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Following the Higgs mode across the BCS-BEC crossover in two dimensions
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Although substantial effort has been dedicated to analyzing the Higgs (amplitude) mode in superconducting
systems, there are relatively few studies of the Higgs peak’s dispersion and width, quantities which are
observable in spectroscopic measurements. These properties can be obtained from the location of the pole of
the amplitude (Higgs) susceptibility in the lower half plane of complex frequency. We analyze the behavior
of the Higgs mode in a two-dimensional neutral fermionic superfluid at T = 0 throughout the crossover from
Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensation (BEC) behavior. This occurs when the dressed
chemical potential μ changes sign from positive to negative. For μ > 0, we find a pole in the Higgs susceptibility
in the lower half plane of frequency and demonstrate that it leads to a well-defined peak in spectroscopic probes.
For μ < 0, the pole still exists but is “hidden,” not giving rise to a peak in spectroscopic probes. Extending this
analysis to a charged superconductor, we find that the Higgs mode is unaffected by the long-range Coulomb
interaction.
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I. INTRODUCTION

Superconducting and superfluid phases of interacting
fermions are characterized by spontaneous breaking of U(1)
gauge symmetry, resulting in a nonzero complex order param-
eter � = |�|eiϕ . Fluctuations in this order parameter can be
decomposed into fluctuations of the phase ϕ (the Anderson-
Bogoliubov-Goldstone or ABG mode), and the amplitude |�|
(the Higgs mode) [1–4]. The Higgs mode has traditionally
been difficult to observe experimentally since, as a scalar field,
it does not couple linearly to the electromagnetic field [5].
Indeed, until recently, the only clear experimental observation
of the Higgs mode has been in 2H − NbSe2 [6,7], due to the
coexistence of charge-density wave order and superconductiv-
ity [3,8,9]. However, in the past decade, advances in ultrafast
THz and Raman spectroscopy have led to numerous reports of
observations of the Higgs mode in superconductors [10–19],
cold-atom systems [20] and quantum magnets [21]. Recent
proposals have also suggested that the Higgs mode could be
observed in a superconductor biased with a dc supercurrent
[22,23]. There have been numerous recent theoretical studies
of the amplitude (Higgs) mode (see, e.g., Refs. [24–35]).

In a three-dimensional (3D) s-wave superconductor where
the Fermi energy is much larger than the gap (EF � �), the
Higgs mode has frequency ωH = 2� in the long-wavelength
limit, q = 0 [36]. As such, the Higgs mode lies on the edge of
the two-particle continuum, where Cooper pairs break up into
two Bogoliubov quasiparticles [37]. One consequence of this
can be seen in the amplitude (Higgs) susceptibility describ-
ing amplitude oscillations, which exhibits a branch cut rather
than a pole, χH (ω + iδ, q = 0) ∼ 1/(ω2 − 4�2)1/2 [33]. This
square-root singularity leads to amplitude oscillations which
decay in time as a power law [36], as opposed to the exponen-
tial decay one expects from a true pole.

At nonzero q, the square-root singularity disappears, and
the spectral function ImχH (ω + iδ, q) develops a peak at a

frequency ω above 2�, whose width is small but finite (see
Fig. 1). It is natural to assume that a narrow peak at a fre-
quency immediately above the real axis can be understood as
resulting from a pole in χH (z, q) at a complex frequency zq =
ω′ + iω′′ slightly below the real axis. This is not guaranteed,
however, because the presence of the two-particle continuum
implies that the function χH (z, q) has branch cuts along the
real-frequency axis for |ω| > 2� [see Fig. 2(a)]. This branch
cut implies that the behavior of χH (z, q) below the real axis
[e.g., ω = Re(z) > 2�] is not smoothly connected to the be-
havior of χH (ω + iδ, q). In contrast, χH (z, q) is smoothly
connected to χH (ω + iδ, q) for ω < 2� because there is no
branch cut along the real axis in this case.

This line of reasoning suggests that more careful analysis
is needed to determine whether the presence of a peak in
ImχH (ω + iδ, q) at ω > 2� arises from a pole in χH (z, q)
in the lower half plane and, conversely, whether the absence
of such a peak implies that there is no pole in χH (z, q). To
address this issue, one has to analytically continue χH (z, q)
through the branch cut into the lower half plane and check
whether this analytically continued susceptibility has a pole.
We denote this function χ

↓
H (z, q) below. It is equal to χH (z, q)

in the upper half plane and is constructed to be smooth across
the real-frequency axis for |ω| > 2�. The branch-cut struc-
ture of χH (z, q) and its analytical continuation χ

↓
H (z, q) are

illustrated in Figs. 2(a) and 2(b), respectively.
Since χ

↓
H (z, q) is analytic across the real axis for |ω| > 2�,

a pole in χ
↓
H (z, q) at a frequency zq close to the real axis,

with Re(zq) > 2�, necessarily leads to a peak in Imχ
↓
H (z, q)

immediately above the real axis. To highlight this, we have
added in Fig. 2(b) vertical arrows from the positions of the
poles (shown as crosses in the lower half plane) to z = ω + iδ.
Henceforth, we refer to such poles as Higgs modes.

This reasoning does not hold for poles with Re(zq) < 2�,
due to the nonanalyticity of χ

↓
H (z, q) across the real axis for
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FIG. 1. Behavior of the Higgs susceptibility in the BCS regime,
as a function of frequency at zero and nonzero q. The two-particle
continuum begins at ω = 2�.

FIG. 2. The branch cut structure of (a) the Higgs susceptibility
χH (z, q) and (b) its analytical continuation χ

↓
H (z, q) in the complex

z plane in the BCS regime, μ > 0. In both panels, the dashed line
indicates z = ω + iδ, the frequencies which are probed in spec-
troscopic experiments. The background coloring denotes Riemann
sheets on which χH (z, q) and χ

↓
H (z, q) are defined. The function

χH (z, q) is defined on one Riemann sheet throughout the complex
plane, while χ

↓
H (z, q) is defined on two Riemann sheets, depending

on the sign of Im(z). Crosses in panel (b) show the position of
poles in χ

↓
H (z, q). Due to the analyticity of χ

↓
H (z, q) across the real

axis for ω > 2�, these poles lead to an experimentally observable
peak in ImχH (ω + iδ, q). To highlight this, we added vertical arrows
connecting these poles to the dashed line above the real axis. There
are additional branch cuts in χ

↓
H (z, q) at larger |ω|, which we do not

present here (see Sec. III). The presence of these additional branch
cuts limits the frequency range where the poles of χ

↓
H (z, q) give rise

to peaks in ImχH (ω + iδ, q).

such Re(zq). In this case, there is no peak in ImχH (ω + iδ, q).
The situation is similar to that of zero-sound collective modes
in two dimensions (2D) for small, negative values of the
Landau parameter F0: the charge susceptibility has a pole in
the lower half plane of frequency, but does not give rise to a
peak in the spectral function due to a branch cut across the real
axis [38]. Borrowing the notation from that paper, we refer to
such a pole as a hidden mode.

From the perspective of complex analysis, it is natural to
think of χH (z, q) and χ

↓
H (z, q) as components of a single

function defined on a Riemann surface, which consists of
multiple Riemann sheets glued together along the real axis.
From this perspective, the discontinuity in χH (z, q) across the
real axis for |ω| > 2� is a consequence of staying on the same
Riemann sheet as we cross the real axis. Similarly, the smooth
evolution of χ

↓
H (ω, q) across the real axis is obtained by

transitioning from one Riemann sheet at Im(z) > 0 to another
at Im(z) < 0.1 We illustrate this in Fig. 2 via the background
coloring: different coloring in Fig. 2(b) indicates that χ

↓
H (z, q)

lives on different Riemann sheets in the upper and lower half
planes.

In this respect, the pole in χ
↓
H (z, q) exists on an unphysical

Riemann sheet, different from the physical Riemann sheet
where Imχ

↓
H (ω + iδ, q) is measured in spectroscopic probes

[39,40]. However, due to the analyticity of χ
↓
H (z, q) across the

real axis for ω > 2�, poles on this unphysical Riemann sheet
lead to observable peaks in the spectral function Imχ

↓
H (ω +

iδ, q). Such poles have been referred to as mirage modes in
Ref. [38].

We re-iterate that a mirage mode with |ω| > 2� on the
unphysical Riemann sheet, if it exists, gives rise to a measur-
able peak in ImχH (ω + iδ, q). This is due to the analyticity of
χ

↓
H (z, q) for |ω| > 2� along the vertical path connecting the

pole at zq in the lower half plane on an unphysical Riemann
sheet, to the frequency z = Re(zq) + iδ in the upper half plane
on the physical Riemann sheet.

On the other hand, if a pole of χ
↓
H (z, q) on the unphysical

Riemann sheet has Re(zq) < 2�, it is no longer smoothly
connected to the spectral function ImχH (ω + iδ, q) on the
physical Riemann sheet. Instead, the pole at zq leads to a peak
in the spectral function evaluated on a different, unphysical
Riemann sheet. The pole with Re(zq) < 2� then becomes a
hidden mode.

In 3D, the analytic structure of χ
↓
H (z, q) has been analyzed

by Andrianov and Popov [41]. In the high-density BCS limit,
where the chemical potential μ is much larger than the gap �,
they found that a pole in χ

↓
H (z, q) does exist, and its location is

zq = 2� + (0.2369 − 0.2956i)(q2/2m)(μ/�). We note that
this result for Re(zq) disagrees with the commonly cited result
for the Higgs mode dispersion, which in our notation reads
zq = 2� + 1

3 (q2/2m)(μ/�) − i π2

12

√
μ/2mq [3]. We discuss

1In fact, there are complications to this procedure. There is no way
to construct a function which is analytic across the real axis for
all |ω| > 2�. Here, one should think of χ

↓
H (z, q) as being analytic

for |ω| ∈ (2�,ω2) for some frequency ω2. We discuss the analytic
continuation in more detail in Sec. III.
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the reason for this disagreement in Sec. A of the Supplemental
Material (SM) [42].

Away from the high-density limit, particle-hole symme-
try disappears, leading to a coupling of the amplitude and
phase fluctuations. Previous work [24,33] has suggested that
this loss of particle-hole symmetry eventually leads to the
disappearance of the Higgs mode. An analysis of this has
been done recently by Kurkjian et al. [43]. Writing the dis-
persion of the Higgs mode as zq = 2� + ζ (q2/2m)(μ/�),
they demonstrated that Re(ζ ) decreases from its high-density
value of Re(ζ ) = 0.2369 as one lowers the chemical poten-
tial μ, changes sign at μc ≈ 0.8267�, and becomes negative
for smaller μ. For 0 < μ < μc, when the system approaches
the BEC regime, the pole has Re(zq) < 2�. The authors
then argued that this pole does not give rise to a peak in
ImχH (ω + iδ, q).

In this work, we extend the analysis by Kurkjian et al.
to 2D, investigating the dispersion and damping rate of the
Higgs mode in a neutral fermionic superfluid and a charged
superconductor as a function of density at T = 0. In con-
trast to the 3D case where μ and � become comparable
only at strong coupling, in 2D one can tune between the
BCS and BEC regimes already at weak coupling by vary-
ing the fermionic density. This is because, for a parabolic
dispersion in 2D, a two-fermion bound state exists even at
arbitrarily weak attraction [44]. For values of EF larger than
E0 (where E0 is half the bound-state energy of two fermions
in vacuum), the system is in the BCS regime (μ � 0). In the
low-density limit where EF 	 E0, the system is instead in the
BEC regime. Here, the chemical potential μ is strongly renor-
malized down from its normal-state value EF and becomes
negative, μ ≈ −E0.

In the high-density BCS limit, we find a pole in
χ

↓
H (z, q) at zq = 2� + (0.5 − 0.4302i)(q2/2m)(μ/�). As

μ/� decreases, the pole moves to zq = 2� + (0.5 −
iβ )(q2/2m)(μ/�), where β interpolates between 0.4302 at
μ � � and the much larger e

16

√
2�/μ at μ 	 �. We also

calculate the residue of the pole, finding that it scales linearly
with q, as in 3D [43]. We next move away from the long-
wavelength limit and trace the position of the pole in χ

↓
H (z, q)

as a function of q. We find that the Higgs mode quickly
becomes heavily damped with increasing q.

Crossing from the BCS regime (μ > 0) to the BEC regime
(μ < 0), we find that the Higgs mode becomes hidden for
μ < μc = 0. We illustrate the situation in the BEC regime
in Fig. 3, where the branch cut structure of χH (z, q) and
χ

↓
H (z, q) is presented in Figs. 3(a) and 3(b), respectively. Here,

the branch points at ±2� have been replaced with ±ωmin ≡
±2[�2 + (|μ| + q2/8m)2]1/2, which is the lower bound of the
two-particle continuum for μ < 0. As in the case when μ > 0,
χ

↓
H (z, q) has poles in the lower-half plane. However, we find

that these poles are hidden below the branch cut in χ
↓
H (z, q),

extending from −ωmin to +ωmin. Hence, as in 3D, the poles
do not give rise to spectroscopic signatures at frequencies
immediately above the real axis.

We then investigate how the dispersion and damping rate
of the Higgs mode is modified by the inclusion of the long-
range Coulomb interaction. Our calculations show that the
dispersion, damping rate, and residue of the Higgs mode is

FIG. 3. The branch cut structure of (a) the Higgs susceptibility
χH (z, q) and (b) its analytical continuation χ

↓
H (z, q) in the complex

z plane, in the BEC regime, where μ < 0. In both panels, the dashed
line indicates frequencies which are probed in spectroscopic experi-
ments. The background color denotes Riemann sheets, and highlights
that χH (z, q) in panel (a) is defined on one Riemann sheet throughout
the complex plane. In contrast, χ

↓
H (z, q) is defined on two Riemann

sheets, depending on the sign of Im(z). The crosses in panel (b) in-
dicate the position of the poles of χ

↓
H (z, q). Unlike when μ > 0, the

poles lie below the threshold of the two-particle-continuum at ωmin =
2[�2 + (|μ| + q2/8m)2]1/2. The function χ

↓
H (ω, q) has a branch cut

at |ω| < ωmin, and the poles do not lead to observable peaks in
ImχH (ω + iδ, q). This is emphasized with the vertical arrows—the
poles of χ

↓
H (z, q) are obstructed from leading to a peak above the

real axis due to the discontinuity across the branch cut.

unchanged from that of the neutral superfluid. We find that
this is true in both two and three dimensions.

The paper is structured as follows: In Secs. II and III,
we review how we obtain the Higgs susceptibility, using
the functional-integral method within the Gaussian approx-
imation. In Sec. IV, we then obtain the small-q dispersion,
damping rate, and residue of the Higgs mode as a function
of μ/�, neglecting the influence of the Coulomb interaction.
In Sec. V, we extend this analysis and follow the dispersion
of the Higgs mode as a function of q, for arbitrary q. In
Sec. VI, we discuss the fate of the Higgs mode for μ < 0. In
Sec. VII, we repeat the analysis of the Higgs mode dispersion,
including the effect of the Coulomb interaction. In Sec. VIII,
we summarize our results.

II. MEAN-FIELD THEORY

To analyze the gap function and its fluctuations about
equilibrium, we use the functional integral approach [45–47];
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identical equations can also be obtained diagrammatically
[48]. Assuming that fermions attract each other via a con-
tact interaction U (x − y) = −gδ(x − y) and neglecting for
the moment the Coulomb interaction, the partition function
is given by Z = ∫ D(ψ̄ψ ) exp(−S[ψ̄, ψ]), where the action
S[ψ̄, ψ] in momentum space is given by

S[ψ̄, ψ] =
∑

k

ψ̄σ (k)

(
−iωn + k2

2m
− μ

)
ψσ (k)

− g
T

L2

∑
kqp

ψ̄↑(k + q/2)ψ̄↓(−k + q/2)

× ψ↓(−p + q/2)ψ↑(p + q/2). (1)

Here, L2 denotes the area of our two-dimensional system,
μ is the chemical potential, ψσ and ψ̄σ are the Grassmann
fields describing the fermionic degrees of freedom. The three-
vectors k, p, and q label both Matsubara frequency and
momentum, e.g., k = (ωm, k). The Matsubara frequencies of
k and p are fermionic [ωm = (2m + 1)πT ], while the Mat-
subara frequency of q is bosonic (�m = 2πmT ). To decouple
the quartic interaction, we perform the Hubbard-Stratonovich
transformation: we introduce the complex, bosonic field
�q, which couples to the ψ̄ψ̄ terms, and integrate out the
fermionic fields ψ and ψ̄ . The partition function is then
given by a functional integral over the complex field �q,
Z = ∫ D(�∗�) exp(−Seff [�∗,�]), where the effective action
is

Seff [�
∗,�] = βL2

g

∑
q

|�q|2 − Tr ln(−βG−1), (2)

and the Nambu-Gorkov Green’s function in momentum-space
is given by

G−1
kp =

(
(iωn − ξ (k))δkp �k−p

�∗
p−k (iωn + ξ (k))δkp

)
. (3)

where ξ (k) = k2/2m − μ, and μ is the chemical potential in
a superconductor, which at this stage is a parameter.

Thus far, this procedure has been formally exact. To make
further progress, we assume that the gap function at equilib-
rium is spatially uniform and frequency-independent, �q =
�δq,0. This solution can be obtained by searching for a sad-
dle point of the effective action. The condition δSeff/δ� = 0
yields the conventional gap equation:

1

g
=
∫

d2 p

(2π )2

tanh(βEp/2)

2Ep
. (4)

Here, Ep = [ξ (p)2 + |�|2]1/2. To handle the UV-divergence
on the right-hand side, we impose a high-energy cutoff �,
only considering momenta with p2/2m < �.

The chemical potential μ is determined by the conser-
vation of particle number. This constraint is enforced by
using n = −∂�/∂μ, where � is the thermodynamic potential.
Within the mean-field approximation, we have in equilibrium,

� = T Seff [|�|], and the equation enforcing particle-number
conservation becomes

n =
∫

d2 p

(2π )2

[
1 − ξ (p)

Ep
tanh(βEp/2)

]
. (5)

Due to the U(1) symmetry of the problem, we have the free-
dom to choose the phase of the order parameter. As such, we
henceforth take � to be real.

At T = 0, Eqs. (4) and (5) can be solved for μ and �

[44,49], and one finds

μ = EF − E0, (6)

� = 2
√

EF E0, (7)

where E0 = �e−2/N0g is half the binding energy of two
fermions in vacuum.

III. GAUSSIAN FLUCTUATIONS

To account for the effects of fluctuations in the order
parameter, we expand the gap about the mean-field solution,
�(x) = �[1 + λ(x)]eiθ (x) ≈ �[1 + λ(x) + iθ (x)], where
λ(x) and θ (x) are real dimensionless fields denoting the
amplitude and phase fluctuations of the gap, respectively. By
inserting this into the effective action and expanding about
the saddle point, we find that Seff is given to quadratic order
by

Seff = S0[�] + βL2�2
∑

q

(θ∗
q λ∗

q )M̂(i�m, q)

(
θq

λq

)
. (8)

The matrix M̂(i�m, q) is the inverse susceptibility for
phase and amplitude fluctuations, and its matrix elements are
given by

M++(z, q) = 1

g
+ 1

2
χ22(z, q), (9)

M−−(z, q) = 1

g
+ 1

2
χ11(z, q), (10)

M+−(z, q) = 1
2χ12(z, q), (11)

M−+(z, q) = −M+−(z, q), (12)

where the plus and minus signs correspond to phase and am-
plitude fluctuations, respectively. The functions χi j (i�m, q)
are defined as χi j (i�m, q) = T/L2∑

ωm,p Tr[GMF(iωm −
i�m/2, p − q/2)σiGMF(iωm + i�m/2, p + q/2)σ j], where σi

are the Pauli matrices, and GMF is the mean-field Green’s
function. After performing the Matsubara summation over ωm

and analytically continuing i�m → z to complex frequencies
in the upper half plane, we find at T = 0

χ11(z, q) =
∫

d2 p

(2π )2

E+ + E−
E+E−

ξ+ξ− + E+E− − �2

z2 − (E+ + E−)2 , (13)

χ22(z, q) =
∫

d2 p

(2π )2

E+ + E−
E+E−

ξ+ξ− + E+E− + �2

z2 − (E+ + E−)2 , (14)

χ12(z, q) = −iz
∫

d2 p

(2π )2

1

E+E−

ξ+E− + ξ−E+
z2 − (E+ + E−)2 . (15)
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Here, ξ± = (p ± q/2)2/(2m) − μ and E± = (ξ 2
± + �2)1/2.

The Higgs susceptibility χH (z, q) is given within this Gaus-
sian approximation by

χH (z, q) = M++(z, q)

det M̂(z, q)
(16)

and corresponds to a Fourier transform of the amplitude-
amplitude correlation function χH (t, x) = 〈λ(t, x)λ(0, 0)〉.
We note that, although we refer to the above expression the
Higgs (amplitude) susceptibility, the above expression actu-
ally corresponds to the longitudinal susceptibility, which is in
general not equal to the Higgs susceptibility [25]. However,
because the longitudinal and Higgs susceptibility coincide
within the Gaussian approximation, we will use these terms
interchangeably.

In the high-density limit, one has particle-hole symmetry,
so that the off-diagonal matrix elements M+− = M−+ = 0. In
this case, the phase and amplitude fluctuations are completely
decoupled, and the Higgs susceptibility is simply given by
χH (z, q) ≡ χ−−(z, q) = 1/M−−(z, q). Away from the high-
density limit, the amplitude-phase coupling is nonzero, and
one should use Eq. (16). As discussed in the introduction,
we search for the Higgs mode by calculating the location of
the poles of χ

↓
H (z, q), the analytical continuation of χH (z, q)

into the lower half plane through the real axis at ω > 2�. We
search for poles zq of χ

↓
H (ω, q) by solving

det M̂↓(zq, q) = 0. (17)

Analytical continuation procedure

We now outline how we analytically continue the matrix
elements Mσσ ′ (z, q). In the introduction, we framed analytic
continuation as stitching together functions evaluated on dif-
ferent Riemann sheets. Here, we discuss how this procedure
is performed computationally.

To this end, recall that the purpose of analytic continuation
is to obtain a function which is equal to Mσσ ′ (z, q) in the
upper half plane, and analytic across the portion of the real
axis where ω > 2�. For this purpose, we define the spectral
densities

ρσσ ′ (ω, q) = Mσσ ′ (ω + iδ, q) − Mσσ ′ (ω − iδ, q)

−2π i
. (18)

With this definition, we trivially have Mσσ ′ (ω − iδ, q) −
2π iρσσ ′ (ω, q) = Mσσ ′ (ω + iδ, q). If we view the expression
Mσσ ′ (ω − iδ, q) − 2π iρσσ ′ (ω, q) as the value of a complex
function M↓

σσ ′ (z, q) just below the real axis, then we have
M↓

σσ ′ (ω − iδ, q) = Mσσ ′ (ω + iδ, q). Using this, the following
function is by construction analytic across the real axis:

M↓
σσ ′ (z, q) =

{
Mσσ ′ (z, q) Im(z) > 0
Mσσ ′ (z, q) − 2π iρσσ ′ (z, q) Im(z) < 0.

(19)

Note that, in this equation, we have replaced ρσσ ′ (ω, q)
with its analytical continuation away from the real axis,

FIG. 4. The spectral density ρ−−(ω, q) at μ = � and q =
0.5

√
2mμ, as a function of ω. The frequencies ω2 at which ρ−−(ω, q)

has a kink, and ω3, at which it is discontinuous, are defined in the text.

ρσσ ′ (z, q). This requires care, since ρσσ ′ (ω, q) is not ana-
lytic for all ω > 2�—it has a kink at some higher frequency
ω2, and a discontinuity at even higher ω3. We illustrate this
in Fig. 4, where we plot ρ−−(ω, q) as a function of ω for
μ = � and q = 0.5

√
2mμ. These kinks and discontinuities

result from Lifshitz transitions, which we discuss in Sec. B of
the SM [42]. To obtain a function which we can analytically
continue away from the real axis, we must restrict the domain
of ρ−−(ω, q) to a subset of the real axis on which ρ−−(ω, q)
is analytic. Similar consideration holds for the other spectral
densities ρσσ ′ (ω, q).

Once we choose a region of the real axis on which
ρσσ ′ (ω, q) is analytic, we analytically continue ρσσ ′ (ω, q) to
obtain the complex function ρσσ ′ (z, q), and use Eq. (19) to
obtain the analytic continuation of Mσσ ′ (z, q) into the lower
half plane. The resulting M↓

σσ ′ (z, q) is analytic across the
region of the real axis we have chosen.

Different choices of domains for ρσσ ′ (ω, q) lead to distinct
analytic behaviors in M↓

σσ ′ (z, q), and corresponds to defining
M↓

σσ ′ (z, q) using different unphysical Riemann sheets in the
lower half plane. Expressions for the spectral densities for ar-
bitrary q and ω can be found in Sec. C of the SM [42], as well
as their analytic continuations through the different regions of
ω. For general values of q, μ, and ω, the analytically contin-
ued matrix elements contain hyper-elliptic integrals, which we
handle numerically. However, in some limits, expressions for
the analytically continued matrix elements M↓

σσ ′ (z, q) turn out
to be relatively simple (see the next section.)

Since we expect the Higgs mode to have frequencies just
above the boundary of the two-particle continuum, we analyt-
ically continue ρσσ ′ (ω, q) [and hence Mσσ ′ (ω, q)] through the
region (2�,ω2) for μ > 0. Doing so leads to matrix elements
which are analytic across (2�,ω2), but discontinuous across
other regions of the real axis. When μ < 0, the lower bound
of the two-particle continuum is instead at ω3, which becomes
the lower bound of the two-particle continuum ωmin, so we
analytically continue the matrix elements through the region
(ωmin,∞). This procedure leads to matrix elements which are
analytic across (ωmin,∞), but discontinuous across, e.g., the
region (0, ωmin).
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IV. THE LONG-WAVELENGTH DISPERSION OF THE
HIGGS MODE

In this section, we calculate the dispersion of the Higgs
mode at small q and μ > 0. As discussed in the previous
section, this is done by first constructing χ

↓
H (z, q), the analyt-

ical continuation of χH (z, q) into the lower half plane through
ω ∈ (2�,ω2). This region is chosen because we expect the
Higgs mode to begin at zq=0 = 2� and disperse quadratically
with q to larger values of Re(zq). We then search for a pole in
χ

↓
H (z, q) of the form zq = 2� + ζ (q2/2m)(μ/�). We see that

ω2 = 2� + (q2/2m)(μ/�) at small q. Accordingly, we con-
strain Re(ζ ) to take values in the interval (0,1)—this ensures
Re(zq) ∈ (2�,ω2).

Below we compute the matrix elements Mσσ ′ (z, q) in the
upper half plane and analytically continue them one by one
through the real axis. We begin by calculating M−−(z, q)
using Eq. (11). Combining Eq. (14) with the gap equation

1
g = 1

2

∫ d2 p
(2π )2

1
E , we express M−−(z, q) as

M−−(z, q) = 1

4

∫
d2 p

(2π )2

E+ + E−
E+E−

z2 − 4�2 − (ξ+ − ξ−)2

z2 − (E+ + E−)2 .

(20)
Evaluating this integral (the technical details can be found in
Sec. A of the SM [42]), we obtain

M−−
(
zq, q

) = −iN0
vμq

2�

√
ζE

(
1√
ζ

)
, (21)

where N0 = m/2π is the density of states per spin in 2D, and
E (z) is the complete elliptic integral of the second kind.2

We now analytically continue M−−(zq, q) into the lower
half plane of complex z across ω ∈ (2�,ω2), i.e., across
ζ ∈ (0, 1). This is achieved by substituting E ( 1√

ζ
) at Im(ζ ) =

0+ by E ( 1√
ζ

) + 2i{E [(1 − ζ−1)1/2] − K[(1 − ζ−1)1/2]} at

Im(ζ ) = 0− (see Sec. D of the SM for a proof [42]). The
analytic continuation of M−−(zq, q) is therefore given by

M↓
−−(zq, q) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−iN0
vμq
2�

√
ζE
(

1√
ζ

)
, Im(ζ ) > 0

−iN0
vμq
2�

√
ζ

{
E
(

1√
ζ

)
+2i[E (

√
1 − ζ−1) − K (

√
1 − ζ−1)]

}
, Im(ζ ) < 0.

(22)

We use the same tactics to compute M++(zq, q), given by

M++(z, q) = 1

2

∫
d2 p

(2π )2

(
E+ + E−

E+E−

ξ+ξ− + E+E− + �2

z2 − (E+ + E−)2 + 1

E

)
. (23)

Evaluating the momentum integral in the same way as for M−−(zq, q), we obtain

M++
(
zq, q

) = −iN0
2�

vμq

1√
ζ

K

(
1√
ζ

)
, (24)

where K (z) is the complete elliptic integral of the first kind. The analytical continuation through the interval of the real axis
where ζ ∈ (0, 1) is achieved by substituting K ( 1√

ζ
) at Im(ζ ) = 0+ by K ( 1√

ζ
) − 2iK (

√
1 − ζ )

√
ζ when Im(ζ ) < 0 (see Sec. D

of the SM [42]). We then obtain

M↓
++(zq, q) =

{−iN0
2�
vμq

1√
ζ

K
(

1√
ζ

)
, Im(ζ ) > 0

−iN0
2�
vμq

1√
ζ

[
K
(

1√
ζ

)− 2iK (
√

1 − ζ )
√

ζ
]
, Im(ζ ) < 0.

(25)

We now turn to the matrix elements M+−(z, q) and
M−+(z, q), which couple amplitude and phase fluctuations.
Since M−+(z, q) = −M+−(z, q), we focus on M+−(z, q).
We recall that, in the end, we need to solve det M̂↓(zq, q) =
M↓

++(zq, q)M↓
−−(zq, q) − M↓

+−(zq, q)M↓
−+(zq, q) = 0. At

small q we have M++(zq, q) = O(1/q) and M−−(zq, q) =
O(q). Since their product is O(1), it is sufficient to compute
M+−(zq, q) at q = 0, where zq=0 = 2�. The matrix element
M+−(2�, 0) is purely imaginary and is given by

M+−(2�, 0) = i
�

2
N0

∫ ∞

−μ

dξ

ξE
(26)

= i
N0

4
ln

(√
μ2 + �2 + �√
μ2 + �2 − �

)
. (27)

A. High-density limit

In the high-density limit where μ ≈ EF � �, the
amplitude-phase coupling arising from M+− is small in �/μ

and can be neglected. The Higgs susceptibility χ
↓
H (z, q) then

reduces to χ
↓
H (z, q) = 1/M↓

−−(z, q). The parameter ζ , which

2To be explicit, here we use the convention where the complete
elliptic integrals of first and second kind are defined as K (z) =∫ π/2

0 dx/(1 − z2 cos2 x)1/2 and E (z) = ∫ π/2
0 dx(1 − z2 cos2 x)1/2 [see

Eq. (19.2.8) of Ref. [50] ]. This is different from the convention used
in Mathematica, where z2 in the integrands of K (z) and E (z) are
replaced by z.
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determines the location of the Higgs mode in the lower half
plane is the solution of M↓

−−(ζ ) = 0, i.e., of

E

(
1√
ζ

)
+ 2i

[
E
(√

1 − ζ−1
)

− K
(√

1 − ζ−1
)]

= 0. (28)

The solution of this transcendental equation is ζ = 0.5 −
0.4302i, so that the location of the Higgs mode is

zq = 2� + (0.5 − 0.4302i)
q2

2m

μ

�
. (29)

The dispersion of the Higgs mode at small q is given by
ωq = Re(zq) = 2� + (q2/4m)(μ/�). The damping rate of
the Higgs mode, γq, is quadratic in q, as in 3D [41,43].

B. Away from the high-density limit

Away from the high-density limit, M+− has to be kept. The
susceptibility χ

↓
H (zq, q) has the form

χ
↓
H (zq, q) = i

N0

2�

vμq

1√
ζ

×
K
(

1√
ζ

)− 2iK (
√

1 − ζ )
√

ζ

[
K
(

1√
ζ

)− 2iK (
√

1 − ζ )
√

ζ
]{

E
(

1√
ζ

)+ 2i[E (
√

1 − ζ−1) − K (
√

1 − ζ−1)]
}+ 1

16

[
ln

(√
μ2+�2+�√
μ2+�2−�

)]2 .

(30)

The position of the Higgs mode is determined by the condition[
K

(
1√
ζ

)
− 2iK

(√
1 − ζ

)√
ζ

]{
E

(
1√
ζ

)
+ 2i[E (

√
1 − ζ−1) − K (

√
1 − ζ−1)]

}
+ 1

16

[
ln

(√
μ2 + �2 + �√
μ2 + �2 − �

)]2

= 0. (31)

We numerically solve this equation for ζ for any value of
� and μ > 0, where this equation is valid. We present the
results in Fig. 5. We see that ζ evolves as a function of μ,
but, remarkably, Re(ζ ) = 0.5 for all values of μ. With this,
the dispersion at small q is given for all μ by ω(q) = 2� +
(q2/4m)(μ/�).

The fact that Re(ζ ) = 0.5 holds for all μ > 0 follows
from a special reflection symmetry of the equation for the
pole location in 2D. We show in Sec. E of the SM that,
if ζ is a solution to Eq. (31), its reflection across the line
where Re(ζ ) = 0.5 is also a solution [42]. Combining this
with the empirical fact that Eq. (31) has a unique solution,
we immediately find that Re(ζ ) must equal 0.5 for all val-
ues of μ.3 We see therefore that Re(ζ ) remains inside the
interval (0,1) for any positive value of μ. This is in contrast
with the behavior in 3D, where Re(ζ ) becomes negative for
μ < μc = 0.8267� [43].

The damping rate of the Higgs mode increases with de-
creasing μ and diverges in the limit where μ 	 � as

Im(ζ ) ≈ −i
e

16

√
2�

μ
. (32)

3That Eq. (31) has a unique solution can be intuited by
counting degrees of freedom: since there are two degrees of
freedom in our system (corresponding to phase and amplitude
fluctuations), we expect two collective modes. By looking for a
collective mode with dispersion zq = 2� + ζ (q2/2m)(μ/�), we ex-
plicitly disregard the ABG mode and focus on the Higgs mode
near 2�. This Higgs mode should result in one solution for
Eq. (31).

In the inset of Fig. 5, we overlay this expression on the numer-
ical solution of Eq. (31), finding good agreement for smaller
values of μ/�.

Although Im(ζ ) diverges as μ approaches zero, we find
that the Higgs resonance does not become overdamped at
small μ. To see this, recall that the dispersion of the Higgs
mode is given by zq = 2� + ζ (q2/2m)(μ/�). As such, at

μ 	 �, we have −Im(zq)/Re(zq) ∼ q2

m�

√
μ

�
	 1. From this,

we find that the Higgs mode leads to a well-defined resonance
at all values of μ > 0.

FIG. 5. The real and imaginary parts of ζ given by the solution
of Eq. (31), as a function of μ. The quantity ζ is related to the
dispersion of the Higgs mode as ωq = 2� + ζ (q2/2m)(μ/�). We
see that Re(ζ ) = 0.5 for all μ/�, while Im(ζ ) diverges at small μ.
The inset highlights that the divergence is a power-law. The purple
line in the inset is the analytical expression for Im(ζ ), Eq. (32).
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C. The residue of the Higgs mode

The residue of the Higgs mode is defined as Zq = limz→zq (z − zq)χ↓
H (z, q). We find

Zq = i
vμq

2N0

1√
ζ

K
(

1√
ζ

)− 2iK (
√

1 − ζ )

d
dζ

[
K
(

1√
ζ

)− 2iK (
√

1 − ζ )
√

ζ
]{

E
(

1√
ζ

)+ 2i[E (
√

1 − ζ−1) − K (
√

1 − ζ−1)]
} , (33)

where ζ is the solution of Eq. (31).
As expected, Zq goes to zero in the long-wavelength limit.

This reflects the disappearance of the pole in the suscepti-
bility χH (z, q) at q = 0. At high density, Zq = −0.2474(1 −
i)vF q/N0. In the opposite limit where μ/� → 0,

Zq ≈ − (1 − i)e1/2

16

v�q

N0

( μ

2�

)1/4
(34)

up to logarithmic corrections. Here, v� is defined through
mv2

�/2 = �. From this expression, we see that the residue
of the pole goes to zero at small μ as (μ/�)1/4. In Fig. 6,
we plot |Zq|/q at small q, using both the exact expression of
Eq. (33) and the approximate expression of Eq. (34), including
logarithmic corrections to Eq. (34). From Fig. 6, we see that
there is good agreement between the exact and approximate
expressions for Zq at small μ/�.

Although we focus on the residue of the Higgs pole
in χ

↓
H (z, q), this pole also appears in the susceptibilities

χ
↓
++(z, q) and χ

↓
+−(z, q), which correspond to the correlation

functions 〈|θ (q)|2〉 and 〈θ∗(q)λ(q)〉, respectively. Analogous
to the above calculation, one can obtain the residue of the pole
for χ

↓
++(z, q) and χ

↓
+−(z, q).

After doing so, one finds that the residue of the pole
in χ

↓
H (z, q) is much larger than the residue of the pole in

χ
↓
++(z, q) and χ

↓
+−(z, q) (by a factor of q2 and q, respec-

tively.) In other words, the pole at zq mainly leads to a
peak in the channel corresponding to amplitude fluctuations,
not phase fluctuations. This is true for all values of μ > 0.
This does not contradict the fact that there is indeed phase-
amplitude mixing at all μ > 0, as evinced by the fact that
M+−(z, q) �= 0. These conclusions agree with previous results
obtained in three dimensions [43,45].

FIG. 6. The ratio |Zq|/q as a function of μ/�, Eq. (33). The
purple line is an approximate analytic expression at small μ/�:
|Zq|/q ∝ (μ/2�)1/4, Eq. (34).

In Sec. VII, we show that amplitude and phase fluctuations
are decoupled at small q when the Coulomb interaction is
taken into account. In that case, the pole at zq is clearly only
attributable to amplitude fluctuations.

D. Susceptibility χH (ω, q) along the real axis

To calculate the observable ImχH (ω + iδ, q), we recall that
for ζ ∈ (0, 1), χH (ω + iδ, q) = χ

↓
H (ω, q). Near the location

of the pole in the lower half plane, we can write χ
↓
H (z, q) =

A + Zq/(z − ωq + iγq). If the pole is close to the real axis, we
then expect the spectral function ImχH (ω + iδ, q) to be ap-
proximately given by Im(A) + Im[Zq/(ω − ωq + iγq)]. This
has a peak at ω = ωq, and an approximate width of γq.

In Fig. 7(a), we plot the spectral function ImχH (ω + iδ, q)
obtained numerically using Eqs. (10)–(16) for five momenta
between q = 0 and q = 0.1kF , using δ = 10−5� and EF =
10E0 (corresponding to μ/� ≈ 1.42). The overlaid dashed
black lines are the curves obtained by fitting ImχH (ω + iδ, q)
to the function C + Im[Zq/(ω − ωq + iγq)]. Since we expect
this functional form to only be meaningful near the resonance
of the spectral function, we restrict each fit to only use data
points where ImχH (ω + iδ, q) > 0.8 max(ImχH (ω + iδ, q)).

We see that, at small q, ImχH (ω + iδ, q) closely resembles
the one-sided square-root singularity we expect from q = 0,
albeit with a peak above 2�. With increasing q, this peak
in the spectral function broadens substantially and moves to
larger values of ω. In Figs. 7(b) and 7(c), we present the
extracted values of ωq, γq and |Zq| from fitting each of the
five curves. We have also added a dashed gray curve to denote
the results expected from the analytical expressions derived
above. We find good agreement in the dispersion ωq and
damping rate γq, while the agreement between the numerical
and analytical results for |Zq| is a bit more ambiguous.

In particular, the values of |Zq| extracted from fitting to the
numerical data consistently lie above the line expected from
our analytical results. We attribute this to the ambiguity in the
method used to fit the data: although we restrict each fit to only
use data points above some threshold, ImχH (ω + iδ, q) >

0.8 max(ImχH (ω + iδ, q)), this 80% threshold is rather arbi-
trary. We find that the values of |Zq| extracted from fitting to
the data are rather sensitive to the precise threshold used.4

Nonetheless, we find that the values of |Zq| extracted from
fitting to the data agree with the analytical results within a
factor of ≈2 for all reasonable thresholds. Moreover, we find
that, for all thresholds employed, (i) |Zq| increases linearly
with q, and (ii) the phase of Zq, i.e., arg(Zq), is approximately

4ωq and γq also change with the threshold but continue to fit
the analytical expressions relatively well regardless of the precise
threshold used.
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FIG. 7. (a) The spectral function ImχH (ω + iδ, q) as a function of ω for different values of q at EF = 10E0 (μ = 9E0, � = 2
√

10E0,
μ/� = 1.42), setting δ = 10−5�. The dashed black lines are the fits to ImχH (ω + iδ, q) = C + Im[Zq/(ω − ωq + iγq )]. (b), (c) The behavior
of ωq, γq, and |Zq| as a function of q, extracted from the fits in panel (a). The dashed gray curves correspond to our analytical expressions.

3π/4. Both behaviors agree with the analytical expressions in
Eqs. (33) and (34).

We note in passing that our result that the peak in
ImχH (ω + iδ, q) in 2D exists for all μ > 0 (in contrast with
3D, where the peak only exists for μ > 0.8267�), agrees
with a previous numerical study, which found that the Higgs
mode is more visible in the dynamical structure factor in 2D
compared with 3D [51]. We also note that, as μ → 0, the
boundary frequency ω2 = 2� + (q2/2m)(μ/�) approaches
2�, i.e., the interval (2�,ω2) vanishes at μ = 0. This is in
line with the vanishing of the residue of the Higgs mode
Zq ∼ (μ/�)1/4 as μ → 0.

V. THE HIGGS MODE AT LARGER VALUES OF q

So far, we have analyzed the Higgs mode at small q. In
this section, we go beyond the small-q regime, continuing
to take μ > 0. We find how the Higgs mode evolves as a
function of q by numerically solving for the position of the
pole of χ

↓
H (z, q) without assuming that q is small (see Sec. C

of the SM for details [42]). Our results are shown in Fig. 8 for
EF = 10E0.

In Fig. 8(a), we show how the pole of χ
↓
H (z, q) moves

through the lower half plane as a function of q. With increas-
ing q, the pole at zq quickly moves away from the real axis,
leading to heavier damping of the Higgs mode. As q increases
beyond some threshold qc, Re(zq) becomes larger than ω2. In
this situation, χ

↓
H (z, q) is no longer continuous upon crossing

the real axis. At this point, the pole in the lower half plane
becomes a hidden mode—although the pole exists, it does not
lead to a peak in ImχH (ω + iδ, q) since it lies below a branch
cut of χ

↓
H (z, q). To highlight this transition, we mark the point

where the Higgs mode becomes hidden with a red diamond.
For q < qc, the Higgs mode is observable; we highlight these
values via a light-orange background. Similarly, the Higgs

mode is hidden for q > qc, and we highlight this region with
a light-blue background.

In Fig. 8(b), we present the spectral function ImχH (ω +
iδ, q), as well as the dispersion of the Higgs mode, Re(zq),
obtained by numerically solving det M̂(zq, q) = 0 for all q.
Additionally, we added a hatched region corresponding to
(2�,ω2)—values of Re(zq) in this region are not hidden
below a branch cut and lead to a peak in the spectral function.
From this plot, we see a sharp bright feature in the spectral
function near z = 2� and q = 0, which broadens with q. The
peak in ImχH (ω + iδ, q) disappears around q = 1.1kF , where
Re(zq) becomes larger than ω2. This behavior is fully con-
sistent with Fig. 8(a), where the pole moves with increasing
q deeper into the lower half plane and is eventually hidden
below a branch cut. As in Fig. 8(a), we highlight the moment
where the pole becomes hidden with a red diamond. Also
visible in Fig. 8(b) is the ABG mode, which disperses linearly
at small q. Its visibility in the Higgs (amplitude) susceptibility
arises from the phase-amplitude coupling, which is nonzero at
finite μ/�.

VI. THE HIGGS MODE FOR μ < 0

Thus far, we have restricted ourselves to the case where
μ > 0. In this section, we consider the behavior of the
Higgs mode for μ < 0. For this analysis, we first note that
both ω2 and ω3, depicted in Fig. 4, approach 2� as μ ap-
proaches zero from above. At μ = 0, ω2 = ω3 = 2�, and
the interval (2�,∞) coincides with the interval (ω3,∞). A
simple analysis shows that, for μ < 0, the frequency ω3 =
2[�2 + (|μ| + q2/8m)2]1/2 becomes the lower boundary for
the branch cut in χH (ω, q), ωmin, i.e., a branch cut exists for
ω > ω3 = ωmin.

This change in the branch-cut boundary can also be under-
stood by thinking of 2�, ω2, and ω3 as branch points of the
Higgs susceptibility. From this perspective, the branch points
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FIG. 8. The location of the pole and the spectral function ImχH (ω + iδ, q) in the BCS regime at EF = 10E0 (μ = 9E0, � = 2
√

10E0, and
μ/� = 1.42). (a) The path of the pole of χ

↓
H (z, q) through the lower half plane with increasing q. For q > qc = 1.08kF , the pole is hidden below

a branch cut, and does not lead to a resonance in the spectral function ImχH (ω + iδ, q). The transition point where the pole becomes hidden
is marked with a red diamond. We highlight the region where a pole leads to a peak in ImχH (ω + iδ, q) with a light-orange background, and
the region where the pole is hidden below a branch cut with a light-blue background. (b) The spectral function ImχH (ω + iδ, q) (color-coding
on the right), using δ = 10−5�. Purple line—Re(zq ), where zq is the position of the pole of χ

↓
H (z, q). The hatched green region corresponds to

frequencies between 2� and ω2. The two frequencies differ by q2 at small q and merge again at q = 2
√

2mμ. Values of Re(zq ) in the hatched
region correspond to those in the light-orange region in panel (a). Outside this region, the pole is hidden. The data show that the peak inside
the hatched region rapidly broadens with increasing q. The mode below 2� in panel (b) is the ABG mode.

2� and ω2 annihilate at μ = 0, leaving only the branch point
at ω3 for μ < 0. Mathematically, the disappearance of the
branch points at 2� and ω2 as μ changes sign corresponds
to a change in the topology of the Riemann surface at μ = 0.

To search for a resonance in the susceptibility χH (ω +
iδ, q), we now investigate its analytical continuation through
the real axis at ω > ω3 and search for a pole in χ

↓
H (z, q) in the

lower half plane. Skipping the details of the calculations, we
find that a pole exists at some z = zq, but Re(zq) < ω3. That
is, the pole at μ < 0 is hidden, since χ

↓
H (z, q) is discontinuous

across the real axis at ω = Re(zq). We therefore expect that
this pole does not lead to a peak in ImχH (ω + iδ, q).

Our results, presented in Fig. 9, confirm this. As in
Fig. 8(a), we plot the spectral function ImχH (ω + iδ, q) and
overlay Re(zq), where zq is the position of the pole of χ

↓
H (z, q)

in the lower half plane. We see from Fig. 9 that the Higgs
mode is relatively nondispersive: for all q which we study, the
real part of the pole lies near 2�. Although the position of the
pole is only presented in Fig. 9 for q � 0.3kF , we find that
the pole stays near z = 2� for larger values of q. The absence
of pole positions for larger q in Fig. 9 is due to numerical
difficulties.5

5We obtain the position of the pole in χ
↓
H (z, q) by solving

det M̂↓(zq, q) = 0 using Newton’s method. For poles sufficiently
close to the real-frequency axis, we find that Newton’s method does
not converge. This possible failure of Newton’s method for finding
complex roots is well known [53].

FIG. 9. ImχH (ω + iδ, q) in the BEC regime, at EF = 0.1E0 (μ =
−0.9E0, � = 0.63E0, and μ/� = −1.42) and δ = 10−5�. The color
coding is the same as in Fig. 8. The dashed green curve is the
edge of the two-particle continuum, which at finite q is ωmin =
2[�2 + (|μ| + q2/8m)2]1/2. The purple line shows Re(zq ), where
zq is the location of the pole of χ

↓
H (z, q). This Rezq is obtained

numerically by solving det M̂↓(zq, q) = 0 for each value of q. The
pole positions at larger q are not shown due to numerical difficulties
[52]. Although the pole is below the edge of the continuum, it leads
to a hidden mode and no peak in ImχH (ω + iδ, q) (see text). The
peak in ImχH (ω + iδ, q) at small ω corresponds to the ABG mode.
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We see from the figure that ImχH (ω + iδ, q) does not dis-
play any peak. This is consistent with the hidden nature of
the Higgs mode. The disappearance of the observable Higgs
peak in the BEC regime, where μ < 0, agrees with previous
theoretical results in 3D [43,54], experimental results for 3D
cold-atom systems [39], and numerical studies in 2D [51]. As
in the case of positive μ, the ABG mode is visible below the
two-particle continuum. Compared with Fig. 8, the dispersion
of the ABG mode is much flatter than for μ > 0. This can be
understood from the mean-field dispersion of the ABG mode,
ωABG(q) = cq where c = vF /

√
2 [55]. Since the velocity of

the ABG mode is proportional to vF , the dispersion of the
ABG mode becomes flatter as the density decreases.

VII. INCLUDING THE COULOMB INTERACTION

We now extend our analysis to account for the effects of
the long-range Coulomb interaction. To do so, we return to the
action. Extending Eq. (1) to include the Coulomb interaction,
we have

S[ψ̄, ψ] =
∑

k

ψ̄kσ

(
−iωn + k2

2m
− μ

)
ψkσ

− g
T

L2

∑
kqp

ψ̄k+q/2↑ψ̄−k+q/2↓ψ−p+q/2↓ψp+q/2↑

+ T

2L2

∑
pkq

ψ̄p+qσ ψ̄k−qσ ′Vc(q)ψkσ ′ψpσ , (35)

where the Coulomb interaction in two dimensions is Vc(q) =
2πe2/q. To decouple the quartic terms, we introduce two
Hubbard-Stratonovich fields, � and � for the particle-particle
and particle-hole channels, respectively. The mean-field equa-
tions for � and �, δS/δ� = 0 and δS/δ� = 0, yield � = 0
and an unchanged gap equation Eq. (4). Similarly, the con-
straint of particle-number conservation yields Eq. (5), as in
the neutral case. Then we still have μ = EF − E0 and � =
2
√

EF E0.
Of course, in reality the Coulomb repulsion does affect

μ and �: it certainly weakens a system’s tendency toward
s-wave superconductivity [47,56–58] and may also lead to
superconducting instabilities in non-s-wave channels [59,60].
That μ and � are unaffected by the repulsive Coulomb in-
teraction in our calculation follows from the fact that we
decouple the Coulomb interaction in the particle-hole channel
but not in the particle-particle channel. This is an approxima-
tion which we use simply because our goal is to analyze the
effect of the Coulomb interaction on the Higgs mode.

To include fluctuations, we introduce as before the ampli-
tude and phase fluctuation fields λ(x) and θ (x). Additionally,
we include fluctuations of �(x) about the mean field � = 0.
Expanding the action to quadratic order in λq, θq, and �q and
integrating out �q following Ref. [33], we obtain the effective
action in the form

Seff = S0 + β�2L2
∑

q

(θ∗
q λ∗

q )M̂(i�m, q)

(
θq

λq

)
, (36)

where the matrix elements are now

M++(z, q) = 1

g
+ 1

2

(
χ22(z, q) − χ23(z, q)2

V −1
c (q) − χ33(z, q)

)
,

(37)

M−−(z, q) = 1

g
+ 1

2

(
χ11(z, q) + χ13(z, q)2

V −1
c (q) − χ33(z, q)

)
,

(38)

M+−(z, q) = 1

2

(
χ12(z, q) − χ23(z, q)χ13(z, q)

V −1
c (q) − χ33(z, q)

)
. (39)

The susceptibilities χ11, χ22, and χ12 are the same as in
Eqs. (13), (14), and (15), respectively. The new susceptibil-
ities χ33, χ13, and χ23, which appear in the presence of the
Coulomb interaction, are

χ33(z, q) = −2
∫

d2 p

(2π )2

E+ + E−
2E+E−

ξ+ξ− − E+E− − �2

z2 − (E+ + E−)2 ,

(40)

χ13(z, q) = 2�

∫
d2 p

(2π )2

E+ + E−
2E+E−

ξ+ + ξ−
z2 − (E+ + E−)2 , (41)

χ23(z, q) = 2i�z
∫

d2 p

(2π )2

E+ + E−
2E+E−

1

z2 − (E+ + E−)2 .

(42)

Our goal is to calculate the Higgs susceptibility χH (z, q) =
M++(z, q, )/ det M̂(z, q) at small but finite q. As in Sec. IV,
we assume that the pole is at z = zq = 2� + ζ (q2/2m)(μ/�)
and search for a solution of det M̂(zq, q) = 0. We find (see
Sec. F of the SM for details [42]) that at arbitrary μ > 0,
M++(zq, q) and M−−(zq, q) are O(q), while M+−(zq, q) =
O(q2). From this, we see that the long-range Coulomb interac-
tion effectively decouples the amplitude and phase oscillations
in the long-wavelength limit, regardless of the value of μ/�.
We then simply have

χH
(
zq, q

) ≈ 1

M−−
(
zq, q

) . (43)

To obtain M−−(zq, q) at small q, we set χ13(zq, q) ≈
χ13(2�, 0) and neglect V −1

c (q) compared with χ33(zq, q),
which is O(1/q). Evaluating χ33 in the same way as in
Sec. IV(see also Sec. A of the SM for a similar calculation
[42]) and using our earlier result for χ11(zq, q), we find

M−−(zq, q) ≈ −iN0
2�

vμq

√
ζ

K
(

1√
ζ

)[E

(
1√
ζ

)
K

(
1√
ζ

)

+ 1

16
ln

(√
�2 + μ2 + �√
�2 + μ2 − �

)2]
. (44)

Analytically continuing M−−(zq, q) into the lower half
plane for ζ ∈ (0, 1) as we did in Sec. IV, we obtain
the Higgs susceptibility χ

↓
H (zq, q) in the presence of the
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Coulomb interaction as

χ
↓
H (zq, q) = i

N0

2�

vμq

1√
ζ

×
K
(

1√
ζ

)− 2iK (
√

1 − ζ )
√

ζ

[
K
(

1√
ζ

)− 2iK (
√

1 − ζ )
√

ζ
]{

E
(

1√
ζ

)+ 2i[E (
√

1 − ζ−1) − K (
√

1 − ζ−1)]
}+ 1

16

[
ln

(√
μ2+�2+�√
μ2+�2−�

)]2 . (45)

This is exactly the same equation for ζ as Eq. (30) in the
absence of the Coulomb interaction. From this, we see that,
although the Coulomb interaction drastically modifies the
character of the phase oscillations, transforming the ABG
mode into the plasmon, the Higgs mode is unaffected by the
presence of the long-range Coulomb interaction. A similar
calculation shows that the Higgs mode is also unaffected by
the long-range Coulomb interaction in 3D.

This result is unintuitive, since the presence of Coulomb
interaction leads to a decoupling of amplitude and phase os-
cillations at all μ/�. Hence, one might reasonably expect the
Higgs mode to behave substantially differently in the charged
system compared with a neutral superfluid. It is therefore
remarkable that the location of the Higgs mode is identical
in both the neutral and charged systems.

We verify these analytical results by numerically calcu-
lating the spectral function ImχH (ω + iδ, q) in the charged
system. For these calculations, we employ the dimension-
less Wigner-Seitz radius, rs = 1/(πna2

0)1/2, where n is the
fermionic density and a0 = 1/me2 is the Bohr radius. Re-
calling that kF = √

2πn, the Coulomb interaction in terms of
rs is Vc(q) = 2πe2/q = rs/(

√
2N0q̄), where q̄ = q/kF . In our

numerical calculations, we set rs = 1 when EF = 10E0. Since
rs ∼ 1/

√
EF , rs at any other Fermi energy can be obtained

through rs(EF ) = √
10E0/EF .

In Fig. 10, we plot ImχH (ω + iδ, q) in the charged system,
using EF = 10E0 in Fig. 10(a) and EF = 0.1E0 in Fig. 10(b).
Compared with Fig. 8(a), the only significant difference in the
spectral function is in the ABG mode. The ABG mode, which
disperses linearly with q in the neutral system, transforms
into the plasmon in the charged system, which disperses as√

q in 2D. More drastically, we find that the inclusion of
the Coulomb interaction leads to dramatic depletion of the
spectral weight of the gapless mode, especially in the high-
density case of Fig. 10(a). To make the plasmon mode visible
in Fig. 10(a), we multiplied ImχH (ω + iδ, q) by a factor of
five for ω < 2�. This highlights the significant decoupling of
amplitude and phase fluctuations in the charged system and is
fully consistent with our analytical treatment. Moreover, our
numerical results show that the decoupling is not restricted to
only small q but persists to substantially larger q � kF .

In the case of Fig. 10(b) where we are in the BEC regime,
we also find that the Higgs mode is not affected by the
Coulomb interaction. In particular, just as in the neutral super-
fluid (cf. Fig. 9), there is no peak in ImχH (ω + iδ, q) which
can be attributed to the Higgs mode. This agrees with the
results of Ref. [33]. Instead, we only have a plasmon peak
below the two-particle continuum.

From Fig. 10, we see that the plasmon is much more visible
in the Higgs spectral function in the BEC limit compared with
the BCS limit, where we artificially multiplied the plasmon
spectral weight by a factor of five to make it visible. This
difference in visibility between the BEC and BCS limits can
also seen in the neutral system (cf. Figs. 8 and 9.) However,
the difference is much more stark in the charged system, sug-
gesting that the phase-amplitude mixing at nonzero q grows
quickly as we move from the BCS to the BEC limit.

FIG. 10. The spectral function ImχH (ω + iδ, q) in the charged
system, for (a) EF = 10E0 and (b) EF = 0.1E0, setting δ = 10−5�.
As in Fig. 8, the hatched green region in panel (a) corresponds to fre-
quencies between 2� and ω2. Poles with Re(zq ) inside this hatched
region lead to peaks in the spectral function. The dashed purple line
is the analytical result for the small-q dispersion of the Higgs mode.
In panel (b), the dashed green curve delineates the boundary of the
two-particle continuum at ωmin = 2[�2 + (|μ| + q2/8m)2]1/2. The
dispersive peak below the two-particle continuum in both panels is
the plasmon mode ωp(q). In panel (a), we scaled ImχH (ω + iδ, q)
by a factor of five for ω < 2� to enhance visibility of the plasmon
mode.
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VIII. DISCUSSION

In this work, we obtained the dispersion, damping rate,
and residue of the Higgs mode in two dimensions across the
BCS-BEC crossover and analyzed under which conditions
this mode gives rise to a peak in the imaginary part of the
Higgs susceptibility, ImχH (ω + iδ, q), a quantity which is
observable using spectroscopic probes.

To detect the Higgs mode, we calculated the Higgs sus-
ceptibility χH (z, q) in the upper half plane of complex z and
obtained its analytic continuation χ

↓
H (z, q) into the lower half

plane. We found that χ
↓
H (z, q) has a pole (the Higgs mode),

whose location in the lower half plane is zq = 2� + (0.5 −
iβ )(q2/2m)(μ/�) for μ > 0 and small q. Here, the damping
parameter β is given by β = 0.4302 at μ � � and diverges
as e

16

√
2�/μ for μ 	 �. Additionally, we calculated the

residue Zq of the pole, finding that Zq scales linearly with q,
and goes to zero at μ = 0 as (μ/2�)1/4. We found that for
small q, the Higgs mode gives rise to a peak in the observable
ImχH (ω + iδ, q) for any positive value of the dressed chem-
ical potential μ. We then numerically obtained the position
of the pole at larger q, finding that the Higgs mode does
not give rise to a peak in ImχH (ω + iδ, q) once q crosses
some threshold value. For negative μ, we found that the Higgs
mode is hidden below a branch cut and does not lead to any
peak in ImχH (ω + iδ, q). Lastly, we included the effect of
the long-range Coulomb interaction and demonstrated that its

inclusion does not affect the Higgs mode, despite the fact that
it decouples the phase (density) and amplitude channels.

A final note: in this work we only decoupled our attractive
Hubbard interaction in the particle-particle channel, neglect-
ing its effect on the particle-hole channel. This is valid in
the high-density or weak-coupling limits, where particle-hole
symmetry holds. Away from these limits, renormalization of
χH (z, q) in the particle-hole channel from the Hubbard inter-
action, similar to our treatment of the Coulomb interaction in
Sec. VII, is likely necessary to obtain the correct dispersion of
the Higgs mode [61].

In summary, our work adds to a growing corpus of theoret-
ical studies of amplitude excitations in superconductors and
other systems [24–35] and particularly to the studies of the
coupling between collective modes and a continuum of single-
particle excitations [62–68]. The generality of the techniques
employed here suggests that analytical continuation may be
helpful in the study of other physical problems, such as that of
plasmon decay inside the particle-hole continuum of strange
metals [69].
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