0.029230i and 7.0062 −
0.035093i and optimize the parameters ρ (1) and R(1). Figure 7
shows the results of the optimization and EP encircling. The
parameter optimization successfully minimizes the objective
function J with two poles ωR/c at 6.5056469 − 0.0240559i
and 6.5056469 − 0.0240557i. The degenerate resonant modes
are plotted in Fig. 7(b). Encircling the obtained parame-
ters R(1)/R = 0.29400 and ρ (1)/ρ = 54.145 on the R(1)−ρ (1)

plane as shown in Fig. 7(a), we obtain the trajectories of the
two poles on the complex ω plane [Fig. 7(c)] with the same
structures as the second-order EP of the solid-solid model.
From the results, we conclude that a second-order EP exists
within the parameter path. Finally, we shall prove the ex-
istence of a third-order EP. As with the solid-solid model,
we use the triple-layered solid (N = 3) with the following
parameters:

(1) mass density ρ (1) = 64ρ, ρ (2) = 16ρ, ρ (3) = 4ρ;
(2) shear modulus μ(1) = μ(2) = μ(3) = κ;
(3) radii R(1) = R/4, R(2) = R/2, R(3) =: R.
The system has three scattering poles ωR/c at

6.4222 − 0.022268i, 6.7600 − 0.025502i, and 7.2757 −
0.019004i. We optimize the parameters R(1), R(2), ρ (1),
ρ (2), and ρ (3) with the other parameters fixed. Fig. 8
illustrates the results. The three poles almost coalesce at
R(1)/R = 0.12678, R(2)/R = 0.40343, ρ (1)/ρ = 200.46,
ρ (2)/ρ = 19.400, and ρ (3)/ρ = 2.7136 with ω1R/c =
7.7966 − 0.094927i, ω2R/c = 7.7971 − 0.094901i, and
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FIG. 5. Encircling a third-order EP (EP3) in the solid-solid sys-
tem. (a) Encircling path in the parameter space. We change the
parameters R(2) and ρ (2) continuously along the path and compute
the corresponding scattering poles. For each pair of the parameters,
the corresponding scattering poles are computed by numerically
solving the nonlinear eigenvalue problem Eq. (15). (b) Degenerate
resonant mode at the EP3. (c) Trajectory of the two scattering poles.
Each color corresponds to the single encircling shown in (a).

FIG. 6. Variation of the degenerate poles at the third-order EP
when the parameter R(2) is perturbed.

FIG. 7. Encircling a second-order EP (EP2) in the solid–fluid
system. (a) Encircling path in the parameter space. We change the
parameters R(1) and ρ (1) continuously along the path and compute
the corresponding scattering poles. For each pair of the parameters,
the corresponding scattering poles are computed by numerically
solving the nonlinear eigenvalue problem Eq. (21). (b) Degenerate
resonant mode at the EP2. (c) Trajectory of the two scattering poles.
Each color corresponds to the single encircling shown in (a).

ω3R/c = 7.7968 − 0.094903i. Their resonant modes are
also degenerated as shown in Fig. 8(b). The existence of a
third-order EP is confirmed by the EP encircling. Figures 8(a)
and 8(c) present the results of the EP encircling. Like the
solid-solid case (Fig. 5), we observe a threefold structure
on the complex ω plane, which implies the existence of a
three-order EP.

The numerical results suggest that radiating acoustic and
elastic waves induce the non-Hermiticity and realize second-
and third-order EPs. We observe no significant differences
between EPs in the solid and fluid backgrounds, e.g., reso-
nant modes, behavior of the scattering poles during the EP
encircling, and their sensitivity. From a practical perspective,
the solid–fluid system is easier to fabricate because we need
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FIG. 8. Encircling a third-order EP (EP3) in the solid-fluid sys-
tem. (a) Encircling path in the parameter space. We change the
parameters R(2) and ρ (2) continuously along the path and compute
the corresponding scattering poles. For each pair of the parameters,
the corresponding scattering poles are computed by numerically
solving the nonlinear eigenvalue problem Eq. (21). (b) Degenerate
resonant mode at the EP3. (c) Trajectory of the two scattering poles.
Each color corresponds to a single encircling shown in (a).

a sufficiently large medium with small viscosity surrounding
the multilayered solid to utilize the radiation effect. In the next
subsection, we discuss a potential application of the proposed
systems.

C. Potential application and experimental platform

A promising application of the scattering pole degeneracy
is the highly sensitive detection of inhomogeneity and de-
fects in the vicinity of the system as the O(�1/2) or O(�1/3)
sensitivity exaggerates the variation of spectral properties,
where � denotes a parameter change. To this end, we need
to measure scattering poles experimentally. Scattering poles
are associated with transient scattering properties of an open

FIG. 9. Experimental setup. Two scattering poles ω1 and ω2 are
measured from the sound pressure A(t ) during a transient scattering
process. Each pole ω j is calculated from the period Tj > 0 and
lifetime τ j > 0 of a damped oscillation as ω j = 2π/Tj − i/τ j .

system, i.e., after a sufficient amount of time has elapsed, a
transient acoustic field A(t ) at a fixed point in space with time
t is expanded as

A(t ) 	
∑

j

A je
−t/τ j cos(2πt/Tj + φ j ), (23)

where Aj and φ j are constants. The time period Tj > 0 and
lifetime τ j > 0 give a scattering pole as ω j = 2π/Tj − i/τ j .
This means that each scattering pole can be experimentally
identified once the corresponding period Tj and lifetime τ j

are measured. Thus precise measurements of Ti and τi are
essential to realize highly sensitive mechanical sensors. This
process is schematically illustrated in Fig. 9.

V. CONCLUSIONS

This study discussed the non-Hermitian degeneracy of
the scattering poles in cylindrical elastic systems with radia-
tion loss. We first formulated two-dimensional elastodynamic
problems using Lamé potentials and cylindrical functions.
Some system parameters were optimized such that two or
three scattering poles coalesce on the complex frequency
plane. We performed the EP encircling around the optimized
parameters to confirm the existence of second- and third-
order EPs. We found that the sensitivity of degenerate poles
at a third-order EP is O(�1/3), where � is a system pa-
rameter. This anomalous sensitivity allows enhancement on
mechanical sensors, such as pressure/stress sensing and de-
fect detection.
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APPENDIX: EXPLICIT FORMS OF THE MATRICES

To formulate Eq. (9), we use the continuity of u and σ · n,
which is equivalent to that of ur , uθ , σrr , and σrθ . After some
calculations [43], we have

M (l )(r) =

⎡
⎢⎢⎢⎢⎢⎣

U (l )
1 (r) U (l )

2 (r) Ũ (l )
1 (r) Ũ (l )

2 (r)

V (l )
1 (r) V (l )

2 (r) Ṽ (l )
1 (r) Ṽ (l )

2 (r)

T (l )
11 (r) T (l )

12 (r) T̃ (l )
11 (r) T̃ (l )

12 (r)

T (l )
41 (r) T (l )

42 (r) T̃ (l )
41 (r) T̃ (l )

42 (r)

⎤
⎥⎥⎥⎥⎥⎦, (A1)

where the matrices are defined as

T (l )
11 = 2μ(l )

r2

[(
m2 + m − 1

2

(
k(l )

T

)2
r2

)
Jm

(
k(l )

L r
)

− k(l )
L rJm−1

(
k(l )

L r
)]

, (A2)

T (l )
12 = 2μ(l )

r2

[ − im
(
(m + 1)Jm

(
k(l )

T r
)

− k(l )
T rJm−1

(
k(l )

T r
))]

, (A3)

T (l )
41 = 2μ(l )

r2

[ − im
(
(m + 1)Jm

(
k(l )

L r
)

− k(l )
L rJm−1

(
k(l )

L r
))]

, (A4)

T (l )
42 = 2μ(l )

r2

[ −
(

m2 + m − 1

2

(
k(l )

T

)2
r2

)
Jm

(
k(l )

T r
)

+ k(l )
T rJm−1

(
k(l )

T r
)]

, (A5)

U (l )
1 = k(l )

L J ′
m

(
k(l )

L r
)
, (A6)

U (l )
2 = im

r
Jm

(
k(l )

T r
)
, (A7)

V (l )
1 = im

r
Jm

(
k(l )

L r
)
, (A8)

V (l )
2 = −k(l )

T J ′
m

(
k(l )

T r
)
, (A9)

with k(l )
L = ω/c(l )

L and k(l )
T = ω/c(l )

T . The functions with the
tilde are defined by replacing Jm with H (1)

m .
Similarly, the matrix Ys is given by

Ys =

⎡
⎢⎢⎢⎢⎣

Ũ1(R(N ) ) Ũ2(R(N ) )

Ṽ1(R(N ) ) Ṽ2(R(N ) )

T̃11(R(N ) ) T̃12(R(N ) )

T̃41(R(N ) ) T̃42(R(N ) )

⎤
⎥⎥⎥⎥⎦, (A10)

where the block matrices are defined by replacing the mate-
rial parameters ρ (l ), λ(l ), and μ(l ) in Ũi, Ṽi, and T̃i j with the
background ones ρ, λ, and μ, respectively.

The solid-fluid coupling matrices are written as

Zf =

⎡
⎢⎢⎣

T (l )
11 (R(N ) ) T (l )

12 (R(N ) ) T̃ (l )
11 (R(N ) ) T̃ (l )

12 (R(N ) )

T (l )
41 (R(N ) ) T (l )

42 (R(N ) ) T̃ (l )
41 (R(N ) ) T̃ (l )

42 (R(N ) )

U (l )
1 (R(N ) ) U (l )

2 (R(N ) ) Ũ (l )
1 (R(N ) ) Ũ (l )

2 (R(N ) )

⎤
⎥⎥⎦,

(A11)

Yf =

⎡
⎢⎢⎣

−H (1)
n (ωR(N )/c)

0
1

cρω
H (1)′

n (ωR(N )/c)

⎤
⎥⎥⎦. (A12)
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