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One-mode Ginzburg-Landau theory of surface energy anisotropy
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It is well established that for diffusive solid-liquid interfaces the interfacial anisotropy arises due to symmetry
breaking of density waves at the interface. While the interfacial anisotropy is expected to be related to the
underlying lattice symmetry, the anisotropy can still differ among materials with the same lattice structure due
to the difference in the interatomic potentials. To shed light on this, a general Ginzburg-Landau (GL) theory
of solid-liquid interfaces, based on crystal symmetry and classical density functional theory, is proposed to
analytically connect the relation between lattice symmetry, the shape of the free-energy landscape, and surface
energy anisotropy. Using a perturbative scheme, we show that the corresponding anisotropic form of the surface
energy, depending on crystal symmetry, naturally appears in the perturbation expansion. To explore how the
double-well free-energy landscape in the GL theory affects the anisotropy, we consider lattices of hexagonal
symmetry as an example, for which the shape of the free-energy landscape is shown to only depend on one
parameter. The dependence of anisotropy on the free-energy landscape predicted by the perturbation scheme is
shown to be in good agreement with numerical solutions of the GL theory. Finally, a universal relation between
density wave profile widths and the anisotropy parameter of the surface energy is proposed and validated using
a phase-field crystal method.

DOI: 10.1103/PhysRevB.107.144101

I. INTRODUCTION

Surface energy refers to the excess free energy associated
with the presence of an interface [1]. In a system where solid
and liquid coexist, the interfacial energy possesses an angu-
lar dependence with respect to the orientation of the lattice
due to the discrete rotational symmetry of crystal lattices.
This anisotropy plays a crucial role in complex morphology
of crystal growth during solidification [2–5], as shown in
phase-field simulations [6–12], and the resulting microstruc-
tures determine greatly the properties of materials at the
macroscopic level. The anisotropy, though material depen-
dent, is shown to strongly depend on the crystal structure
[13–18], which suggests that a plausible way of understand-
ing the physical origin of anisotropy is through continuum
theories involving density waves of the corresponding crystal
symmetry.

The Ginzburg-Landau (GL) theory, which employs the
amplitudes of density waves corresponding to the principal
reciprocal lattice vectors (RLVs) as order parameters, has
been used to illustrate successfully the relation between the
surface anisotropy and underlying crystal symmetry [19–22].
The GL theory for a solid-liquid system at equilibrium has
its roots in the classical density functional theory (DFT) of
freezing [23–27], from which it is derived by treating the
solid as a perturbed liquid with specified crystal symmetry.
With the input of the direct correlation function (DCF) of
the liquid (or, equivalently, the liquid structure factor) from
molecular dynamics (MD) simulations, the GL theory has
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been shown to make good quantitative predictions as to the
interface width, density wave profiles across the interface, and
surface anisotropies [20,28]. Regardless of these successes,
it is of interest to note that in spite of the simplistic form
of the GL theory, the density waves still couple with each
other nonlinearly, making it less analytically tractable. As a
consequence, the density wave profiles across the interface as
well as the anisotropy are commonly obtained numerically,
and the anisotropic form of the surface energy is usually
presumed rather than derived. In addition, it is shown in the
GL theory and phase-field crystal (PFC) simulations that the
anisotropy also depends on the nonlinear interactions among
density waves [19–21,29–35].

Specifically, Wu et al. have obtained the comparable
anisotropy and density wave profiles at various crystal faces
for the body-centered cubic (bcc) solid-liquid interface with
a first-mode GL theory [20]. There, the coefficients of the
squared-gradient terms and the double-well potential in the
free energy are derived directly from classical DFT and are
expressed in terms of the DCF. Majaniemi and Provatas [21]
considered a GL theory for the hexagonal and bcc lattices.
With a hyperbolic tangent ansatz, they obtained expressions
for the interface width and the interfacial energy. Further-
more, it is argued, via the observation that γ is proportional
to the sum of the directional cosine squared, that γ (θ ) for
the hexagonal lattice is a power series of cos 6θ , to which
simulation results are fitted. Similarly, albeit with PFC as
the starting point, Ofori-Opoku et al. [36] obtained an ef-
fective free-energy functional of the PFC amplitudes, with
the formula for γ (θ ) ultimately relying on the knowledge
of the anisotropic profiles of the amplitudes. Meanwhile, the
information of anisotropy near the critical point ε = 0 of the
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PFC is examined in detail by Tóth and Provatas, who showed
that in said regime the principal mode amplitudes’ critical
exponent is strictly smaller than those of the remaining modes,
and hence the principal modes dominate the RLV expansion
[22]. The derived interfacial energy depends on the envelope
function, which is assumed to take the form of the hyperbolic
tangent function. Despite these previous efforts, exactly how
the interaction between density waves affects the anisotropy
remains unclear, and a more analytically tractable approach is
needed to answer this question.

To shed light on the above issues, we present in this
paper a general framework of forming a free-energy func-
tional for the GL theory based on lattice symmetry and
classical DFT. A perturbative scheme is then introduced to
explore the emergence of the surface energy anisotropy an-
alytically. Specifically, we show that the n-fold anisotropy
of two-dimensional (2D) crystals and the cubic anisotropy
of the face-centered-cubic (fcc) crystals appear naturally in
the perturbation expansion. In addition, taking the 2D hexag-
onal lattice as an example, we show explicitly how the
anisotropy changes with the shape of the free-energy land-
scape, which dictates the interaction among density waves.
Since the free-energy landscape uniquely determines the den-
sity wave profiles and anisotropy, a universal relation among
dimensionless quantities such as the ratio of profile widths
and anisotropy is expected. Such relation is examined using
a generalized PFC model, whose results are shown to be in
good agreement with the GL theory quantitatively.

The paper is organized as follows. In Sec. II, a GL the-
ory based on the classical DFT of freezing is reviewed. By
scaling out the material-dependent DCF, the dimensionless
GL free-energy functional could only differ in the shape of
the local free energy, which gives rise to different values of
anisotropy. In Sec. III, the parametrization of the double-well-
shaped free-energy landscape for various lattice symmetries
is discussed. To explicitly show how the free-energy land-
scape changes the surface energy anisotropy, the GL theory
is solved numerically for 2D hexagonal lattices. In Sec. IV,
a perturbative scheme is presented to analytically connect
crystal symmetry, free-energy landscape, and surface energy
anisotropy. Finally, the universal relation between the width
ratio and anisotropy predicted by the GL theory is validated
using a generalized PFC model in Sec. V.

II. ORDER PARAMETER MODEL OF LIQUID-SOLID
SYSTEMS AT EQUILIBRIUM

The derivation of the classical density functional theory
of freezing was outlined by Ramakrishnan and Yussouff in
1979 [23]. The theoretical framework is able to explain a wide
range of phenomena regarding the liquid state using only the
information of the static structure factor S(k) or, equivalently,
the DCF C(k). The free-energy functional can be cast into the
simple form [24]

��[ρ(r)]

kBT
= V ρl +

∫
dr [ρl + �ρ(r)]

[
ln

(
1 + �ρ(r)

ρl

)]

− 1

2

∫
drdr′�ρ(r)C(|r − r′|)�ρ(r′), (1)

which is a functional of the density difference �ρ(r) relative
to the liquid density ρl .

To study a system involving liquid-solid coexistence with
known underlying lattice structures, it is a common practice
to employ an ansatz for the density that is composed of
density waves with corresponding reciprocal lattice vectors.
The physical properties of a liquid-solid system can then be
expressed in terms of the spatially varying amplitudes of den-
sity waves across the liquid-solid interface. That is, the local
density of the system ρ(r) can be written as [19–21,24,37–39]

ρ(r) = ρl

[
u0(r) +

N∑
i=1

ui(r)eiki ·r
]
, (2)

where ρl is the liquid density, ρl u0(r) is the local mean
density, ui are the amplitudes of the density wave of wave
vector ki, and N is the total number of reciprocal lattice
vectors taken into account. The liquid state corresponds to
u0(r) = 1 and vanishing ui’s. On the other hand, a homoge-
neous solid of density ρs occurs with a fixed set of constant
ui(r) = us, and ρl u0(r) = ρs. A liquid-solid coexistent system
can then be described by position-dependent ui’s and u0. With
the ansatz above, Haymet and Oxtoby employed classical
DFT to investigate interfacial properties, such as the surface
energy and the shapes of the density profiles [24,25,40]. How-
ever, in order to obtain converging results, this calculation is
computationally intensive since hundreds of reciprocal lat-
tice vectors are required. On the other hand, anisotropy of
interfacial properties of liquid-solid systems is shown to be
closely related to the lattice symmetry, which suggests that
few reciprocal lattice vectors are sufficient to describe the
interfacial anisotropy [20,41]. In addition, as shown by Shih
et al., the effect of the mean density difference between the
solid and liquid on the surface energy can be implicitly in-
cluded by renormalizing coefficients of ui’s in the free-energy
functional [19]. Hence a constant mean density u0(r) = 1 is
assumed, and only amplitudes of principal reciprocal lattice
vectors are employed for the following discussion. That is,
ρ(r) = ρl (1 + ∑2N

i=1 ui(r)eiki ·r ), with 2N being the number
of principal RLVs. Furthermore, for diffusive interfaces, a
more analytical tractable approach is to expand the nonlocal
correlation function in Eq. (1) around r up to the quadratic
term, and one can rewrite the spatial correlation term as a
squared-gradient term [20,28]. Terms consisting of higher-
order derivatives, such as ∂2u∗∂2u, can be included to account
for scale coupling in the case of thin interfaces [42,43]. How-
ever, since we focus mainly on diffusive interfaces, where the
scale on which ui(r) vary is much larger than the RLV scale
(i.e., that of ki), such terms are dropped. The grand potential
difference with respect to a homogeneous reference liquid
system is then written as

��[ρ(r)]

ρl kBT/2
=

∫
dr

[
−1

2

2N∑
i=1

C′′(k)
kμ

i kν
i

k2
∂μu∗

i ∂νui + U (u)

]
,

(3)
where k ≡ |ki|, U (u) is a double-well potential with two min-
ima at ui = 0 and ui = us corresponding to liquid and solid
states, respectively, and u represents the set of ui’s. Moreover,
from the classical DFT of freezing, the coefficient of each
of the quadratic terms |ui|2 in U (u) is equal to 1/S(k). To
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formulate a more generalized expression that depends only
on the lattice symmetry but not on individual materials, the
fields are rescaled by defining ψi ≡ ui/|us| so that ψi = 0 and
ψi = 1 correspond to the liquid and solid states. In addition,
the material-dependent factors, −C′′(k) and S(k), are elimi-
nated by rescaling the length and the free energy so that the
generalized form only depends on the lattice symmetry. We
obtain the dimensionless Ginzburg-Landau-type free energy,

�F =
∫

dξ

[
1

2

2N∑
i=1

k̂μ
i k̂ν

i ∂
μ
ξ ψ∗

i ∂ν
ξ ψi + V (ψ)

]
, (4)

where k̂μ
i ≡ kμ

i /k, ξ ≡ r/
√−S(k)C′′(k)/2 ≡ r/λ, and �F ≡

�� · S(k)λ2−d/(|us|2ρl kBT ) with d being the number of spa-
tial dimensions, and the rescaled potential is V (ψ) ≡ U (ψ) ·
S(k)/(2|us|2), for which ∂2V/∂ψi∂ψ∗

i = 1/2. With a given
lattice symmetry, the variation of V (ψ) alone could result in
different values of the surface energy anisotropy, which may
explain the different anisotropies seen for materials with the
same lattice structure.

In this paper, the generalized expression is used to explore
how the lattice symmetry as well as the shape of the potential
affect the interfacial energy anisotropy of liquid-solid inter-
faces. For a planar liquid-solid interface with its normal n̂
aligned to ξ̂⊥, the interfacial energy, defined as the excess free
energy per surface area, is simply

γ ≡ �F
/ ∫

dξ‖ =
∫

dξ⊥

[
1

2

2N∑
i=1

c2
i |∂ξ⊥ψi|2 + V (ψ)

]
,

(5)
where ξ‖ are dimensionless coordinates parallel to the inter-
face. Since the above expression is, for planar liquid-solid
interfaces, only dependent on ξ⊥, hereafter we define ξ ≡ ξ⊥
and ∂ ≡ ∂ξ ≡ ∂ξ⊥ for simplicity.

The factors ci ≡ k̂i · n̂ in Eq. (5) are the squared-gradient
coefficients and in two dimensions can be parametrized by
an angle θ so that n̂ = x̂ cos θ + ŷ sin θ and c2

i = cos2(θ − θi )
with a fixed set of k̂i = x̂ cos θi + ŷ sin θi. The orientation-
dependent squared-gradient coefficients have been shown to
be responsible for the anisotropy of interfacial energy. In this
paper, we present an analytical investigation to shed light on
how the orientation-dependent squared-gradient coefficients
lead to interfacial anisotropy and how couplings between
density waves could also affect the anisotropy of the surface
energy.

III. LATTICE SYMMETRY, POTENTIAL, AND SURFACE
ENERGY ANISOTROPY

It is established that the interfacial anisotropy arises
due to symmetry breaking of density waves at the inter-
face [3,19,20,25,28]. Therefore the interfacial anisotropy is
expected to be universally related to the underlying lat-
tice symmetry. However, the details and the magnitude of
anisotropy can still differ among materials with the same
lattice structure due to variations in density wave profiles
as a result of the difference in the interatomic potentials. In
this section, we present quantitative results of equilibrium
liquid-solid interfaces with different forms of potentials using
numerical simulations, in particular the anisotropic amplitude

profiles ψi(ξ ) and interfacial energy γ (θ ). Additionally, an
analytical perturbative framework is presented to elucidate the
relation between the lattice symmetry and the surface energy
anisotropy as well as the dependence of the anisotropy on the
potential V (ψ).

It is clear that the exact form of V (ψ) is not unique given
that V (ψ) is of the form of a double well. Nevertheless,
the general form of the double-well potential is constrained
by the requirement of obeying the lattice symmetry while
comprising two local minima having the same energy. Take
a two-dimensional square lattice as an example: Since the
amplitudes for +ki and −ki are complex conjugates, there are
only two independent complex density amplitudes required to
describe the liquid-solid system. However, when the lattice
distortion across the liquid-solid interface is small [25,44],
the phases of complex density amplitudes are approximately
constants. It follows that by a shift of the origin of the coordi-
nate system, one can make these phases vanish such that two
real density amplitudes, ψ1 and ψ2, are sufficient to describe a
square-liquid coexistence system. With these two amplitudes,
for a square lattice, the simplest potential is a combination of
sextic, quartic, and quadratic terms that obey the point-group
symmetry and can be conveniently parametrized by two pa-
rameters, κ and κ ′ (see Appendix A for a detailed discussion):

V (ψ1, ψ2) = ψ6
1 − 2ψ4

1 + ψ2
1 + ψ6

2 − 2ψ4
2 + ψ2

2

+ κ
(
ψ4

1 + ψ4
2 − 2ψ2

1 ψ2
2

)
+ κ ′(ψ6

1 + ψ6
2 − ψ4

1 ψ2
2 − ψ2

1 ψ4
2

)
. (6)

The reason for which κ and κ ′ are the only two degrees of
freedom for the generalized potential of the square lattice is
briefly stated as follows. There are a total of five terms obeying
both the point-group symmetry of the square lattice, which
requires V to be invariant under permutation of ψ1 and ψ2,
and translational invariance, which dictates that only terms
whose wave vectors sum to zero are allowed in V (ψ). These
are ψ2

1 + ψ2
2 , ψ4

1 + ψ4
2 , ψ2

1 ψ2
2 , ψ6

1 + ψ6
2 , and ψ4

1 ψ2
2 + ψ2

1 ψ4
2 .

These terms as well as their first derivatives automatically
vanish at the liquid well, i.e., when ψ1 = ψ2 = 0, which are
two of the constraints for a double-well potential. However,
three constraints, (a) that V admit a local minimum at the
solid well, where ψ1 = ψ2 = 1, (b) that the solid and liquid
wells be balanced, i.e., V (ψ1 = ψ2 = 0) = V (ψ1 = ψ2 = 1),
and (c) that the quadratic coefficient be unity, leave the system
with 5 − 3 = 2 independent parameters, namely, κ and κ ′. For
other relevant lattice structures such as hexagonal and fcc lat-
tices, the symmetry operations and the generalized potentials
are discussed in detail in Appendix A.

Since the amplitudes ψi are real, as in Eq. (5), the free
energy per unit surface area for a planar liquid-solid system
can be rewritten as

γ =
∫

dξ

[
N∑

i=1

c2
i (∂ψi )

2 + V (ψ )

]
, (7)

where the summation from 1 to N now ensures that only one
of ki and −ki is included. The equilibrium amplitude profiles
of liquid-solid coexistence are then obtained by relaxing the
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fields ψi(r) towards the minimum of Eq. (7):

∂ψi

∂t
= − δγ

δψi
= 2c2

i ∂
2ψi − ∂V

∂ψi
. (8)

In this section, we focus on the interfacial energy of the
hexagonal lattice in two dimensions for which the simplest
double-well potential is only quartic and consists of solely one
free parameter κ . Namely,

V (ψ) =
3∑

i=1

(
ψ4

i + ψ2
i

) − 6ψ1ψ2ψ3

+ κ
(
ψ4

1 + ψ4
2 + ψ4

3 − ψ2
1 ψ2

2 − ψ2
1 ψ2

3 − ψ2
2 ψ2

3

)
.

(9)

With the principal reciprocal lattice vectors ki remaining fixed
at θi = (0, 2π/3, 4π/3), for a planar interface with its normal
specified by the angle θ , the squared-gradient coefficients are
given by c2

i = cos2 (θ − 2(i − 1)π/3).
The angular dependence of the squared-gradient coeffi-

cients c2
i (θ ) leads to an anisotropic interfacial energy γ (θ )

which is crucial to understanding the surface morphology in
a wide range of physical systems. We follow the convention
used in Refs. [22,45] and define the anisotropy parameter αγ

for the interfacial energy as

αγ ≡ γ (0◦) − γ (30◦)

γ (0◦) + γ (30◦)
. (10)

Figure 1 shows that both the anisotropy parameter αγ and the
mean value of γ vary with the shape of the potential, which is
parametrized by κ . To quantify the change in the magnitude
of γ , we define the energy offset �γ as the energy drop com-
pared with that of the isotropic system, which will be shown
to be equal to

√
2/2 for hexagonal lattices in later discussions

within this section. It is apparent that αγ and the energy offset
decrease as κ is increased. This can be understood by consid-
ering the following picture: As κ becomes larger, the energy
landscape penalizes more the deviations among density am-
plitudes across the interface since the last term in Eq. (9)
can be rewritten as Vcoupling = κ

2

∑
i 	= j (ψi − ψ j )2. Taking into

account that if all amplitudes were identical, the interfacial
energy would be simply proportional to

∑
c2

i , which is in-
dependent of θ , it is then natural to argue that the angular
dependence of γ is weakened as amplitude-amplitude cou-
pling gets stronger. Similarly, the energy offset diminishes as
κ increases since the system becomes more isotropic. Figure 2
plots the amplitude profiles across interfaces at θ = 0 and
θ = π/6, respectively. It shows that amplitude profiles behave
more isotropically as the coupling strength κ gets stronger.
It is also worth noting that with κ = −1 the anisotropy pa-
rameter αγ ≈ 0.23% is close to the PFC result for ε = 0.1
as reported in Ref. [45]. The corresponding polar plot of the
interface stiffness is shown in Fig. 1(c). The connection be-
tween the present theory and the PFC model will be discussed
in Sec. V.

In principle, since the form of the potential arises due to
only the symmetry argument, it is possible to express po-
tential parameters in terms of physical parameters employed
in the classical DFT of freezing. Nevertheless, the theory in
its dimensionless form, i.e., the free-energy functional on the

FIG. 1. (a) γ (θ ) obtained with simulations with κ = −1.4, 0,
8, and 16 (from bottom to top). (b) The corresponding energy off-
sets (solid symbols) and anisotropies (open symbols) plotted against
the coupling parameter κ . (c) A polar plot of interface stiffness,
γ + d2γ /dθ2, for κ = −1, which corresponds to αγ = 0.23%.

right-hand side of Eq. (7), does not lack predictive power at
all if the anisotropy parameter αγ is related to other dimen-
sionless quantities, such as the ratio of profile widths, as we
will see in the next section.

FIG. 2. (a) The principal reciprocal lattice vectors of the hexag-
onal lattice along with two planar interfaces, showing the interface
orientations relative to the principal RLVs. (b) Simulated density
profiles at different κ . Solid lines represent profiles at interfacial
angle θ = 0, and dashed lines correspond to θ = π/6, as indicated
in (a).
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IV. PERTURBATION THEORY

As stated in the Introduction, in previous studies, this
type of double-well system has been either solved by nu-
merical methods or analyzed with a reasonable yet arbitrary
ansatz for the profiles (e.g., the tanh function), largely due to
mathematical difficulties in solving nonlinear coupled equa-
tions analytically. While the numerical solutions are shown to
successfully relate the interfacial anisotropy to the underlying
lattice symmetry once the potential is specified, a quantita-
tive relationship between the form of the potential and the
anisotropy is yet to be encountered. Therefore a perturba-
tive method is proposed here to yield approximate analytical
solutions to the aforementioned model [i.e., Eq. (7)], which
provides a guide that connects the details of the potential to
the interfacial properties.

A. Isotropic system and squared-gradient perturbations

We start by considering an isotropic system as our refer-
ence system where every squared-gradient coefficient takes
the same value, chosen to be 〈c2

i 〉 = 1/d , with d being
the number of spatial dimensions. The free energy is then
isotropic and takes the form

γ0 ≡
∫

dξ

[
N∑

i=1

1

d
(∂ψi )

2 + V (ψ )

]
, (11)

which is minimized by the isotropic density profiles denoted
by ψ

(0)
i . Owing to the symmetry constraint, it is evident that

at least one set of solutions exists and it is ψ
(0)
1 = · · · =

ψ
(0)
N ≡ ψ (0)(ξ ). For a general θ , the squared-gradient coef-

ficients differ from each other, giving rise to anisotropy in
interfacial properties [22,36]. With the isotropic solutions as
unperturbed states, the corrections to amplitude profiles are
then solved by treating the anisotropic part as perturbations.
In particular, the free-energy functional is separated into the
unperturbed isotropic part and a perturbation term, which
consists of squares of derivatives of each field with anisotropic
squared-gradient coefficients:

γ = γ0 + γ1 = γ0 +
∫

dξ

N∑
i=1

(
c2

i − 1

d

)
(∂ψi)

2. (12)

It is worth noting that the isotropic system should be seen
as a mathematical device that arises when one looks for an
appropriate unperturbed system that is solvable, and need not
correspond to any real physical configuration of the system.
Of course, in the case of the square lattice, this is achievable
by setting θ = π/4 so that c2

1 = c2
2 = 1/2. However, for the

hexagonal lattice, where the squared-gradient coefficients are
chosen so that the sixfold symmetry generated by the underly-
ing hexagonal lattice is respected, no orientations of the lattice
correspond to the ideally isotropic system. That is, such a
functional is no longer physically possible.

B. Perturbative solutions to γ and ψi(ξ)

Cast into the form in Eq. (12), the interfacial energy γ ,
along with the density amplitudes ψi(ξ ), can then be com-
puted order by order with the use of the general functional

perturbation theory outlined in Appendix B. One immediate
consequence is that, since

∑
i(c

2
i − 1/d ) = 0, the first-order

energy correction given by γ (1) = γ1[ψ(0)(ξ )] vanishes, that
is, γ (1) = 0. On the other hand, the equation of motion at
O(ε1) gives the governing equation of ψ

(1)
i :

�2
i jγ0 · ψ

(1)
j + �iγ1 = 0, (13)

where repeated indices are summed over and �2
i j and �i rep-

resent functional derivatives with respect to the fields ψi (see
Appendix B for details). The first term in Eq. (13) involves
an operator �2

i jγ0 acting on the first-order fields, which is
expressed explicitly as

�2
i jγ0 · ψ

(1)
j (ξ ) =

[
− 2

d
δi j∂

2 + ∂2V

∂ψi∂ψ j

]
ψ

(1)
j , (14)

where the second term in the parentheses is evaluated at ψ(0).
Here, we define two operators which will facilitate our calcu-
lations later when we Fourier-transform the fields with respect
to the field indices. These are

D̂ ≡ − 2

d
∂2 + ∂2V

∂ψ2
i

,

Ĉ ≡ ∂2V

∂ψi∂ψ j
. (15)

Although the action of Ĉ on a function f is just a mul-
tiplication of functions, we still denote it as an operator.
Meanwhile, the second term in Eq. (13) is the anisotropic de-
viation of the squared-gradient coefficients multiplied by the
second derivative of the fields evaluated at ψ(0). Equation (13)
then takes the form

(D̂δi j + Ĉδi 	= j )ψ
(1)
j = 2

d
σi∂

2ψ (0), (16)

where σi ≡ dc2
i − 1. Note that for square, hexagonal, and fcc

lattices, due to the symmetry constraints for the potential, both
D̂ and Ĉ are independent of the choice of ψ’s in evaluating
∂2V/∂ψi∂ψ j . Therefore the left-hand side of Eq. (16) is sym-
metric under permutations of field indices, allowing one to
take a Fourier-like transform of the fields as

ψ̃n ≡
N∑

k=1

(e2π i/N )nk ψk . (17)

The transformation decouples Eq. (16) into N independent
equations. We obtain

[D̂ + (N − 1)Ĉ]ψ̃ (1)
0 = σ̃0∂

2ψ (0) = 0, (18a)

(D̂ − Ĉ)ψ̃ (1)
n 	=0 = σ̃n∂

2ψ (0). (18b)

The invariance of the functional γ [ψ(ξ )] under ψ(ξ ) →
ψ(ξ + ζ ) means that the profile corrections ψ

(1)
i (ξ ) are not

unique, and is manifest in the singularity of D̂ + (N − 1)Ĉ.
The ambiguity is cured when the translational invariance
is explicitly broken via the requirement that ψ

(1)
i (ξ = 0) =

0. That is, we prevent the unperturbed solution ψ (0)(ξ )
from being corrected in such a manner that the result is
merely a pure spatial translation. This condition together
with Eq. (18a) conveniently leads to ψ̃

(1)
0 (ξ ) = 0. ψ̃

(1)
n 	=0

is then solved by inverting the kernel (D̂ − Ĉ), yielding
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ψ̃ (1)
n = σ̃n(D̂ − Ĉ)−1∂2ψ (0), or, defining K̂ ≡ D̂ − Ĉ and tak-

ing the inverse Fourier transform,

ψ
(1)
i = σiK̂

−1∂2ψ (0). (19)

Before proceeding further, it is convenient to intro-
duce the notation for the inner product defined as 〈 f |g〉 ≡∫

dξ f (ξ )g(ξ ). The second-order energy consequently takes
a rather concise form:

γ (2) = 1

2
�iγ1 · ψ

(1)
i = −1

2

(∑
i

σ 2
i

)
〈ψ (0)|∂2K̂−1∂2|ψ (0)〉 .

(20)
The factor

∑
σ 2

i depends on the lattice structure in question:

∑
i

σ 2
i =

⎧⎪⎨
⎪⎩

1 + cos 4θ (square)
3
2 (hexagonal)
16
5

[
1 − 2√

21
K4,1(θ, ϕ)

]
(fcc),

(21)

where the cubic harmonic K4,1 is as defined in Ref. [46].
It is clear that for square and fcc lattices, said factor con-
tributes to γ (2) a harmonic angular dependence reflecting the
corresponding symmetry. Whereas in the case of hexagonal
lattices, the second-order energy correction is independent of
θ , and the information of anisotropy is contained only in γ (3)

and above.
The third-order energy correction, as derived in

Appendix B, is

γ (3) = 1
6�3

i jkγ0 · ψ
(1)
i ψ

(1)
j ψ

(1)
k + 1

2�2
i jγ1 · ψ

(1)
i ψ

(1)
j . (22)

Substituting in the forms of γ0 and γ1 given by Eq. (12) yields
the resulting third-order correction:

γ (3) = −1

4

(∑
i

σ 3
i

)
〈ψ (0)|∂2K̂−1∂2K̂−1∂2|ψ (0)〉

+ 1

6
σiσ jσk 〈ψ (0)|∂2K̂−1 ∂3V

∂ψi∂ψ j∂ψk
[K̂−1∂2ψ (0)]2〉

≡
(∑

i

σ 3
i

)
G + σiσ jσkGi jk . (23)

We now show that γ (3) ∝ cos 6θ for hexagonal lattices: Since
the coefficients Gi jk are completely symmetric with respect to
the indices, the second term of the last line in Eq. (23) can be
written as(∑

i

σ 3
i

)
G111 + 3

⎛
⎝∑

sym

σ 2
1 σ2

⎞
⎠G112 + 6σ1σ2σ3G123. (24)

The symmetric polynomials of σi that appear in the above
expression are all proportional to cos 6θ :

∑
σ 3

i = 3
4 cos 6θ ,∑

sym σ 2
1 σ2 = − 3

4 cos 6θ , and σ1σ2σ3 = 1
4 cos 6θ . It follows

that

γ
(3)

hexagonal= 3
4 cos 6θ [(G + G111)−3G112+2G123] ≡ Hα cos 6θ.

(25)
Note that the validity of the formulas up to Eq. (23) is not

limited to any particular lattice. It is also straightforward to
verify that for fcc, this correction is a linear combination of
a constant term, K4,1(θ, ϕ), and K6,1(θ, ϕ). Nevertheless, we
focus on the energy corrections for the 2D hexagonal lattice

FIG. 3. (a) The anisotropy parameter and (b) the energy offset
of hexagonal lattices according to Eqs. (20) and (23) are compared
with simulations (open circles). Here, κ0 = − 5

3 refers to the lower
limit of κ due to the stability of the double-well potential discussed
in Appendix A.

predicted by Eqs. (20) and (23), with the isotropic profile and
energy being

ψ (0)(ξ ) = 1

2

(
1 + tanh

ξ√
2

)
,

γ (0) =
√

2

2
, (26)

and a quantitative comparison can be made between the gen-
eralized GL theory, the perturbation solution, and the PFC
model. The corresponding anisotropy parameter and energy
offset are αγ = Hα (κ )/[γ (0) + γ (2)(κ )] and �γ̄ = γ (2)(κ ),
respectively. Figure 3 plots how αγ and �γ̄ change with κ for
hexagonal lattices predicted by the perturbation theory along-
side results extracted from simulations of coupled differential
equations (8). The simulation results and the perturbation
theory are in good agreement that both anisotropy and en-
ergy offset diminish when the coupling κ becomes stronger.
The analytical expressions that show the explicit dependence
of αγ and �γ̄ on κ for hexagonal lattices can be obtained
using the associated Legendre polynomials as detailed in
Appendix C.
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FIG. 4. (a) Graphs of w1/w2 ratios vs interfacial energy anisotropy for the GL theory (open symbols) and PFC simulations with different
combinations of (ε, δ, β ) (solid symbols). The upper branch (squares) shows w1/w2 at θ = 0, while the lower branch (triangles) corresponds
to θ = π/6. Within each plot, δ and β are fixed at a set of values taken between (0,0) and (8,4). The PFC data from all nine plots are overlaid
to yield (b).

V. UNIVERSAL SURFACE ANISOTROPY

The connection between the present model and other ap-
proaches, such as MD simulations or PFC calculations, can
be drawn by relating one dimensionless quantity predicted
by the GL theory to another. In particular, the anisotropy
parameter αγ and the ratio of the interface widths of amplitude
profiles corresponding to different principal RLVs are deter-
mined uniquely once the free-energy landscape is specified
(e.g., coupling strength κ in the hexagonal lattice model). The
PFC model has been used widely in modeling interfaces in
materials on the atomistic scale in and out of equilibrium
[47–59], and it has been shown to exhibit a close relation

to classical DFT [60–65]. In the diffusive interface limit, the
solid density in the PFC model can be well approximated by
the summation of density waves of principal RLVs. Therefore,
as a way to validate the GL theory, we compare the relation
between said dimensionless quantities predicted by the GL
theory for the hexagonal lattice with that of PFC simulations.

To be more specific, given a density amplitude profile
ψi(ξ ) across the solid-liquid interface, we define the interface
width wi as the value of w that minimizes

∫
dξ

[
ψi(ξ ) − 1 + tanh[(ξ − ξ ′)/w]

2

]2

, (27)
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where ξ ′ takes into account the spatial shift of simulated
profiles and is also chosen so that the above expression is
minimized. There then exists, according to the GL theory, a
one-to-one correspondence between αγ and the ratio w1/w2

at any given θ . To demonstrate the applicability of the present
theory, we consider here an extension to the original PFC
model of which the free-energy functional is

F [ψ] =
∫

dr
[

1

2
ψ[−ε + (1 + ∇ )2 − δ(∇2 + 2∇4 + ∇6)]ψ

+ ψ4

4
+ β

ψ6

6

]
. (28)

Equation (28) is obtained by considering a simple generaliza-
tion of the PFC kernel and nonlinear terms under the condition
that the characteristic wave number at k = 1 be preserved. The
parameter δ therefore only alters the second derivative of C(k)
at k = 1, resulting in variable interface widths.

In Fig. 4, the interface width ratios w1/w2 at θ = 0◦ and
30◦ are plotted against αγ for both GL theory and PFC sim-
ulations. As discussed in Sec. III, as κ increases, the profiles
of different principal RLVs tend to attract each other more
strongly, resulting in similar profiles. This picture is once
again rendered appropriate when one observes that in Fig. 4,
w1/w2 → 1 as αγ approaches 0 (i.e., the isotropic limit).
Furthermore, Fig. 4 also shows that the PFC results and those
predicted by the GL theory agree well in spite of different
combinations of parameters (ε, δ, β ) employed in the PFC and
varying interface widths. This agreement is observed when
ε � 0.1 at δ = 0, where the one-mode approximation holds
well [22], with the condition being less restrictive as δ gets
larger. The universal relation between αγ and the ratio w1/w2

observed in the PFC suggests that the solid-liquid surface
energy anisotropy can be well described by the GL theory
given that the underlying lattice can be approximated by its
principal RLVs. Moreover, with the anisotropy αγ measured
from the PFC, one immediately determines its corresponding
κ value in the GL theory; see Fig. 1(b). Note that in the limit
of diffusive interfaces the anisotropy does not depend on the
interface width. However, this discrepancy is to be expected as
the interface width becomes comparable to the lattice spacing,
in which case the interface would no longer be diffusive and
the analyses found in Refs. [42,43] would be appropriate.

VI. CONCLUSIONS AND DISCUSSION

We employed the GL theory, which has its roots in the
classical DFT of freezing, to reveal explicitly how the lat-
tice symmetry at the atomistic level dictates surface energy
anisotropy at the macroscopic level through a perturbative
framework. The order parameters considered in the GL theory
are the amplitudes of density waves corresponding to the
principal RLVs, whose profiles are generally anisotropic as
a result of discrete rotational symmetry of lattices. The pro-
posed perturbation scheme treats the isotropic density waves
as the unperturbed state, with the anisotropic deviations in
squared-gradient coefficients serving as perturbing parame-
ters. We show systematically that depending on the lattice
symmetry, the surface energy anisotropy appears at the cor-
responding order of the perturbative expansion. For example,

square lattices and fcc lattices exhibit fourfold and cubic sym-
metry, respectively, in surface energy anisotropy at γ (2), while
hexagonal lattices exhibit sixfold symmetry at γ (3).

Our results are general in the sense that the analytical
derivation of the anisotropy, which results in Eqs. (19), (20),
and (23), is applicable to any interface orientation (and any
lattice symmetry) and does not rely on assumptions of the
functional form of the profiles. In addition, we show that
the magnitude of the anisotropy can be analytically linked
to the shape of the double-well potential, which is closely
related to the interatomic potential or the pair correlation
function of materials. As an example, we show that due to
its symmetry, the free-energy functional for hexagonal lat-
tices, considering up to quartic terms, can be parametrized
by only a single parameter. This parameter is shown to play
the role of coupling density waves of different RLVs in an
attractive manner, hence reducing anisotropy when increased.
Straightforwardly, a correspondence between the shape of the
free-energy landscape and surface energy anisotropy for other
lattice structures can be drawn in a similar fashion. It is of
interest to note that the shown dependence of surface energy
anisotropy on the shape of the free-energy landscape provides
a possible alternative way of modeling solidification using
the phase-field approach: The material-dependent anisotropy
can be mapped to different free-energy landscapes depending
on materials, which naturally gives rise to anisotropic surface
properties and crystal growth morphology.

Since the lattice symmetry and the shape of the free-
energy landscape unilaterally determine the order parameter
profiles across the solid-liquid interfaces, which gives rise to
the surface energy anisotropy, a universal relation between
dimensionless quantities such as the ratio of profile widths
and the anisotropy parameter is expected. A generalized
PFC model that includes an additional kernel and nonlinear-
ity is employed to examine the aforementioned relation for
hexagon-liquid interfaces in 2D. In spite of different values
of parameters and varying interface widths, the PFC results
of ratios of density wave widths wi/w j and the anisotropy
parameter αγ collapse in accordance with the prediction of
the GL theory, validating the universal relation for solid-liquid
systems which can be well approximated by principal RLVs.
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APPENDIX A: CLASSIFICATION OF DOUBLE-WELL
POTENTIALS

1. Translational invariance and point-group symmetry

The free-energy functional (5) depends on the 2N com-
plex density wave amplitudes ψi(ξ) corresponding to the
principal-mode wave vectors ki. These transform under spa-
tial translation as

ψi(ξ) → ψi(ξ)eiki ·ξ.

The potential V (ψ) should only consist of terms that re-
spect the translational symmetry, which leads to the following
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constraint:

ψiψ jψk · · ·ψ∗
i′ ψ

∗
j′ψ

∗
k′ · · · is allowed in V (ψ) ⇒ (ki + k j + kk + · · · ) − (ki′ + k j′ + kk′ + · · · ) = 0, (A1)

which can be seen as a kind of momentum conservation. In d dimensions, under the assumption that the effect of lattice distortion
is negligible in the system of interest, we have d degrees of freedom (DOFs) to arbitrarily shift the origin of the plane waves to
make ψi real, leaving us to 2N − d real degrees of freedom for the profiles. However, the absolute magnitudes of the profiles
|ψi| = |ψ∗

i | only contribute N DOFs, meaning that N − d phases cannot be removed by a shift of origin. So, for example, for a
hexagonal lattice the potential in general takes the form V (|ψ1(r)|, |ψ2(r)|, |ψ3(r)|, ϕ), where ϕ represents an irremovable phase
which can be (arbitrarily) chosen by letting ψi(r) = |ψi|eiϕ , while for a square lattice V (ψ1, ψ2) is sufficient.

On the other hand, V (ψ) also has to respect the discrete point-group symmetry imposed by the underlying lattice. After
reducing to two DOFs for the square lattice by removing phases, D4 becomes S2, implying that V (ψ1, ψ2) has to be a symmetric
polynomial of ψ1 and ψ2. As for the hexagonal lattice, since ϕ → −ϕ corresponds to spatial rotation by π , only cos 3ϕ, not
sin 3ϕ, is allowed in V . Since any polynomial of cos 3ϕ always has its local minima at ϕ = 0 or ϕ = π/6, we can set cos 3ϕ =
±1. A term such as ψ1ψ2ψ3 + ψ∗

1 ψ∗
2 ψ∗

3 = 2|ψ1ψ2ψ3| cos 3ϕ, which is permitted by symmetry, then becomes ±2|ψ1ψ2ψ3|. The
resulting V will then be a symmetric polynomial of ψ1, ψ2, and ψ3. The simplest polynomial double-well potentials for relevant
lattices are listed below (here, ψi is used in place of |ψi|).

Square:

V =
∑

i

(
ψ6

i − 2ψ4
i + ψ2

i

) + κ
(
ψ4

1 + ψ4
2 − 2ψ2

1 ψ2
2

) + κ ′(ψ6
1 + ψ6

2 − ψ4
1 ψ2

2 − ψ2
1 ψ4

2

)
.

Hexagonal:

V =
∑

i

(
ψ4

i + ψ2
i

) − 6ψ1ψ2ψ3 + κ
(
ψ4

1 + ψ4
2 + ψ4

3 − ψ2
1 ψ2

2 − ψ2
1 ψ2

3 − ψ2
2 ψ2

3

)
.

fcc:

V =
∑

i

(
ψ6

i − 2ψ4
i + ψ2

i

) + κ

⎛
⎝∑

i

ψ4
i − 2

3

∑
sym

ψ2
1 ψ2

2

⎞
⎠ + κ ′

(∑
i

ψ4
i − 4ψ1ψ2ψ3ψ4

)

+ κ ′′
(∑

i

ψ6
i − ψ1ψ2ψ3ψ4

∑
i

ψ2
i

)
+ κ ′′′

⎛
⎝∑

i

ψ6
i −

∑
sym

ψ2
1 ψ2

2 ψ2
3

⎞
⎠ + κ ′′′′

⎛
⎝∑

i

ψ6
i − 1

3

∑
sym

ψ4
1 ψ2

2

⎞
⎠. (A2)

2. Stability of the hexagonal lattice double-well potential

The stability of the free-energy landscape requires that
the Hessian matrix of V at the liquid and solid minima be
positive definite. The former, which corresponds to ψi = 0, is
automatically satisfied by the potentials shown in (A2). On the
solid side where ψi = 1, this condition leads to a nontrivial
constraint on the coupling constants. For hexagonal lattices,
the Hessian matrix is

H(κ ) =
⎛
⎝14 + 8κ −6 − 4κ −6 − 4κ

−6 − 4κ 14 + 8κ −6 − 4κ

−6 − 4κ −6 − 4κ 14 + 8κ

⎞
⎠,

whose principal minors have zeros at κ = − 5
3 , − 7

4 , and −2,
implying that the coupling constant κ is subject to a lower
bound:

κ > κ0 ≡ − 5
3 . (A3)

APPENDIX B: GENERAL FUNCTIONAL
PERTURBATION THEORY

The general framework of perturbative calculations for
minimizing an energy functional γ [ψi(ξ )] is presented here.
In particular, the expressions for corrections to energy up

to the third order are discussed, as well as the governing
equations obeyed by the fields up to the second order. The
free-energy functional is decomposed into the sum of a solv-
able part γ0 and a small deviation from it, which is denoted
by γ1:

γ [ψ(ξ )] = γ0[ψ(ξ )] + εγ1[ψ(ξ )], (B1)

where ε is a dummy parameter for keeping track of the order
during expansions and is set to unity in the end. The validity
of this approach is then justified by the smallness of γ1 itself,
rather than that of ε. Assume that the fields are expanded as a
power series of ε:

ψi =
∑

p

ε pψ
(p)
i . (B2)

The energy functional is then readily expanded order by or-
der. Specifically, γ0 and γ1 are expanded up to O(ε3) and
O(ε2), respectively. For simplicity, we introduce a concise
notation where γ0 ≡ γ0[ψ (0)], �iγ0 ≡ [δγ0/δψi(ξ )][ψ (0)],
and �2

i jγ0 · ψ
(1)
j ≡ ∫

dζ ψ
(1)
j (ζ ) · δ2γ0[ψ (0)]/δψi(ξ )δψ j (ζ ),

etc. Note that repeated indices imply a summation over all
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possible values of the index. We obtain

γ0[ψ] = γ0 + ε�iγ0 · ψ
(1)
i + ε2�iγ0 · ψ

(2)
i

+ ε2

2
�2

i jγ0 · ψ
(1)
i ψ

(1)
j

+ ε3�iγ0 · ψ
(3)
i + ε3�2

i jγ0 · ψ
(1)
i ψ

(2)
j

+ ε3

6
�3

i jkγ0 · ψ
(1)
i ψ

(1)
j ψ

(1)
k ,

γ1[ψ] = γ1 + ε�iγ1 · ψ
(1)
i + ε2�iγ1 · ψ

(2)
i

+ ε2

2
�2

i jγ1 · ψ
(1)
i ψ

(1)
j . (B3)

The governing equations for ψ
(p)
i are obtained by requiring

the energy to be minimized. That is, we take the functional
derivative of γ = γ0 + εγ1 with respect to ψi’s and set them
to zero. Arranging this equation order by order, we obtain

ε0: �iγ0 = 0,

ε1: �2
i jγ0 · ψ

(1)
j + �iγ1 = 0,

ε2: �2
i jγ0 · ψ

(2)
j + 1

2�3
i jkγ0 · ψ

(1)
j ψ

(1)
k + �2

i jγ1 · ψ
(1)
j = 0.

(B4)
The minimized energy itself can also be expressed as γ =∑

p ε pγ (p). Evidently, γ (0) = γ0[ψ (0)]. The first-order energy

correction is γ (1) = �iγ0 · ψ
(1)
i + γ1[ψ(0)], where the first

term vanishes since the fields ψ
(0)
i must satisfy the zeroth-

order governing equations, leaving

γ (1) = γ1[ψ (0)]. (B5)

Similarly, the expressions for γ (2) and γ (3) are found using
Eq. (B3). The results are

γ (2) = − 1
2�2

i jγ0 · ψ
(1)
i ψ

(1)
j ,

γ (3) = 1
6�i jkγ0 · ψ

(1)
i ψ

(1)
j ψ

(1)
k + 1

2�2
i jγ1 · ψ

(1)
i ψ

(1)
j . (B6)

APPENDIX C: LEGENDRE EXPANSION FOR A
HEXAGONAL LATTICE

Evaluating Eqs. (20) and (23) amounts to finding a suit-
able approximate method to invert the functional operator K̂ ,
which can be greatly simplified by projecting it onto a set
of orthonormal basis. A natural and straightforward choice
would be its own eigenbasis; however, since K̂ is equivalent
to a Pöschl-Teller Hamiltonian, whose spectrum consists of
discrete bound states and a scattering continuum [66], which
is analytically formidable to work with, another set of basis
functions may be more appropriate. Due to the nature of the
operator, it is convenient to use a subset of the associated
Legendre polynomials projected from their original defining

domain [−1, 1] onto the real space (−∞,∞). Specifically,
the functions Plm(y) with fixed m form a complete orthogonal
basis on y ∈ [−1, 1]. For our purpose, m = 1 would be appro-
priate, as will become apparent in the following passages.

Mapping y = tanh ξ and taking into account the change
of integral measure dy = sech2ξdξ , one can define a set of
orthonormal functions on the interval (−∞,∞):

fl (x) ≡ sech x√
Cl

Pl1(tanh x), Cl ≡ 2(l + 1)!

(2l + 1)(l − 1)!
, (C1)

where Plm(y) are the associated Legendre polynomi-
als, given by the Rodrigues formula Plm(y) = (−1)m(1 −
y2)m/2∂ l+m

y (y2 − 1)l/2l l!. The orthonormality 〈 fl | fk〉 = δlk

then follows. χ ≡ K̂−1ϕ can then be rewritten as χl =
(K−1)lk (∂2ψ )k, where χl = 〈 fl |χ〉 and Klk = 〈 fl |K̂| fk〉, etc.
With the use of recurrence formulas [67], we obtain the gen-
eral expression for Klk :

Klk =
{

1

(2k − 1)(2k + 3)
[2k(k + 1)(k2 + k − 1)

+ (2k2 + 2k − 3)(6 + 6κ )] + 16 + 6κ

}
δlk

+
{

1

2k + 3

√
k(k + 1)(k + 2)(k + 3)

(2k + 1)(2k + 5)

× [(6 + 6κ ) − (k + 1)(k + 2)]δl,k+2

+ 2(9 + 6κ )

√
k(k + 2)

(2k + 1)(2k + 3)
δl,k+1 + H.c.

}
,

(C2)

where H.c. denotes matrix transposition. The advantage
of this choice of basis is manifest when one notes
that ∂2ψ (0) ∝ f2(x), and so 〈ψ (0)|∂2K̂−1∂2|ψ (0)〉 is simply
〈ψ (0)∂2|∂2ψ (0)〉 (K−1)22. With Eq. (C2), the energy correc-
tions (20) and (23), using a finite number of basis functions,
can be written as explicit functions of κ . In general, they take
the form

γ (n) = qn(κ )

pn(κ )
,

where p(κ ) and q(κ ) are polynomials of κ . For example,
the second-order energy correction γ (2), retaining only three
modes, takes the form

√
2γ (2) ≈ − 7(36κ2 + 196κ + 259)

400(6κ3 + 85κ2 + 315κ + 336)
.

As shown in Fig. 3, with truncation after six basis functions,
the energy corrections are very close to those obtained by
numerical evaluation of Eqs. (20) and (23).
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