
PHYSICAL REVIEW B 107, 134517 (2023)

Emergent U (1) symmetries in gapless fermionic superfluids and superconductors

Fei Zhou
Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road,

Vancouver, British Columbia, Canada V6T 1Z1

(Received 22 November 2022; revised 10 February 2023; accepted 6 April 2023; published 21 April 2023)

A superfluid spontaneously breaks the usual U (1) symmetry because of condensation. In this article, we
illustrate six linearly independent families of emergent U (1) symmetries that naturally appear in infrared
limits in a broad class of generic gapless topological superfluids (that either belong to a stable phase or are
quantum critical). In gapless states we have considered, emergent U (1) symmetry groups are embedded in a
Spin(4) = SU (2) ⊗ SU (2) group that double covers (and algebraically is isomorphic to) an SO(4) group. All
U (1) charges associated with symmetries are further invariant under an SU (2) spin group or an equivalent
of it but always break preexisting higher space-time Lorentz symmetry of the SO(3, 1) group. Emergent
U (1) symmetries can be further spontaneously broken only if interactions are strong enough and resultant
strong-coupling states become fully gapped. However, if states remain gapless, emergent U (1) symmetries
are always present, despite that these states may exhibit much lower space-time symmetries compared to their
weakly interacting gapless Lorentz symmetric counterparts. In the limit of our interests, we have identified all
possible gapless real fermions with or without Lorentz symmetries and find that they all display emergent U (1)
symmetries in the infrared limit. We argue emergent U (1) symmetries are intrinsic in a broad class of interacting
gapless superfluid or superconducting states and are typically well defined in high dimensions where there are
infrared stable fixed points dictating emergent properties.
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I. INTRODUCTION

It is well known that the U (1) symmetry is always spon-
taneously broken in superfluids (or to a large extent in
superconductors). So in either superfluids or superconductors,
charges are not conserved because of condensates in ground
states and low-energy dynamics are generically characterized
by emergent real fermions rather than conventional complex
fermions. These emergent particles are not only crucial in
discussions of topological states, but also play critical roles
in studies of topological quantum criticality as well as in
applications to quantum technologies [1–10].

Naturally related to emergent fermions are the emergent
symmetries of these fields or particles. In a broad class of
topological states where not only U (1) symmetry but also
other continuous symmetries such as rotational symmetry are
broken, there can be surprising emergent symmetries of very
large groups in the low-energy subspace. These symmetries
can be totally unexpected as one usually does not anticipate
their appearance in low-energy scales solely based on mi-
croscopic considerations. Their existence at first sight even
appears to be inconsistent with underlying symmetries. Nev-
ertheless, they do emerge in many physical systems.

Consider a topologically nontrivial three-dimensional
(anti) p-wave superfluid or superconductor with time-reversal
symmetry. A well-known concrete example for this can be a
Balian-Werthamer (BW) state of p-wave superfluid or helium-
3 B phase [11] that breaks U (1) symmetry and spatial rotation
symmetry (but with spin-spatial rotation symmetry intact).
In strong-coupling limits where pairing is very strong or
the one-particle band is flat so that Fermi surface effects

are completely suppressed, the low-energy dynamics can be
fully described by real fermions with an emergent Lorentz
symmetry while underlying fermions are entirely nonrela-
tivistic [6,8]. In this case, strong interactions lead to highly
surprising dynamics with very high symmetry.

These emergent symmetries have played very important
roles in previous studies of topological quantum criticality in
superfluids. In fact, they are part of symmetry groups that have
been used to identify universality classes, apart from discrete
global symmetries [12–14]. While continuous emergent sym-
metries usually lead to concrete scaling symmetries, discrete
global symmetries define the number of relevant low-energy
degrees in fermion fields or central charges. Both are crucial
in studies of thermodynamics and dynamics near topological
critical points.

The emergent symmetries in gapless limits are also usually
further higher than adjacent gapped phases. This can be un-
derstood in terms of mass operators in gapped phases. The
presence of these additional mass operators always lowers
preexisting symmetries of their gapless counterparts. From
this point of view, gapless states, either critical or belonging to
stable phases, usually have the highest emergent symmetries
when compared with surrounding gapped phases. This article
is mainly focused on those highly symmetric gapless states.
The topological and dynamic stability of various gapless states
has been the focus in many previous studies [15–28] and we
will refer the reader to those original works.

Below we will mainly emphasize two important aspects of
translationally invariant gapless superfluids or superconduc-
tors. One is about connections between physically different
gapless states that exhibit the Lorentz-invariant dynamics with
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the same partition functions, and relations between emergent
U (1) symmetries in different systems. This is effectively to
classify and establish equivalent families of apparently differ-
ent gapless states with different emergent U (1) symmetries
unique to gapless states.

More specifically, each unique emergent symmetry in a
specific gapless state is associated with invariance under a
particular transformation induced by a generator. In the limit
of our interests, all these generators turn out to be purely
imaginary or antisymmetric Hermitian operators. The com-
plete set of such operators can be classified into ones of an
SU (2) spinor rotation subgroup of Lorentz transformation
generated by Si j , i �= j = x, y, z, and ones of its dual SU (2)
group induced by Si j

D , i �= j = x, y, z, that are mutually com-
muting with Si j . The combination of these two SU (2) groups,
SU (2) ⊗ SU (2), forms a Spin(4) group of real fermions that
double covers an SO(4) group with isomorphic algebras.

Emergent U (1) symmetry groups are thus embedded in
this Spin(4) = SU (2) ⊗ SU (2) group. The conserved charge
associated with the emergent symmetry is always rotationally
invariant under the action of Si j and has to be represented
by one of the generators in the dual group, Si j

D . However, if
gapless states become gapped, we find the unique emergent
U (1) symmetry associated with gapless liquids is always bro-
ken although the Lorentz symmetry always remains.

The second objective is to explore relations between gap-
less states with higher symmetries including SO(3, 1) Lorentz
symmetry and more general gapless states with much lower
symmetries, i.e., without the Lorentz symmetry. In the limit
we have considered, the emergent U (1) symmetry associated
to the dual group generated by Si j

D , i, j = x, y, z, and its con-
served charges is always present as far as states are gapless,
disregarding the Lorentz symmetry. Quantum dynamics of
gapless liquids strongly depend on whether they display a full
SO(3, 1) Lorentz symmetry, or there is only a lower SO(3)
or SO(2) rotation symmetry. However, it appears that they all
share the same emergent U (1) symmetries associated with the
dual group of Si j

D , disregarding differences in dynamics. We
conjecture such an emergent symmetry to be fundamental to
many gapless states in superfluids or superconductors.

The article is organized as follows. In Sec. II, we introduce
effective field theories for discussions of gapless states in
superfluids or superconductors. We argue that Lorentz sym-
metry naturally emerges when only the most relevant terms
are included. We also explicitly list the symmetry properties
(complex vs real) of Dirac operators and Lorentz group gen-
erators in the real fermion representation used in this article.
In Sec. III, we illustrate the structure of unitary rotations of
the real fields. These unitary rotations which are represented
by real matrices only form a Spin(4) group. In Sec. IV, we
briefly summarize the main results.

In Sec. V, we examine all the generators which appear in
the Spin(4) group algebras and show that one can always iden-
tify one of them as a U (1) symmetry generator in any limits.
We therefore illustrate U (1) symmetry as a robust feature in
gapless superfluid states near a stable infrared fixed point and
also discuss to what extent they can emerge in the infrared
limit. In Sec. VI, we discuss the emergent U (1) charges in a
few concrete gapless superfluid states such as strong-coupling

p-wave superfluids and nodal point phases, and explore pos-
sible physical consequences of emergent charges. In Sec. VII,
we illustrate that the emergent infrared U (1) symmetry can
also be an asymptotic symmetry in more generic interacting
gapless states. Moving into higher energies, however, we find
that U (1) can naturally evolve into Z2 symmetries in gap-
less liquids. In Sec. VIII, we discuss what happens to the
emergent U (1) symmetries in gapless superfluids in more
general cases without the Lorentz symmetry. We further show
that by condensing one of generalized mass operators that
break the Lorentz symmetry, the gapless liquids can be further
transformed into other gapless states with rotational symme-
tries only, lower than the Lorentz symmetry. Nevertheless, the
U (1) symmetry is still intact in all gapless liquids we have
examined. It can be broken only when the Lorentz symmetry
remains unbroken but states become fully gapped. In Sec. IX,
we conclude our studies and point out a few open questions.
Some of detailed analyses are presented in Appendixes so the
discussions in the article are self-contained. In Appendix A,
we show explicitly the structure of the Spin(4) group which
double covers SO(4) and leads to the desired rotations of real
fermions. We also define a specific basis for the constructions
of effective field theories (EFTs) for different physical sys-
tems in this article. In Appendix B, we show various mappings
between effective field theories for different physical systems
and hence establish an equivalence between different U (1)
symmetries or U (1) charges from the point of view of EFTs.

II. EFFECTIVE FIELD THEORIES FOR RELATIVISTIC
REAL FERMIONS

A. Effective field theories

To understand interaction dynamics in superfluids and
superconductors, especially topological aspects, it is often
very convenient to employ the real fermion representation to
faithfully represent the intrinsic charge conjugation symme-
try. Below we use the real fermion representation to explore
simple relations between physically very different supercon-
ducting states or superfluids. The purpose is to show that
dynamics in many different systems are entirely equivalent
and are universal and therefore studying one is equivalent to
exploring the whole equivalent class.

Without losing generality, we can cast an interacting
Hamiltonian of gapless real fermions in the following infrared
form:

Heff = 1

2

∫
dr[χT (r)α · i∇χ (r)

+ g1χ
T β1χχT β1χ + g2χ

T β2χχT β2χ + · · · ], (1)

where α = (αx, αy, αz ). And αi, i = x, y, z, and β1,2 are mutu-
ally anticommuting Hermitian matrices. That is,

{αi, α j} = 2δi, j, {βm, βn} = 2δm,n, {αi, βm} = 0,

α
†
i = αi, β†

m = βm, i = x, y, z, m = 1, 2. (2)

We will restrict to real fermions with four components,
which turns out to be a minimum number of degrees of free-
dom for our discussions,

χT = (χ1, χ2, χ3, χ4), χ†
i (r) = χi(r), {χi, χ j} = δi j . (3)
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We have also chosen to introduce two interactions, g1,2, for
later discussions on emergent symmetries, although for the
four-component real fermions, these two operators turn out
to be always equivalent. So for the convenience of the rest of
the discussion in this section, we first set g1 = g0 and g2 = 0,
and β1 = β0; this is equivalent to a procedure of gauge fixing
in the case of emergent global U (1) symmetries or dropping
a less relevant channel in the case of emergent Z2 symme-
tries. One can also verify that to be fully consistent with real
fermion representations, β0 also has to be purely imaginary
and antisymmetric; otherwise the four-fermion operator be-
comes nullified. And α matrices are real and symmetric, that
is,

αT
i = αi = α∗

i , βT
0 = −β0 = β∗

0 , i = x, y, z. (4)

In presenting Eq. (1), we have only kept the most relevant
kinetic and interaction terms.

First, we have muted the terms bilinear in χ but higher
order in ∇, i.e., χ∇2χ, χ∇3χ, . . ., as they are less relevant
in the infrared limit. We have also readjusted the velocity of
fermions along the x, y, z directions to be equal by a trivial
rescaling of x, y, z and keep the terms linear in ∇. In very
special cases when one of the velocities is exactly zero and
the leading terms involve ∇2, the effective theory will be of
quantum Lifshitz Majorana fields. The physics of those was
discussed in Ref. [12] and will not be the focus here. However,
most of the conclusions derived here are also applicable to
those models in the infrared limit, as generally ∇2 terms
are less relevant than terms linear in ∇ we have kept here.
Equation (1) is a generic infrared theory for a broad class
of gapless superfluids or superconductors with intrinsic (rela-
tivistic) particle-hole symmetries and with dynamics captured
by leading linear-in-∇ terms.

From the point of view of scaling dimensions, Lifshitz
Majorana fields are less generic as they require fine tuning of
fermion velocity to zero so that more relevant kinetic terms
vanish identically. Therefore, unless such an effective field
theory violates additional symmetry constraints, Eq. (1) will
be considered to be a more generic form of low-energy in-
teracting real fermions which is naturally Lorentz invariant.
However, if physical systems are further constrained by other
continuous symmetries such as SO(2) or SO(3) spatial rota-
tional ones, effective fields then have to fall into those Lifshitz
classes discussed before [12].

Second, we also have muted the four-fermion terms involv-
ing additional ∇ (i.e., χ∇3χ, . . .) as they are also less relevant
compared to the four-fermion terms kept.

This generic form of gapless real fermions naturally has a
very high space-time Lorentz symmetry. We will take this as
a starting point of discussions on gapless fermions. For the
purpose of emergent U (1) symmetries to be discussed later,
it turns out that this naturally emergent high space-time sym-
metry is not essential at all and the emergent U (1) symmetry
can appear in all other Lorentz-noninvariant gapless fermion
systems including the ones with Fermi surfaces. Nevertheless,
this highly symmetric limit is the most convenient focal point
where other gapless fermions can be easily related and, for
that reason, we will spend quite a bit of effort to examine this
limit first before extending to other less symmetric but equally
interesting cases.

For the same reason, we also first restrict ourselves to
Lorentz symmetric interactions g1,2 only and do not consider
less relevant interactions that break the Lorentz symmetry.
Later, we will see algebras in Eq. (2) are sufficient for emer-
gent Lorentz symmetry, even when interactions are strong.

B. Emergent Lorentz symmetry

The generic model for infrared physics defined by α, β0 has
an emergent Lorentz symmetry as in the standard relativistic
theories. For instance, one can then construct the 4 × 4 �

matrices and Lorentz group generators in a standard way:

�0 = β0, �i = β0αi, i = x, y, z,

{�μ, �ν} = gμν, μ, ν = 0, x, y, z. (5)

The Lorentz boost operators are generated by S0i, i =
x, y, z, and rotations are Si j , i �= j = x, y, z. Together they
generate the SO(3, 1) Lorentz group. They can be explicitly
defined in terms of αi, β0, i = x, y, z:

S0i = i

2
αi, Si j = −S ji = − i

4
[αi, α j]; i, j = x, y, z. (6)

Furthermore, the boost operators are anti-Hermitian, sym-
metric, and purely imaginary; the rotation ones as usual are
Hermitian and antisymmetric and purely imaginary, i.e.,

S0i† = −S0i = −S0iT = S0 j∗,

Si j † = Si j = −Si j T = −Si j∗, i �= j = x, y, z. (7)

It is important to notice that the Lorentz SO(3, 1) group
can be fully generated by S0i and Si j which are independent
of the choices of β as far as Eqs. (2) are satisfied. So the
Lorentz symmetry can emerge even when g2 is nonzero and
interactions of β2 type are present. From now on, we can relax
the condition of g2 = 0 and again keep both g1,2.

We can further define si = 1
2εi jkS jk . Following the general

anticommuting relations between αi in Eqs. (2), we verify
that si, i = x, y, z, being antisymmetric and purely imaginary,
satisfy the simple SU (2) algebra, i.e., Si j form the algebras of
an SU (2) spinor subgroup in the Lorentz group of SO(3, 1).
Together with ti = S0i, {si, ti}, i = x, y, z in Eq. (6) indeed lead
to the SO(3, 1) algebras of the Lorentz group,

[si, s j] = iεi jksk, [ti, t j] = −iεi jksk, [si, t j] = iεi jktk, (8)

where i, j, k = x, y, z.
For an operator to be Lorentz invariant, the operator has

to commute with the rotation subgroup generators Si j , i �=
j = x, y, z, but anticommute with the boost generators of S0i.
Following Eq. (6), any operator anticommuting with αi or
the booster operators S0i is also rotationally invariant; so it
is further Lorentz invariant. For this reason, β0 is obviously
Lorentz invariant by this definition,

{β0, S0i} = [β0, Si j] = 0, i �= j = x, y, z. (9)

III. Spin(4) GROUP IN EFTs OF REAL FERMIONS

To construct EFTs of real fermions and find a specific
representation for αi, β0, i = x, y, z, we group all Hermitian
matrices into two big categories: (1) real and symmetric ones
that can only appear along with gradient operators or odd
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powers of gradient operators and (2) imaginary and antisym-
metric ones that can only appear along with mass terms or
even powers of gradient operators.

In this article, we are mainly interested in four component
real fermion field theories, which is equivalent to one-half of
standard three-dimensional four-component Dirac fermions.
The 4 × 4 Hermitian matrices form a representation of su(4),
a algebraic group [note the SU (4) group itself is not a sym-
metry group for real fermions discussed here] that contains
three independent SU (2) subgroup algebras; these subgroups
play important roles in later discussions. We construct these
operators via a tensor product of two SU (2) group algebras,
one acting on the particle-antiparticle Nambu space by τ1,2,3

and the other acting on the standard spin space by σx,y,z. The
15 Hermitian matrices constructed in this way are 6 imaginary
and asymmetric operators and 9 real and symmetric operators:

K1 = τy ⊗ σx, K2 = 1 ⊗ σy, K3 = τy ⊗ σz,

F1 = τx ⊗ σy, F2 = τy ⊗ 1, F3 = τz ⊗ σy,

τx ⊗ σx, τx ⊗ σz, τz ⊗ 1,

τz ⊗ σx, τz ⊗ σz, τx ⊗ 1,

1 ⊗ σx, 1 ⊗ σz, τy ⊗ σy. (10)

Note that six asymmetric operators form two independent
SU (2) subgroup algebras isomorphically and respectively:

[Ki, Kj] = i2εi jkKk, [Fi, Fj] = i2εi jkFk,

[Ki, Fj] = 0, i, j = 1, 2, 3. (11)

Unlike the standard Pauli matrices, these purely imaginary
Hermitian matrices form a real representation of SU (2) ro-
tations and can be employed to perform SU (2) rotations of
real fermion fields. They play paramount roles in emergent
symmetries and spontaneous symmetry breaking of them. One
can show in our EFT that all the unitary transformations that
leave real fermions in a real representation can be generated
by these six operators, i.e., a Spin(4) group algebra. We will
name the symmetries associated with real SU (2) rotations
generated by Ki, i = 1, 2, 3, as the σ symmetry, and the ones
associated with SU (2) rotations generated by Fi, i = 1, 2, 3,
as the τ symmetry. As evident, these two SU (2) groups are
invariant under an interchange of σ → τ , τ → σ leading to a
σ − τ duality (see Appendix A for details).

Two SU (2) groups also double cover an SO(4) rotation
group. Indeed, they naturally form the standard Spin(4) group
for real fermions under consideration. Their algebras are iso-
morphic to those of an SO(4) group:

Spin(4) = SU (2) ⊗ SU (2) → SO(4). (12)

So when acting on real fermion fields, they naturally induce
SO(4) rotations in the Hamiltonian of real fermion fields. In
the later discussions, we will mainly focus on the algebraic
aspect of this group rather than the topological ones and
sometimes use Spin(4) and SO(4) interchangeably without
further distinguishing them. The Spin(n), n = 4, group nat-
urally emerges in our current discussions of symmetry as spin
groups are generic to real or charge-neutral fermions. They are
also special limits of more general Clifford algebras defined
for general Riemannian manifolds. We refer to more general

discussions on relations between spin groups and Clifford
algebras in Ref. [29]. From a physics point of view, spin
groups Spin(n) can be thought of as a quantized version of
classical groups SO(n) as groups of Spin(n) take into account
essential quantum aspects of real fermion spin dynamics.

IV. SUMMARY OF THE MAIN RESULTS

The main conclusions are that in gapless superfluids,
generically there can be unexpected emergent U (1) symme-
tries different from the conventional charge-U (1) symmetries
that are already spontaneously broken in superfluids (or su-
perconductors). The results obtained below are inferred by
the EFT introduced in the previous sections and symmetry
structures discussed there. When applied to fermionic super-
fluids that already break the charge-U (1) symmetries or to
superconductors, we find that there are naturally emerging
U (1) symmetries in infrared limits. And these emergent U (1)
symmetries imply a class of new conserved charges in a
variety of gapless superfluids or superconductors which is the
main subject of investigation in this article.

These emergent U (1) symmetries can appear in the in-
frared limit even when real fermions are interacting (but when
certain less relevant irrelevant interactions are suppressed).
Moving into higher energy windows, U (1) symmetries usu-
ally are reduced to lower Z2 symmetries. In the presence of
strong interactions or generalized external fields when su-
perfluids become gapped, the U (1) symmetries are always
broken while the Lorentz symmetry is still intact.

We also find that emergent U (1) symmetries are always
present in gapless superfluids or superconductors even when
the emergent Lorentz symmetry of SO(3, 1) is broken down to
a lower SO(3) or SO(2) spin rotation symmetry. In the limits
we have considered, all gapless states have an emergent U (1)
symmetry, disregarding the space-time symmetry. It seems to
suggest that emergent U (1) symmetries are a characteristic of
a broad class of gapless superfluids. All the U (1) symmetry
groups that appear in our studies are generated by a super-
position of six linearly independent generators in a Spin(4)
group.

Finally, let us point out a close connection as well as
differences between the fundamental or intrinsic charge-U (1)
symmetry in Weyl fermions and the emergent U (1) sym-
metries in gapless superfluids (or superconductors) discussed
here where the conventional charge U (1) symmetry has been
broken. For gapless stats with Lorentz symmetry, the map-
ping between these two classes of theories turns out to be
a convenient starting point of discussion, as illustrated in
the Appendixes. Although mathematically they are closely
related and indeed can be mapped into each other, a single
Weyl cone is not a valid low-energy sector for 3D lattice
Weyl fermions with charge-U (1) symmetry, because of the
well-known fermion doubling problem. It can only be a valid
representation of single-cone 3D Weyl fermions living on the
surface of a four-dimensional (4D) bulk, a highly hypothetical
situation. However, such a single Weyl cone turns out to be
a valid representation of 3D bulk lattice fermions in super-
fluids, entirely due to the breaking of the usual charge-U (1)
symmetry. Therefore, EFTs for gapless superfluids appear to
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be anomalous from the standard 3D bulk Weyl fermion point
of view.

In this sense, the close relation between EFTs is purely
at a level of theoretical abstraction rather than at a level of
physical reality. See next section for more discussion. EFTs
of 3D gapless superfluids can in fact be mapped into single-
cone Weyl fermions that do not exist in 3D lattices because
of fermion doubling. Physically, all the different types of
U (1) charges that emerge in superfluids or superconductors
as consequences of the emergent U (1) symmetries are fun-
damentally distinct from the conventional particle number
conservation in metals or insulators.

And as stated before, U (1) symmetries also emerge in the
limit when the Lorentz symmetry is broken down to lower
rotational symmetries in the presence of various condensa-
tion. In those cases, there are no longer explicit connections
between Weyl fermions discussed in standard relativistic
quantum field theories and gapless states that we are interested
in.

V. EMERGENT U (1) SYMMETRIES AND CONSERVED
CHARGES IN EFTs

In Appendixes A and B, we discuss how to identify an
EFT for a particular system using a specific basis that de-
fines the unique relation between real fermions and physical
fermions [see also Eq. (A7)]. Namely, χT = (χ1, χ2, χ3, χ4)
are uniquely defined as

χ1(r) = 1√
2

[ψ↑(r) + ψ
†
↑(r)],

χ2(r) = 1√
2

[ψ↓(r) + ψ
†
↓(r)],

χ3(r) = i√
2

[ψ↑(r) − ψ
†
↑(r)],

χ4(r) = i√
2

[ψ↓(r) − ψ
†
↓(r)]. (13)

Here 1, 2, 3, 4 are indices for the real fermions, and ↑,↓
are ones for spins or pseudospins depending on microscopic
starting points. ψ

†
↑,↓ (ψ↑,↓) are the creation (annihilation)

operators of complex physical fermions.
Using this specific basis of real fermions, each physical

system then has a unique concrete EFT in the general form
of Eq. (1) but with definitive α, β matrices and a definitive
Lorentz group structure. For each physical gapless state, there
will be a unique emergent U (1) symmetry or U (1) charge
that is conserved in the infrared limit. All the possible U (1)
symmetry groups are generated by one of the six linearly
independent Spin(4) group generators or a superposition of
them.

Furthermore, one can also show that EFTs obtained in this
specific way for different physical systems can be connected
with each other by rotations in the Spin(4) group. The map-
ping establishes an equivalence between a variety of U (1)
symmetries that appear in very different gapless superfluids.
As illustrated in the Appendixes, they can all be mapped
into the charge-U (1) symmetry of a hypothetical single Weyl
cone in three dimensions. It is worth remarking again that

physically, the single-Weyl-cone structure is forbidden in 3D
lattices because of the fermion doubling problem and in the-
ory can only exist on the surface of a 4D lattice. However,
in fermionic superfluids (or superconductors), the effective
dynamics of a single Weyl cone do naturally appear in the
gapless limit as a result of spontaneous charge-U (1) symme-
try breaking.

Now we are ready to focus on hidden U (1) symmetries
that can emerge in gapless superfluids or superconductors. At
first sight, superfluids break the standard U (1) global symme-
tries spontaneously. So the hidden U (1) symmetries generally
differ from the usual charge-U (1) symmetry that leads to
particle number or charge conservation. However, it turns out
that the standard U (1) charge symmetry can be viewed as
one of six more general linearly independent emergent U (1)
symmetries in gapless superconductors or superfluids. In fact,
the charge-U (1) symmetry group as well other more general
hidden U (1) symmetries are all embedded in a Spin(4) group
or an SU (2) ⊗ SU (2) group. They are represented by invari-
ance of the Hamiltonians under one of the special K-type
or F -type SU (2) rotations and therefore we can name these
hidden symmetries as τ or σ symmetries in general.

The physical significance of emergent U (1) symmetry de-
pends on concrete states of physical fermions that are probed
and measured. In this section we will carry out discussions
using EFTs introduced in Appendixes A and B and identify
the six possible linearly independent generators of emergent
U (1) symmetries in a broad class of gapless superfluids. They
form a complete set and all emergent U (1) symmetry groups
are generated by a linear superposition of these six indepen-
dent charges. In the next section, we explore more practical
physical consequences.

A. U0(1) symmetry and chiral charge conservation

To start with, we focus on the simplest EFT, HWeyl in
Eq. (B10) that can be identified as an EFT of interacting Weyl
fermions in the real fermion basis introduced above. Equa-
tion (B10) has a free or noninteracting real fermion fixed point
that is infrared stable in spatial dimensions higher than one or
d > 1. The dynamics of gapless fermions in the infrared limit
turn out to be equivalent to a simple single copy of noninter-
acting Weyl fermions as the partition functions of these two
systems are identical. The emergent symmetry discussed here
is an asymptotic one even when interactions are included. We
first examine the fixed-point Hamiltonian with g1,2 set to be
zero.

The U (1) global symmetry is generated by the operator

Q0 = Qτ
2 = 1

2

∫
drqτ

2 (r), U2 = exp

(
i
φ

2
Q0

)
,

qτ
2 (r) = χ (r)τy ⊗ 1χ (r). (14)

The Hamiltonian HWeyl remains invariant under this U (1)
transformation and Q0 is a conserved charge at the nonin-
teracting fixed point when g1 = g2 = 0. This is an obvious
result as HWeyl also coincides with a free complex fermion
fixed point. For this reason, the model does not break the
U (1) global charge symmetry and the U (1) charge, Q0, will
be conserved.
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The above U (1) transformation is a special F rotation
around the axis n = (0, 1, 0), i.e., F2 = τy ⊗ 1, and therefore
results in a rotation in the F1-F3 plane (see Appendix A). The
other two charges of F1, F3 are rotated accordingly,

Qτ
1 = 1

2

∫
drqτ

1 (r), qτ
1 (r) = χ (r)τx ⊗ σyχ (r),

Qτ
3 = 1

2

∫
drqτ

3 (r), qτ
3 (r) = χ (r)τz ⊗ σyχ (r),

Qτ
1 → Q′τ

1 = cos φQτ
1 + sin φQτ

3,

Qτ
3 → Q′τ

3 = − sin φQτ
1 + cos φQτ

3 . (15)

In addition, under the time-reversal transformation,

Qτ
1,2 → Qτ

1,2, Qτ
3 → −Qτ

3 . (16)

Finally, as expected,[
Qτ

i , Qτ
j

] = 2iεi jkQτ
k , i, j, k = 1, 2, 3. (17)

This is a rather peculiar limit as physically a single copy
of Weyl fermions with a given chirality is usually forbidden
in 3D bulk because of the well-known fermion double prob-
lems [30]. Such single-Weyl-cone phenomena usually only
occur on a 3D surface of a 4D lattice and so are hypothetical
from a physics point of view if one is interested in the physics
in 3D bulk.

Nevertheless, the dynamics of a single copy of Weyl
fermions can appear in an effective theory of the bulk of gap-
less superfluids (see below for more elaborate discussions).
As shown in Appendix B, EFTs of all the gapless superfluids
discussed below are equivalent to HWeyl and its dual up to a
Spin(4) rotation.

Weyl fermions with single chirality as suggested in HWeyl

surprisingly can appear as emergent fermions in 3D topo-
logical superfluids. The corresponding EFTs can also have
an infrared unstable strong-coupling fixed point in spatial
dimensions lower than three. At those fixed points, there is
an additional emergent supersymmetry and states have higher
symmetries than the noninteracting fixed point. Beyond that
point, the U (1) symmetry of Q0 is broken spontaneously and
states are gapped. In this case, they can form a topologi-
cal superconducting state with time-reversal symmetry if the
symmetry is broken along the direction of Qτ

1 or F1 as Qτ
1 is

even under the time-reversal transformation. However, if the
symmetry is not broken strictly along the direction of Qτ

1 , then
the T symmetry can also be broken and the gapped states will
be superconducting without symmetry-protected topological
features.

Q0 conservation here is obviously closely related to chiral
symmetries discussed in quantum field theories and implies
the conservation of Weyl fermions, either right handed or
left handed. However, there is a very important fundamental
difference between the physics in superfluids and that in stan-
dard quantum field theory. In quantum field theories, fermions
with both chiralities do appear coupled at certain ultraviolet
scales and chiral anomalies induced by topological instantons
eventually reduce the UL(1) ⊗ UR(1) to the simple UL+R(1)
charge gauge symmetry [31]. The right-handed or left-handed

charges are not separately conserved as a result of chiral
anomalies.

However, if Eq. (B10) is taken as an effective field the-
ory of gapless p-wave superfluids in a rotated basis (see
Appendix B), only right-handed (or left-handed) fermions
with single chirality can emerge because the underlying 3D
topological superfluid state has odd parity under the parity
transformation. That is, the order parameter is odd under the
parity transformation

αβ (−p) = −αβ (p), α, β =↑,↓ . (18)

The ground state transforms nontrivially under this parity
transformation. Therefore, in a given superfluid state where
symmetries are broken spontaneously, only one chirality can
emerge in effective field theories. Fermions with opposite
chirality only live in a different superfluid state or universe
that is related to the one under consideration via a parity
transformation.

Unless these two ground states can be connected by quan-
tum tunneling processes, the dynamics in a given superfluid
can only be related to either left-handed or right-handed
ones but not both. In (3 + 1)D, U (1) gauge monopoles are
absent, enforcing single chirality of real fermions. On the
other hand, dynamics in two different superfluids related by
parity transformation can both be represented by the single-
Weyl-cone dynamics, left or right. Apart from that, they are
identical.

For this reason, emergent chiral charges, as emergent
fermions, can be conserved without usual anomalies exten-
sively discussed in quantum field theories. This emergent
symmetry and the conserved charges in the nongauge models
discussed above appear to be more robust than the chiral
charge conservation that only appears at a classical level in
quantum field theories of Yang-Mills gauge fields and in
QED [31–33].

Finally, a generator of emergent symmetry always com-
mutes with the Hamiltonian of EFTs, i.e., commutes with
the noninteracting fixed-point Hamiltonian that exhibits the
Lorentz symmetry. So the generator also commutes with both
spin rotation subgroup generators, Si j and boost operators S0i,
which are basically constructed out of the free Hamiltonian
(see discussions on α, β matrices in Sec. II). As it commutes
rather than anticommuting with S0i, such symmetry genera-
tors are not Lorentz invariant and do always break the Lorentz
symmetry.

Before leaving this section, we want to point out that
Weyl physics is also useful for discussions on helium-3 A
phase [6,11], where two nodal points emerge on two oppo-
site sides of a Fermi surface. In that case, two copies of
two-component complex fermions, or eight real fermions,
are needed to describe dynamics. Each nodal point forms
a representation of left and right Weyl fermions respec-
tively as a result of fermion doubling. From a fermion
doubling point of view, helium-3 A phase is a conven-
tional state with expected numbers of Fermi degrees of
freedom while EFTs here do not have the issue of fermion
doubling. That is, EFTs discussed here and below only
carry half of the degrees of freedom in helium-3 A phase
in low-energy sectors, thus avoiding the fermion doubling
problem.
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FIG. 1. Equivalence between real fermion dynamics in gapless
superfluids or superconductors. φ is the rotation angle of an SU (2)
rotation defined in Eq. (B3) where n = 1/

√
3(1, 1, 1). (a) P1 refers

to a time-reversal-invariant p-wave state; P2 as state P1 but with an
additional π/2-phase shift to further break the time-reversal symme-
try; W is related to a real fermion representation of complex Weyl
fermions. (b) The τ -σ duals of the dynamics in (a). DP1(2) is dual
to P1(2) and the dual of state W in (a) is N, which can represent the
dynamics of a nodal point phase.

B. U1,3(1) symmetry and charge conservation of Q1,3

Now we are on course to explore much less obvious
emergent U (1) symmetries in other more subtle cases pre-
sented in the previous section. The emergent symmetries in
time-reversal-invariant gapless p-wave superfluids in Eq. (B1)
and time-reversal-symmetry-breaking gapless superfluids in
Eq. (B8) (see also Fig. 1) can be carried out in a similar way
as we have done in the previous section.

In the EFT of time-reversal-invariant gapless superfluids in
Eq. (B1),

Qτ
1 = 1

2

∫
drqτ

1 (r), U1 = exp

(
i
φ

2
Qτ

1

)
,

qτ
1 (r) = χ (r)τx ⊗ σyχ (r) (19)

defines a U (1) transformation that leaves the EFT invariant.
Charge Q1 is therefore conserved.

In the EFT of time-reversal-symmetry-breaking gapless
superfluids in Eq. (B8),

Qτ
3 = 1

2

∫
drqτ

3 (r), U3 = exp

(
i
φ

2
Qτ

3

)
,

qτ
3 (r) = χ (r)τz ⊗ σyχ (r) (20)

defines a U (1) gauge transformation that leaves the EFT in-
variant. Charge Qτ

3 is conserved.
Qτ

1,2,3 are three possible conserved charges of real
fermions; their corresponding symmetry groups are embedded
in an SU (2) subgroup of τ type, dual to spin rotation SU (2)
subgroup of Si j . And for a given gapless state of superfluid,
only one of them can be conserved. When this emergent U (1)
symmetry is further broken, superfluids become gapped and
none of the charges above are conserved.

C. U1,2,3 symmetry and τ-σ duality

Because of the τ -σ duality, there are three σ charges de-
fined below:

Qσ
1 = 1

2

∫
drχ (r)τy ⊗ σxχ (r),U1 = exp

(
i
φ

2
Qσ

1

)
,

Qσ
2 = 1

2

∫
drχ (r)I ⊗ σyχ (r),U2 = exp

(
i
φ

2
Qσ

2

)
,

Qσ
3 = 1

2

∫
drχ (r)τy ⊗ σzχ (r),U3 = exp

(
i
φ

2
Qσ

3

)
. (21)

Three U (1) transformations U1,2,3 above leave EFTs in
Eqs. (B12), (B13), and (B14), respectively, invariant. And so
Qσ

1,2,3 are conserved, respectively. Again if such a symmetry
is broken, gapless states need to be fully gapped and there will
be no more emergent U (1) symmetries or conserved charges.

Just like Qτ
i , Qσ

i , i = 1, 2, 3, satisfy the usual SU (2) al-
gebras. Furthermore, they all commute with each of Qτ

i ,
i = 1, 2, 3:[

Qσ
i , Qσ

j

] = 2iεi jkQσ
k ,

[
Qσ

i , Qτ
j

] = 0, i, j, k = 1, 2, 3.

(22)

D. Emergent U (1) symmetries: Effects of interactions

So far, we have discussed emergent U (1) symmetries ex-
actly at a free fermion fixed point, the asymptotic theory. Now
we turn to the most subtle effects of interactions and intend to
answer the question of whether these surprising symmetries
are generic.

In the presence of interactions, various U (1) symmetries
discussed above become much less obvious and in general
there are no fundamental reasons why they will be present.
As we will see below, they can still emerge but only in the
infrared limit where energy scales are low enough so that
other less relevant irrelevant operators that we have not in-
cluded in Eqs. (B1), (B8), (B10), and (B12)–(B14) play little
role. However, once in an intermediate energy window where
those muted interactions become important, U (1) symmetries
discussed above are no longer valid and dynamics start sub-
stantially deviating from what we have described above.

At first sight, EFTs with interactions g1,2 appear to break
U (1) symmetries that are present in the noninteracting limit
of g1,2 = 0. However, the key observation is that away from
the noninteracting fixed point, these most relevant irrelevant
interaction operators are actually invariant under those U (1)
rotations. This is largely because there is only one single
most relevant irrelevant four-fermion operator (i.e., without
gradient operators) we can construct for four-component real
fermions. And so all interaction operators appearing in our
EFTs are identical; i.e.,

HIx = HIy = HIz,

HIx =
∫

drχT τx ⊗ σyχχT τx ⊗ σyχ,

HIy =
∫

drχT τy ⊗ IχχT τy ⊗ Iχ,

HIz =
∫

dr = χT τz ⊗ σyχχT τz ⊗ σyχ. (23)
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As far as only such interactions that are entirely local in χ

fields are present in EFTs, U (1) symmetries are still emergent
just like in the noninteracting fixed point.

However, we do not expect these symmetries are present
at higher energy scales when further moving away from the
infrared fixed point and other less relevant irrelevant interac-
tion operators play more important roles. One such example
is interaction operators of the form

HLR =
∫

drχT τz ⊗ σx∇χχT τz ⊗ σx∇χ, (24)

where the subscript LR implies less relevant. The presence of
such an interaction operator involving gradient fields (χ∇χ )2

invalidates the emergent U (1) symmetry. However, the scal-
ing dimensions of such operators are higher than HI in
Eq. (23), i.e.,

Dim[HI ] = d − 1, Dim[HLR] = d + 1, (25)

near the infrared stable fixed point. Hence, U (1) symmetry
always emerges as an asymptotic symmetry in the infrared
limit.

Below, we summarize our main conclusions. U (1) sym-
metry becomes emergent if one of the following conditions is
met:

(a) Microscopic UV theories further indicate only a con-
tact interaction with zero range appears at ultraviolet scales of
EFTs to forbid the presence of operators of the form of HLR or
the like in our EFTs.

(b) The U (1) symmetry is also a fundamental one sug-
gested by the intrinsic symmetry of the underlying physics.

(c) In the infrared limit near the noninteracting fixed point
when HLR are strongly suppressed, remaining interactions
without gradient fields do exhibit the same U (1) symmetry
as the fixed point.

Both conditions (a) and (b) are additional inputs to EFTs,
rather than intrinsic of EFTs themselves. On the other hand,
generically, condition (c) can always be satisfied as far as we
lower the energy scales so close to the infrared fixed point.

For instance, if HWeyl is intended as a real fermion represen-
tation of free Weyl fermions, then U (1) symmetry itself is a
fundamental global symmetry that EFTs will also have and the
emergent symmetry is the same as the fundamental symmetry.
The global gauge invariance enforces a U (1) symmetry, or
condition (b) is satisfied. And U (1) symmetry is preserved by
all allowed interaction operators, not surprisingly. In this case,
the U (1) symmetry not only appears near the infrared fixed
point but also in intermediate or higher energy scales and the
corresponding U (1) charge conservation becomes exact.

However, if HWeyl is intended as a representation of a
gapless superfluid which already breaks the U (1) global sym-
metry associated with charges, then the U (1) symmetry shown
above is an emergent symmetry, either specifically for certain
interactions so that condition (a) is met, or always appearing in
the infrared limit as stated in (c). In the following section, we
will discuss the generic case (c) so that U (1) symmetry does
emerge in low-energy sectors whenever EFTs are applicable.

VI. EMERGENT U (1) SYMMETRIES AND APPLICATIONS
IN GAPLESS SUPERFLUIDS OR SUPERCONDUCTORS

Now we apply these emergent symmetries and conserved
charges and find out physical consequences in more specific
systems. We will focus on a few most commonly seen states
although it can be easily generalized to many other possible
states. Again in this section, we have assumed an infrared limit
where interactions are fully captured by the discussions in the
previous section.

A. Applications to strong-coupling limit of p-wave superfluids
with time-reversal symmetries

As stated before, the EFT in Eq. (B1) can be directly
applied to understand time-reversal-symmetric spinful super-
fluids or superconductors. χ fields are related to physical
complex fermion fields ψ in a standard way,

ψα (r) = 1√
2

[χ1α (r) + iχ2α (r)], α =↑,↓ . (26)

Using the above convention, we can identify Eq. (B1) as an
EFT for a p-wave superfluid or superconductor. Furthermore,
each EFT representation of real fermions that is generated by
F or K rotations discussed before will be uniquely related to
a distinct physics system.

In Eq. (B1), the spin rotation generators Si j of the emergent
Lorentz symmetry in this superfluid are defined by K rotations
in Eq. (10) or by Qσ

1,2,3. On the other hand, Qτ
1,2,3 are related

to the generators of the dual group, Si j
D or F rotations.

Three spin rotationally invariant τ generators or charges
for F rotations in terms of complex fermions are

Qτ
1 = i

2

∫
dr[�T (r)σy�(r) − �†(r)σy�

†T
(r)],

Qτ
2 = 1

2

∫
dr[�†(r)�(r) − �(r)�†(r)],

Qτ
3 = 1

2

∫
dr[�T (r)σy�(r) + �†(r)σy�

†T
(r)], (27)

where �T = (ψ↑, ψ↓).
In gapless p-wave T-invariant superfluids that naturally

appear in strong-coupling limits near topological phase tran-
sitions, only Qτ

1 is conserved due to the emergent U (1)
symmetry. This charge conservation becomes exact in the
limit of contact interactions but for more generic interactions
it is an emergent symmetry in the infrared limit. When vac-
uum expectation values of Qτ

2 or Qτ
3 are nonzero, the state

becomes fully gapped and the Qτ
1 charge is no longer con-

served.

B. Applications to nodal phases in superfluids

Next, we look into the EFT in Eq. (B14). Using the iden-
tification scheme for complex fermions above, we verify that
the EFT can be for a 3D nodal phase physically induced by
a strong magnetic field along the y direction with a parity
symmetry. When the magnetic field is decreased, the nodal
phase will undergo a quantum Lifshitz transition of free Ma-
jorana class into a gapped superconductor [12]. At zero field,
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the gapped superconductor can be a topological one with
time-reversal symmetry.

In this particular case of Eq. (B14), σy = −1 denotes a left-
handed (L) nodal point while σy = +1 is for a right-handed
(R) nodal point and σx,y,z acts on the pseudospin space of LR.
The emergent U (1) symmetry in EFTs is due to the under-
lying azimuthal symmetry around the direction of y. Unlike
in the previous section, the spin rotation subgroup Si j of the
emergent Lorentz symmetry in this superfluid turns out to be
defined by F rotations in Eq. (10) or Qτ

1,2,3.
On the other hand, Qσ

1,2,3 are all rotationally invariant un-
der the action of spin group Si j or, in this case, F rotations
generated by Qτ

1,2,3. In fact, they are directly related to the

generators of the dual group, Si j
D or K rotations, and hence all

commute with Qτ
1,2,3. These three U (1) charges of σ type de-

fined in Eq. (21) are now directly related to charges at left- and
right-handed nodal points. We introduce a pseudospin repre-
sentation for left and right fields ψL,R and four-component real
fermion χ fields,

χT
1 (r) = 1√

2
[�T + �†], χT

2 (r) = − i√
2

[�T − �†],

�T (r) = 1

2
[(1, i)ψR + (1,−i)ψL], (28)

where we have defined pseudospin real fermion fields as χT
1 =

(χ1↑, χ1↓), χT
2 = (χ2↑, χ2↓). Following Eqs. (21) and (28), we

find that in terms of complex fermions,

Qσ
1 =

∫
dr�†(r)σx�(r),

Qσ
2 =

∫
dr�†(r)σy�(r) = QR − QL,

Qσ
3 =

∫
dr�†(r)σz�(r). (29)

More explicitly,

Qσ
1 = i

∫
dr[ψ†

L (r)ψR(r) − ψ
†
R(r)ψL(r)],

Qσ
2 =

∫
dr[ψ†

R(r)ψR(r) − ψ
†
L (r)ψL(r)] = QR − QL,

Qσ
3 =

∫
dr[ψ†

L (r)ψR(r) + ψ
†
R(r)ψL(r)], (30)

where QL = ∫
drψ†

LψL is the number of complex fermions at
the L nodal point and QR = ∫

drψ†
RψR the fermion charge at

the R nodal point.
For a nodal phase, the emergent U (1) symmetry leads to

the conservation of Qσ
2 or QR − QL as the Hamiltonian in

Eq. (B14) remains invariant under the rotations of Qσ
2 . This is

a surprising result: superfluids break the conventional global
U (1) symmetry and so Qτ

2 = QL + QR is not conserved. Nev-
ertheless, the difference between QL and QR is conserved.

Microscopically, one can also verify that this conservation
law becomes exact when there are no backscattering terms
from two left particles to right ones or vice versa; this condi-
tion leads to the U (1) symmetry of Qσ

2 . Practically, this can be
achieved by forbidding umklapp processes.

C. U (1) gauge symmetry

So far we have treated the emergent symmetry as a global
one and discovered various U (1) charges carried by real
fermions. One can further extend the discussions and impose
a U (1) gauge symmetry of EFTs discussed before. A gauge
symmetry leads to U (1) charge-current conserved dynamics
and below we briefly identify these currents.

We again focus on the limit where the spin group of the
Lorentz transformation of Si j is an SU (2) group isomorphi-
cally generated by K-type generators,

K1 = τy ⊗ σx, K2 = τy ⊗ σz, K3 = 1 ⊗ σy. (31)

Concrete examples of this are the models in Eqs. (B1), (B8),
and (B10).

In the case of Eq. (B1) that describes dynamics in gapless
odd-parity superconductors, the emergent U (1) gauge sym-
metry is generated by the following local transformation:

U1 = exp
[ − iφ(r, t )Qτ

1

]
, Qτ

1 = 1

2

∫
drχT (r)τx ⊗ σyχ (r).

(32)
A gauge-invariant EFT suggests a standard minimum cou-

pling (mc) between the real fermion fields χ (r) and emergent
gauge fields (A0, A), i.e.,

Hmc = 1

2

∫
dr[A0ρ(r) + A · J(r)],

ρ(r) = 1

2
χT (r)τx ⊗ σyχ (r), Jx(r) = 1

2
χT (r)τy ⊗ σxχ (r),

Jy(r) = 1

2
χT (r)I ⊗ σyχ (r), Jz(r) = 1

2
χT (r)τy ⊗ σzχ (r).

(33)

In terms complex fermions, these charge and current of
emergent U (1) gauge symmetry correspond to

ρ(r) = i

2
[�T (r)σyψ (r) − �†(r)σy�

†T
(r)],

Jx(r) = �†(r)σx�(r), Jy(r) = �†(r)σy�(r),

Jz(r) = �†(r)σz�(r), (34)

where the U (1) current density in this case is exactly a spin
density field (up to a 1/2 factor) while charge density is related
to singlet condensation.

Real fermions are electrically charge neutral and so do not
respond to electric or magnetic fields. However, the identifi-
cations in Eq. (34) imply possible interactions, analogous to
electric or magnetic ones, between real fermions in gapless
superfluids or superconductors and spin-singlet condensates,
as well as spin-density structures. Potential applications and
other implications will be further discussed in a separate paper
that is in preparation. More importantly, the possible emer-
gence or absence of gauge anomalies when gauging the global
symmetries will be further investigated.

VII. EMERGENT Z2 SYMMETRY IN GAPLESS
SUPERCONDUCTOR OR SUPERFLUIDS

As stated in the previous section, a U (1) symmetry can
emerge in gapless superfluid or superconductors if one of the
following four conditions is met: (i) exactly at an infrared
stable noninteracting fixed point of EFTs in dimensions higher
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than (1 + 1)D; (ii) near the infrared fixed point where the
less relevant irrelevant gradient fields are negligible and the
remaining most relevant irrelevant interactions are invariant
under U (1) transformation; (iii) if interactions are strictly
zero-range contact ones and the emergent symmetry is a result
of this specific type of interaction; and (iv) if interactions
in EFTs have to be subject to an additional U (1) symmetry
constraint as a consequence of intrinsic symmetries of micro-
scopic UV model.

If none of these requirements is satisfied, strictly speak-
ing there can be no emergent U (1) symmetries in quantum
dynamics of EFTs. But are there remaining emergent symme-
tries for more general interactions in gapless superfluids? If
there are, what are they?

Below we will discuss one generalization of the above
EFTs to include not only interactions that is completely local
in χ (r) fields without gradient fields but also interactions that
are nonlocal in space or time.

Once interactions are generalized beyond the local fields of
χ4 form, instead, there can be a lower emergent symmetry that
the U (1) symmetry can be reduced to. In other words, in more

generic interacting systems, U (1) symmetry only emerges at
infrared energy scales when HLR are entirely renormalized to
almost zero, but at intermediate or higher energy scales, it
breaks down to a smaller group. In the example below, we
will show explicitly that U (1) symmetry evolves into Z2 in
higher energy scales.

A. Generalized interaction model

To better understand the origin and consequence of emer-
gent U (1) symmetry and limitation of the above analyses, we
further explore an extended interacting real fermion model by
explicitly introducing two real scalar fields φ1,2 = φ

†
1,2. We

will see explicitly that U (1) symmetry in EFTs discussed in
the previous section appears to be an infrared-limit symmetry
or an asymptotic symmetry of a more general quantum dy-
namics with lower symmetries.

To further carry out discussions, we illustrate our main
point by working with an EFT of the following form although
one can easily arrive at the same conclusion by working with
other rotated EFTs:

H = H0 + HI , H0 = 1

2

∫
dr

[
χT (r)(I ⊗ (σxi∇x + σzi∇z )+ τy ⊗ σyi∇y)χ (r)+ 1

2

2∑
i=1

π2
i (r)+ ∇φi(r) · ∇φi(r)+ M2

i φ2
i (r)

]
,

HI =
∫

dr

⎡
⎢⎣ 2∑

i=1

gYiφi(r)χT (r)τi ⊗ σyχ (r) + g4

⎛
⎝∑

i=1,2

φ2
i (r)

⎞
⎠

2
⎤
⎥⎦, (35)

where τ1,2 = τx,z, and M1,2 are masses of real scalar fields
φ1,2, respectively. And we have further set the speeds of
real scalar fields, v1,2 = 1, so as to have a desired emergent
Lorentz symmetry. Two real scalar fields φ1,2 and four-
component Majorana fields in Eqs. (35) are defined in a
standard way:

[φi(r), π j (r′)] = iδi jδ(r − r′),

[φi(r), φ j (r′] = [πi(r), π j (r′)] = 0, i = 1, 2,

χT = (χ1↑, χ1↓, χ2↑, χ2↓). (36)

In the special limit when M1 = M2 and gY 1 = gY 2, the
model has a U (1) symmetry and remains invariant if we make
the following U (1) transformation:

χ → χ ′ = U (φ)χ = exp

(
i
φ

2
Qτ

2

)
χ,

� → �′ = UB(φ)� = exp(−iφ)�, � = φ1 + iφ2. (37)

However, generically two masses M1,2 are not equal so the
EFT is not U (1) invariant. Instead, it is invariant under the
following discrete transformation or a π rotation:

U (π ) = exp
(

i
π

2
Qτ

2

)
, UB = −1. (38)

The transformation U (π ) is purely real. Under this transfor-
mation,

U †(π )qτ
1 (r)U (π ) = −qτ

1 (r), U †(π )Qτ
1U (π ) = −Qτ

1,

U †(π )qτ
3 (r)U (π ) = −qτ

3 (r), U †(π )Qτ
3U (π ) = −Qτ

3 . (39)

One can verify that for arbitrary mass ratio M1/M2, the
Hamiltonian is indeed invariant under this transformation of
χ fields combined with a reflection of φ fields, i.e.,

χ1α → χ2α, χ2α → −χ1α, α =↑,↓,

φ1 → −φ1, π1 → −π1, φ2 → −φ2, π2 → −π2.

(40)

In the limit when the running scale � � M1,2, the massive
boson fields can be integrated out resulting in an EFT involv-
ing four-fermion operators. In the infrared limit �/M1,2 → 0,
the most relevant interactions in EFT are exactly of the local
χ4 fields and a higher U (1) symmetry emerges in this limit
as a result. However, when � is comparable to or larger than
M1,2, only Z2 symmetry can be present in these intermediate
scales (see Fig. 2).

FIG. 2. A U (1) symmetry emerges in the infrared limit (IR) in
an EFT that has a generic Z2 symmetry up to an ultraviolet (UV)
scale. The red dot indicates an infrared stable fixed point that dictates
possible emergent symmetries in the limit of IR. The stability of the
fixed point implies the robustness of emergent U (1) symmetries.
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B. Z2 symmetry breaking

Unlike the emergent U (1) symmetry near the infrared free
fixed point, this discrete Z2 reflection symmetry appears to
be a more generic emergent symmetry in gapless topolog-
ical superfluids or superconductors with emergent Lorentz
symmetries as it does not require fine tuning of M1,2. It can
emerge at higher energies away from the infrared limit of
� � M1,2. The emergent symmetries are again absent when-
ever the states are gapped and EFTs become massive.

In addition, Eq. (35) can also exhibit a Z2 time-reversal
symmetry. Further combined with this discrete time-reversal
symmetry, the model then is Z2 ⊗ Z2 symmetric.

Indeed, in the strong-coupling limit of EFTs, the discrete
Z2 ⊗ Z2 symmetry can be spontaneously broken, resulting in
massive real fermions. This mechanism of mass generation is
related to Gross-Neveu physics that had been well understood
for Dirac fermions [34,35]. For this to occur, one of the fields
of Qτ

1 or Qτ
3 has to condense. That is,

〈
Qτ

1

〉 �= 0 and/or
〈
Qτ

3

〉 �= 0. (41)

And if Qτ
3 is involved in the Z2 reflection symmetry breaking,

the time-reversal symmetry is also broken as Qτ
3 is odd under

the time-reversal transformation. However, if only condensa-
tion of Qτ

1 is involved in Z2 reflection symmetry breaking, the
time-reversal symmetry is still intact as Qτ

1 is a singlet under
time-reversal transformation.

If M1 = M2 = 0 and so U (1) symmetry rather than Z2 ⊗
Z2 happens to be emergent at the strong-coupling fixed point,
a supersymmetry along with conformal symmetry will also
appear, similar to a strong-coupling fixed point in a complex
fermion nodal phase [35–37]. This feature had been recently
applied to understand a strong-coupling limit of topological
quantum criticality with time-reversal symmetry [14].

VIII. EMERGENT U (1) SYMMETRY WITHOUT
LORENTZ SYMMETRY

As mentioned in the previous section, there are six classes
of U (1) symmetries embedded in an SU (2) ⊗ SU (2) group
generated by Qτ

i , Qσ
i , i = 1, 2, 3, that double covers an SO(4)

group. For extended models with nonlocal interactions be-
tween χ fields, six π rotations generated by these operators
then define six different Z2 symmetries for different systems
in even high energy scales.

Below we list the dynamic consequence of breaking a U (1)
or Z2 symmetry starting from gapless Lorentz-symmetric su-
perfluids which have such a U (1) or Z2 symmetry. The effects
of breaking emergent symmetry only depend on how these
operators transform under the Lorentz group generated by
(S0i, Si j ), rotation group of Si j , and a Z2 group.

We now fix the spin rotation subgroup of the Lorentz group
to be σ type. More explicitly, si = 1

2εi jkS jk , i, j, k = x, y, z,

are related to Qσ
i , i = 1, 2, 3. Then, the dual of Si j , Si j

D are
associated to Qτ

i , i, j = 1, 2, 3:

εi jkS jk = Qσ
i , εi jkS jk

D = Qτ
i , i = x, y, z. (42)

FIG. 3. Breaking of emergent symmetries along different axes
defined by generalized mass operators {Qτ

i , i = 1, 2, 3} (top three in
red) and its dual of {Qσ

i , i = 1, 2, 3} (bottom three in blue). At each
dot on the circle or along each direction, an expectation value of
one of these six generators of group Spin(4) = SU (2) ⊗ SU (2) [that
are isomorphic to SO(4) ones] becomes nonzero. The gapless state
labeled as 0 in the center has the highest emergent symmetries, with
both (a) Lorentz symmetry and (b) U (1) (or Z2) symmetry. If the
spin rotation subgroup of EFTs of state 0 is defined by generators
{Qσ

i , i = 1, 2, 3} or K-type rotations, then only two of top three
states 1,2,3 are invariant under the Lorentz group SO(3, 1) but both
break the emergent U (1) or Z2 symmetry. The third one is SO(3)
rotationally invariant but fully preserves the infrared U (1) symmetry.
On the other hand, all the bottom three states break the SO(3, 1)
Lorentz symmetry to an SO(2) rotation one but again all display an
emergent U (1) symmetry.

(a) Only two out of three Qτ
i , i = 1, 2, 3, are Lorentz in-

variant. For EFTs in Eq. (B1), they are Qτ
1,3; when 〈Qτ

i 〉 �= 0,
i = 1, 3, a mass gap opens up but with full Lorentz symmetry
of SO(3, 1). However, Z2 symmetry is always broken (see
Fig. 3).

(b) The third Qτ
i is rotation invariant but not Lorentz

invariant. This is also the generator for a U (1) emergent
symmetry group. For EFTs in Eq. (B1), this operator is Qτ

1 .
When 〈Qτ

1〉 �= 0, a spherical Fermi surface emerges while the
state remains gapless. The Lorentz symmetry of SO(3, 1) is
broken but the subgroup SO(3) rotation symmetry remains.
In addition, Z2 or U (1) symmetry in the infrared remains
unbroken.

(c) Three Qσ
i , i = 1, 2, 3, that are dual to Qτ

i , i = 1, 2, 3,
are also the generators of the spin rotation subgroup of
SO(3, 1). So they not only fully break the Lorentz symmetry
SO(3, 1), they also break the subgroup rotation symmetry
SO(3). When 〈Qσ

i 〉 �= 0, i = 1, 2, 3, gapless real fermions ap-
pear at two nodal points along one of the x, y, z directions,
i.e., a nodal phase emerges. Furthermore, U (1) symmetry
remains as Qσ

i , i = x, y, z, are all singlets of a τ -symmetry
group which defines the emergent U (1) symmetry group in
the current discussion (see Fig. 3).
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FIG. 4. Schematic of dispersion relations in different gapless
superfluids or superconductors with emergent U (1) symmetries.
(a) Gapless states with highest symmetries, both SO(3, 1) Lorentz
symmetry and an emergent U (1) symmetry (corresponding to state
0 in the center of Fig. 3). (b) Gapless states with either SO(3) or
SO(2) rotation symmetries but no full Lorentz symmetry due to
condensation of one of the Lorentz-noninvariant charges in {Qτ

i , Qσ
i },

i = 1, 2, 3. All these states have the same emergent U (1) symmetry
as the parent state in (a). (c) Gapped states that break emergent U (1)
symmetries in (a) but with full SO(3, 1) Lorentz symmetry. The
dashed horizontal line indicates zero energy and the spectrum below
the line is related to the above via a standard charge conjugation
transformation in superfluids.

In this particular case, although the Lorentz symmetry (of
σ type) is broken, there can be an emergent Lorentz symmetry
of τ type reappearing in the reconstructed EFT. That is, in
contrast to Eq. (42),

εi jkS jk = Qτ
i , εi jkS jk

D = Qσ
i , i = x, y, z. (43)

Overall, nonzero expectation values of these operators can
be either due to applied external fields that explicitly break
these symmetries or due to strong interactions that break these
symmetries spontaneously. Either way, gapless superconduct-
ing states will become either fully gapped states with Lorentz
symmetry but breaking the emergent Z2 or infrared U (1)
symmetry or other gapless states that break the full Lorentz
symmetry but preserve the emergent infrared U (1) symmetry.
Note that all the gapless states under our considerations, with
or without Lorentz symmetry, have emergent Z2 or even U (1)
symmetry in the infrared limit (see Fig. 4).

IX. CONCLUSION

In conclusion, we have investigated various emergent U (1)
or Z2 symmetries that appear at different energy scales in
gapless superconductors or superfluids and studied relations
between them. We show that emergent U (1) symmetries in
these gapless states can be conveniently characterized by Si j

D , a
group dual to Si j , the spinor rotation subgroup of the emergent
Lorentz symmetry group. Generators of symmetry groups are
always singlets under the action of Si j of the rotation subgroup
but are not invariant under the Lorentz group. They can appear
either in the form of U (1) symmetry in infrared limits or as a
Z2 symmetry in even intermediate energy scales.

All the U (1) symmetries are embedded in a Spin(4) =
SU (2) ⊗ SU (2) group that double covers an SO(4) group.

The Spin(4) group has been identified as a product of an
SU (2) Lorentz spin rotation subgroup generated by Si j , i �=
j = x, y, z, which is associated with F (or K ) rotations and
its dual SU (2) rotation group induced by Si j

D , i �= j = x, y, z,
that is associated with K (or F ) rotations. For real fermions, K
and F rotations or SUK,F (2) transformations are generated by
purely imaginary Hermitian operators that are algebraically
defined in Eqs. (10) and (11). And all U (1) emergent sym-
metry groups are shown to be spin rotation singlets under the
spin rotation of Si j .

When the symmetry is broken spontaneously due to strong
interactions, the states become fully gapped while preserving
the Lorentz symmetry. However, these emergent U (1) global
symmetries always remain if strong interactions break emer-
gent Lorentz SO(3, 1) symmetries spontaneously and only
result in other gapless states with much lower symmetries
such as SO(3) or SO(2) rotational symmetries. As an open
question, it is interesting to see what happens to emergent
symmetries and whether emergent symmetry groups become
bigger when the degrees of freedom of real fermions or the
central charges further increase to 4N with N > 1.

There had also been quite a few intensive efforts to gen-
eralize the concept of gapped topological states or phases
put forward before to gapless limits [38–57]. And the vast
majority of these efforts have been mainly on one-dimensional
states. One interesting question that was asked recently in
Ref. [57] is whether there are intrinsic topological states that
can only be defined in the gapless limit and there are no
gapped counterparts.

The main efforts in this article are to illustrate unique emer-
gent symmetries in high-dimensional gapless states. These
may be important observations for future studies of gapless
topological states and orders. Broadly speaking, it remains to
be fully understood whether these or other unique emergent
symmetries in gapless states that always appear to be broken
in the gapped limit are essential for general understanding
of topological physics [58–61]. The other interesting issue is
possible local gauge symmetries associated with the emergent
global symmetries discussed so far [62]. If we enforce such
a local gauge symmetry, real fermions considered above can
be further interacting with emergent dynamic U (1) gauge
fields or Z2 gauge fields. These gauge fields can be in ei-
ther weakly interacting phases or strong-coupling confining
phases. In general, between these two phases there can even
be highly symmetric quantum critical points with emergent
gauge fields, similar to effective field theories discussed re-
cently in Refs. [63,64]. Perhaps an important question is under
which conditions do such gauge fields and their interactions
become practically relevant in studies of practical gapless
superconductors or superfluids and what are potential impli-
cations.
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APPENDIX A: UNITARY TRANSFORMATION OF REAL
FERMIONS AND τ-σ DUALITY

1. Unitary transformation

Readers can skip this section and move to Sec. V if they
are not interested in the details of algebraical structures of the
symmetry groups.

Unitary transformation of real fermions needs to leave
fermions in a real representation. That requires that all uni-
tary rotations be implemented in a real representation and
so effectively become orthogonal transformations. For that
purpose, we can only utilize pure imaginary, antisymmetry
generators. The only generators that fall into this class are the
ones specified as Ki and Fi, i = x, y, z, in Eqs. (10) and (11),
which are indeed isomorphic to SO(4) group algebras and
generate the entire Spin(4) group.

To highlight the structure of the Spin(4) group, we study
the general rotations of real fermion fields induced by SUK (2)
or K rotations and SUF (2) or F rotations in the Spin(4) group.
By construction, each group element in Spin(4) can be speci-
fied as [UK ,UF ], a pair of K rotation and F rotation. Just like
in standard constructions of SU (2) rotations, we specify each
of these SU (2) rotations by Euler angles (n, φ), i.e., a rotation
axis n = (nx, ny, nz ) (n is a unit vector) and a rotation angle
φ ∈ [0, 2π ]. Each Spin(4) group element is thus specified by
two sets of Euler angles, one for the K group, i.e., (nK , φK ),
the other for the F group, i.e., (nF , φF ).

Under the action of the Spin(4) group, real fermions can
transform accordingly. In our case, transformations of real
fermions are by multiplication of the pair of SU (2) rotations
in [UK ,UF ] of the Spin(4) group. That is,

χ → UT (nK , φK ; nF , φF )χ,

UT (nK , φk ; nF , φF ) = UK (nK , φK ) · UF (nF , φF ), (A1)

where the subindices K, F refer to SU (2) rotations of K type
and F type, respectively. In presenting this result, we have
taken into account that each of three generators Ki, i = x, y, z
in the SU (2) group of K rotations commutes with each of Fi,
i = x, y, z, in the SU (2) group of F rotations. So, UT is simply
a product of two SU (2) transformations, UK and UF in the
Spin(4) group. Explicit structures of UF,K will be presented in
the next section.

It is important to notice that SUK (2) ⊗ SUF (2), the product
of SU (2) groups of K-type UK and F -type UF , is isomorphic
to S3 ⊗ S3. Each S3 can be conveniently defined by a set of
hyperspherical coordinates,

(
cos

φ

2
, sin

φ

2
n
)

, (A2)

where φ ∈ [0, 2π ] and n again is a three-dimensional unit
vector projecting out an S2.

An inversion in a single S3 corresponds to (n, φ) →
(−n, 2π − φ). Applying the standard SU (2) algebras, one
can verify explicitly that under such an inversion, indeed

UF (−nF , 2π − φF ) = −UF (nF , φF ),

UK (−nK , 2π − φK ) = −UK (nK , φK ). (A3)

Thus, under an inversion in an S3 ⊗ S3, both UF and UK

acquire minus signs. That is, each element of the Spin(4)
group acquires a minus sign under inversion and is mapped
into minus of itself, i.e., [UK ,UF ] → [−UK ,−UF ]. This, how-
ever, leaves the bilinear structure in UT invariant under such
an inversion, although each of UF,K is not. That is,

UT (−nK , 2π − φK ; −nF , 2π − φF ) = UT (nK , φK ; nF , φF ).
(A4)

A pair of inverted points in S3 ⊗ S3 therefore leads to the
same orthogonal rotation of real fermions. Equations (A4)
indicate a double covering of SO(4) by S3 ⊗ S3 and hence by
the spin group Spin(4) = SU (2) ⊗ SU (2) that is isomorphic
to S3 ⊗ S3.

In addition, spin rotations of Si j can be covered by an
SU (2) group, and Si j are also antisymmetric and Hermitian.
This indicates that they will also be in one of the two SU (2)
groups, either the K group or the F group in Eqs. (10)
and (11). Whatever it is, it remains invariant under the actions
of the other group.

For instance, if Si j , i �= j = x, y, z, are represented by K-
group generators, they are invariant under any action of F
group, and vice versa. However, under the actions of the same
group of Si j or K-group actions, Si j can be further rotated and
are not invariant. On the other hand, S0i, i = x, y, z, are not
invariant under actions of either K or F group.

2. τ-σ duality

One will notice that K and F rotations are related by a τ -σ
duality,

Fi ↔ Ki when τi ↔ σi. (A5)

Therefore, generally speaking, Spin(4) = SU (2)F ⊗ SU (2)K

is simply generated by Si j and its τ -σ dual, whichever Si j are.
We name the τ -σ dual of Si j defined in Eq. (6) as Si j

D . Si j are
also purely imaginary and antisymmetric and Hermitian:

Si j ↔ Si j
D when τi ↔ σi. (A6)

This simple observation, the invariance of Si j under its dual
Si j

D , either K group or F group, suggests a way to classify
EFTs and identify them with different physics reality depend-
ing on the structure of Si j .

The τ symmetry below is assigned to EFTs where their
Lorentz rotation subgroup of Si j is identified as K rotations
and remains invariant under the actions of its dual Si j

D or
F group. The σ symmetry is assigned to EFTs where their
Lorentz rotation subgroup of Si j is identified as F rotations
and remains invariant under the actions of its dual Si j

D , which
now are K rotations. Si j together with its τ -σ dual, Si j

D , form
the algebra group of Spin(4) and generate the Spin(4) group.

For each class, we can identify a parent Hamiltonian and
generate the rest of the members in the class by the dual of
Si j , Si j

D which can be either K group or F group, whichever
is the dual of Si j . Within each class, EFTs have the same
representation for the Lorentz subgroup Si j up to a rotation
induced by Si j itself; we do not discuss such a trivial spin
rotation generated by Si j in this article.
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The action of Si, j
D , the dual of Si j , on Si j is trivial as Si j is

invariant under its dual Si j
D ; it leaves Si j unchanged. However,

Si j
D acts on S0i or αi nontrivially. It can generate other members

of EFTs with the same Si j rotation group and they correspond
to different physical systems. On the other hand, because
different real fermion representations, or Hamiltonians, are
related by simple rotations, the dynamics and the partition
functions will be obviously identical. This is the focus of
this article: to explore the classes of EFTs that form a group
representation of the dual of the rotation group Si j , i.e., the
SU (2) subgroup in Spin(4) generated by Si j

D .

3. Generalized mass operators

All the bilinear operators that are even in momentum and
hence can be nonvanishing in the limit of zero momentum are
relevant operators or in short we call them mass operators. All
mass terms for real fermions are represented by antisymmetric
Hermitian matrices; they have to be one of K- or F -rotation
generators coinciding with the algebraic group of Spin(4).
Two of them are Lorentz invariant that are usually studied
in quantum field theories but the remaining four are not;
furthermore, these four do not not lead to a mass gap in the
spectrum, unlike the other two. Nevertheless, we simply call
them mass operators in this article. Also as K-rotation and
F -rotation generators are mutually commuting, all mass terms
associated with K generators are invariant under F rotations
and vice versa.

As we will be mainly interested in spatially rotationally
invariant states and three rotation generators defined by Si j are
either associated with K or F generators, the mass operators
have to be identified as the dual of Si j , that is, Si j

D that can be
either F or K generators.

The maximum number of mass terms allowed by a given
gapless state with αi, i = x, y, z, in EFTs already identified
is therefore three. Furthermore, we also find only two of
these three rotationally invariant mass operators anticommute
with Lorentz boost operators S0i, i = 1, 2, 3, and are Lorentz
invariant.

The third one that commutes with S0i or αi, i = x, y, z,
explicitly breaks Lorentz symmetry. On the other hand, it
represents an emergent or hidden U (1) symmetry in gapless
states we will focus on.

The emergent U (1) symmetry can be broken whenever one
of the other two mass operators in Si j

D , or both, condense and
develop finite expectation values in the ground states while the
Lorentz symmetry is preserved.

At last, if the third mass operator which is Lorentz non-
invariant condenses with nonzero expectation values, the
Lorentz symmetry is broken; typically, there will be an emer-
gent Fermi surface in gapless states.

Finally, one can also have mass terms that further break
SO(3) rotation symmetries, in addition to breaking the
Lorentz symmetry. This is actually a path leading to nodal
phases. However, in this case, a new Lorentz symmetry can
reemerge, replacing the original Lorentz group; the mech-
anism is similar to the emergence of relativistic physics in
(1 + 1)D due to the emergence of Fermi points at fermion
surfaces.

4. Identifying an EFT with a physical system

Real fermions are emergent particles in physical systems
instead of fundamental ones. The relations between physical
complex fermions and real fermions are usually simpler in one
particular representation than other ones. So although dynam-
ically different systems can be equivalent, when it comes to
physical interpretations or predictions, we always prefer one
with the simplest relation between physical complex fermions
and real fermions. If we specify real fermions χ directly in
terms of complex ones ψ for a given physical system and
only work with a particular choice of real fermion fields,
then the EFT Hamiltonian in terms of those real fermions is
entirely fixed. Further rotated EFTs involve χ fields defined
in different ways in terms of complex fermions. A popular
choice is to identify

χ1(r) = 1√
2

[ψ↑(r) + ψ
†
↑(r)],

χ2(r) = 1√
2

[ψ↓(r) + ψ
†
↓(r)],

χ3(r) = i√
2

[ψ↑(r) − ψ
†
↑(r)],

χ4(r) = i√
2

[ψ↓(r) − ψ
†
↓(r)]. (A7)

Here 1, 2, 3, 4 are indices for the real fermions, and ↑,↓
are ones for spins or pseudospins depending on microscopic
starting points.

For this reason if we only work with this particular choice
of χ fields or effectively fix a Spin(4) gauge, every Hamilto-
nian in the two classes discussed above corresponds to one
single physical reality. This is the point we will be taking
in this article. Every physical system has a specific EFT.
As each can be further related to other Hamiltonians in the
same family if one performs a purely real unitary rotation of
χ , dynamically speaking, different physical systems can be
mapped into other ones by redefining χ fields. And we will
be exploring the relations between emergent symmetries in
different states using the K group and F group.

APPENDIX B: MAPPING BETWEEN REAL FERMIONS

1. F rotations and mapping

We first focus on a class of EFTs where the SU (2) rotation
subgroup of Si j in Lorentz group SO(3, 1) is given by K
rotations in the Spin(4) group. We will study the members
generated by the dual group Si j

D which in this case is the
SUF (2) subgroup in Spin(4). All F rotations leave Si j and
their rotation group SUK (2) or K rotations invariant; all EFTs
here have the same structures of Si j , i �= j = x, y, z.

We start with the most well-known model for p-wave su-
perconductors or superfluids in a strong-coupling limit, an
EFT for topological quantum critical points (TQCPs) with
time-reversal symmetry:

HT S = 1

2

∫
dr[χT (r)(τz ⊗ (σxi∇z − σzi∇x )

+ τx ⊗ Ii∇y)χ (r) + g1χ
T τyχχT τyχ

+ g2χ
T τz ⊗ σyχχT τz ⊗ σyχ ], (B1)
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where χT = (χ1↑, χ1↓, χ2↑, χ2↓). χ are real fermions defined
by the following standard algebra:

χ†
α (r) = χα (r), {χα (r), χβ (r)} = δα,β,

α, β = 1 ↑, 1 ↓, 2 ↑, 2 ↓ . (B2)

(Here we have renamed χ1,2,3,4 in terms of χ1↑,1↓,2↑,2↓ to
illustrate the spin structures explicitly.)

The EFT in Eq. (B1) is a minimum representation for
TQCPs [12,14] with spinful time-reversal symmetry and
emergent Lorentz symmetry. It can further have emergent
supersymmetry in strong-coupling limits. We now examine
the effective field theories that we can further obtain via
SU (2) rotations generated by the F group in Eq. (11) and
the τ symmetry associated with it. The general structure for
a rotation along the direction of n = (nx, ny, nz ) with an angle
φ (following the right-hand rule) is

UF (n, φ) = cos
φ

2
− i sin

φ

2
(nxτx ⊗ σy + nyτy + nzτz ⊗ σy),

UF (n, φ) = U ∗
F (n, φ),U −1

F (n, φ) = U T
F (n, φ). (B3)

Note that for F rotations, the range of φ will be set as

2π � φ � 0. (B4)

As expected, UF (n, φ) defines a simply connected three-
sphere manifold S3. Specifically,

UF (−n, 2π − φ) = −UF (n, φ), (B5)

which effectively defines a pair of diagonally opposite points
in S3. On the other hand, UF (n, φ) and −UF (n, φ) obviously
result in the identical rotations in the Hamiltonian manifold.
Inclusion of the other three S3 defined by UK that is the dual
of UF effectively allows a double coverage of an SO(4) group
by a Spin(4) group, similar to a universal coverage of SO(3)
by a quantum spin group Spin(3) = SU (2).

Below are two examples where H̃ in EFTs after F rotations
are transformed into the Hamiltonians in other superconduct-
ing states or superfluids when we apply the same identification
in Eq. (A7) to the rotated real fermions. Hence we show
that interaction dynamics are completely identical as they are
given by the same partition functions.

Under such a purely real rotation,

χ (r) → χ̃ (r) = UF χ (r), H[{χ (r)}] → H = H̃ [{χ̃ (r)}],
(B6)

where fermions remain to be real, i.e., χ̃T (r) = χ̃†(r).
A1: TQCP model with time-reversal symmetry broken. First

we consider a rotation where

n = 1√
3

(1, 1, 1), φ = −2π

3
. (B7)

One can easily verify that this is also equivalent to a rotation
along the n = (0, 1, 0) axis and φ = π

2 ; therefore, the resul-
tant EFT describes a p-wave state with a π/2 phase shift. The
state therefore breaks the time-reversal symmetry, physically
distinct from a T -invariant state. The EFT for χ̃ (here we

rename them as χ ) is

HT S1 = 1

2

∫
dr[χT (r)(τx ⊗ (σxi∇z − σzi∇x )

− τz ⊗ Ii∇y)χ (r) + g1χ
T τyχχT τyχ

+ g2χ
T τx ⊗ σyχχT τx ⊗ σyχ ], (B8)

where χT = (χ1↑, χ1↓, χ2↑, χ2↓).
B: Weyl fermions. We then consider a rotation,

n = 1√
3

(1, 1, 1), φ = 2π

3
. (B9)

This transformation leads to a more surprising EFT, one
that is related to a real fermion representation of interacting
Weyl fermions but with single chirality:

HWeyl = 1

2

∫
dr[χT (r)(I ⊗ (σxi∇x + σzi∇z )

+ τy ⊗ σyi∇y)χ (r) + g1χ
T τx ⊗ σyχχT τxσyχ

+ g2χ
T τz ⊗ σyχχT τz ⊗ σyχ ]. (B10)

This mapping was also applied to understand topological
quantum criticality in previous studies [14]. Phenomenologi-
cally, the emergent symmetries we are going to discuss below
can be easily related to a chiral symmetry in Weyl fermions
but with a very distinct feature. The standard U (1) chiral
anomalies in quantum field theories are absent and Weyl
fermions as emergent particles implied in Eq. (B10) have
only one fixed chirality, either left or right but not both. Weyl
fermions with one single chirality usually do not appear in
three-dimensional bulk Weyl metals so their appearance here
in an EFT of gapless superfluids is a big surprise. Such single-
Weyl-cone phenomena usually only occur on a 3D surface of
a 4D lattice and so are hypothetical from a physics point of
view. However, equivalent dynamics can be physical reality
in gapless superfluids.

2. K rotations and mapping and τ-σ duality

We now turn to a class of EFTs where the SU (2) rotation
subgroup of Si j in Lorentz group SO(3, 1) is given by F
rotations instead of K rotations in the Spin(4) group. We will
study the members generated by the dual group Si j

D which in
this case is the SUK (2) subgroup in Spin(4). All K rotations
leave Si j and their rotation group SUF (2) or F rotations in-
variant; all EFTs here again are given by the same Si j .

We can further apply K rotations and generate mapping
between EFTs for different physics systems. The discussions
are very similar to those in the previous section and we simply
list the results below. They can also be related to F rotations
by a simple τ -σ duality transformation,

τi → σi, σi → τi, i = x, y, z. (B11)

C: Dual of model A.

HDT S = 1

2

∫
dr[χT ((τxi∇x − τzi∇z ) ⊗ σz + 1 ⊗ σxi∇y)χ

+ g1χ
T τy ⊗ σzχχT τy ⊗ σzχ

+ g2χ
T 1 ⊗ σyχχT 1 ⊗ σyχ ]. (B12)
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C1: Dual of model A1.

HDT S1 = 1

2

∫
dr[χT ((τxi∇x − τzi∇z ) ⊗ σx − σz ⊗ 1i∇y)χ

+ g1χ
T τy ⊗ σxχχT τy ⊗ σxχ

+ g2χ
T 1 ⊗ σyχχT 1 ⊗ σyχ ]. (B13)

D: Dual model of B as gapless nodal phase with P symmetry.
The τ -σ dual of Weyl fermions is exactly an EFT for gapless
superconducting nodal phases with parity symmetry. It has the

following explicit form:

HNP = 1

2

∫
dr[χT (τxi∇x + τzi∇z ) ⊗ I + τy ⊗ σyi∇y)χ

+ g1χ
T τy ⊗ σxχχT τy ⊗ σxχ

+ g2χ
T τy ⊗ σzχχT τy ⊗ σzχ ]. (B14)

Indeed, HNP in Eq. (B14) is related to HDT S and HDT S1 via
F rotations; UF is defined below:

UF (n, θ ) = cos
φ

2
− i sin

φ

2
(nxτy ⊗ σx + nyσy + nzτy ⊗ σz ),

n = 1√
3

(1, 1, 1), φ = ±2π

3
. (B15)
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