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Interaction between spin and Abrikosov vortices in doped topological insulators
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In the topological superconductor with the nematic superconductivity in the Eu representation, it is possible to
have different types of vortices. One is associated with the vorticity in the particle-hole space and corresponds to
the Abrikosov vortex. Another type corresponds to the vorticity in the spin space and is called the spin vortex. We
study the interaction of the Abrikosov vortex with the spin vortices. We derive the free energy of the sample with
the Abrikosov and the strain-induced spin vortices using the Ginzburg-Landau approach for the two-component
superconducting order parameter. We calculate the critical strain at which the spin vortex is formed. We show
that the spin vortex and the Abrikosov vortex attract each other, and as a result, they have a common core. We
apply Bogoliubov–de Gennes equations to study electronic states in a combined vortex structure. We show that
no zero-energy states (Majorana fermions) are localized near the common vortex core of the Abrikosov vortex
and the spin vortex of any type. Possible experimental realization is discussed.
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I. INTRODUCTION

In recent years, nematic superconductivity in doped topo-
logical insulators has received a lot of experimental evidence
[1–7]. In topological insulators such as AxBi2Se3, where A =
Cu, Nb, Sr, the Cooper pairs have a spin-triplet pairing [8–10].
The superconducting order parameter is a two-component
real-valued vector with Eu symmetry in this material [9]. The
nematic superconductivity has a nontrivial coupling with a
strain. This coupling leads to interesting phenomena such
as a twofold symmetry of the in-plane second critical field
[5,10,11], spontaneous strain [12], and strain-induced spin
vortices [13].

Superconductivity and superfluidity are rather similar
phenomena. In particular, we have a similar picture for topo-
logical defects in the topological superconductors with the
spin-triplet pairing and in the B phase of superfluid 3He
[14,15]. Along with the usual (mass) vortex, in the B phase
of 3He, it is possible to create a spin vortex. This topological
defect does not change the global phase of a wave function but
changes the phase associated with the direction of the spin.
Thus, in the spin vortex, we observe a vorticity of the spin
[14,16]. In Ref. [16] it is shown that in the rotating vessel,
the mass vortex (analog of the Abrikosov in superconductors)
and the spin vortex attract each other and, consequently, their
cores can overlap. It means that a combined vortex can be
created and stabilized in the rotating vessel called a spin-mass
vortex.

The spin vortices in the context of the superconductiv-
ity have been briefly discussed for (px + ipy)↑(px − ipy)↓
topological superconductors [15]. In Ref. [13], it was shown
that in the nematic topological superconductors, two possible
types of topologically different spin vortices could be real-
ized. In the type-I spin vortex, there exist zero-energy states

localized near the vortex core. These states can be identified
as Majorana-Kramers pairs. In the type-II spin vortex, there
are no localized zero-energy states.

The Majorana fermion is an excitation with non-Abelian
statistics. The study of such non-Abelian states is one of the
hot topics in condensed matter physics for different reasons.
For example, these exotic excitations could be a basis for
topologically protected quantum computations [17]. The Ma-
jorana fermions can be localized on the topological defect in
the system. The core of the Abrikosov vortex can be treated
as a topological defect [18]. The existence of the Abrikosov
vortex in the topological superconductors is a well-known fact
[19–21], and the Majorana fermions can be localized in the
core of the Abrikosov vortex [22,23]. In this context, it is
of interest to analyze the interaction between Abrikosov and
spin vortices and answer the question of whether the existence
of the Majorana fermions is possible in such a two-vortex
structure.

Here, we first clarify the Abrikosov vortex’s structure in
the nematic topological superconductor with vector order pa-
rameter using the Ginsburg-Landau (GL) approach. Then, we
write down the free energy of the spin vortex and derive the
value of the critical strain that generates the spin vortex, either
type I or type II. Finally, we consider the case of coexisting
the Abrikosov and spin vortices and show that they should
attract each other. We argue that in the ground state, these
two vortices have a common core, that is, the spin vortex can
be considered as a pinning center for the Abrikosov vortex.
Using the Bogoliubov–de Gennes (BdG) formalism, we study
the electronic states in the nematic superconductor with the
Abrikosov and spin vortex having the common core. We ob-
serve that there are no zero-energy states localized near the
common vortex core in the case of either the type-I spin vortex
or the type-II one.
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II. ABRIKOSOV AND SPIN VORTICES

In this section, we analyze the properties of the Abrikosov
and spin vortices. Two spatial scales characterize the
Abrikosov vortex. First is the size of the vortex core, where
the superconducting order parameter is suppressed, which is
of the order of the superconductor coherence length ξ . Second
is the magnetic size of the vortex, which is of the order of the
London penetration depth λ. It is known that the considered
nematic superconductors are superconductors of the second
type [19–21]. Hence, we assume that ξ � λ. The spin vortex
has two characteristic scales, as well [13]. First is the core size
ξI and ξII for the vortex of type I or type II, respectively, and
in any realistic case, ξI,II are of the order of ξ . The second
scale lu is the size of the region in which the vorticity of the
vector order parameter is observed. This value is determined
by the applied external force, the sizes of the sample, or
structural defects. The value lu can be either macroscopic or
microscopic, depending on the above factors.

A. Ginzburg-Landau functional

For the reader’s convenience, we present here the ex-
pression for the GL functional in a general form. This GL
functional can be obtained microscopically from the Hamil-
tonian of the doped topological insulator with the nematic
superconductivity (see, e.g., [24]). In the case of a homoge-
neous phase and the absence of the magnetic field, the GL
free energy can be written as [10]

F0 = a(|�1|2 + |�2|2) + B1(|�1|2 + |�2|2)2

+ B2|�∗
1�2 − �1�

∗
2|2, (1)

where �� = (�1,�2) is the vector order parameter, and a ∝
T − Tc < 0 and B1,2 > 0 are the GL coefficients. The con-
sidered topological superconductor has an anisotropic layered
structure. We assume that the plane (x, y) coincides with the
crystallographic layers, and the magnetic field is directed per-
pendicular to this plane along the axis z. Then, we have the
following electromagnetic contribution to the GL free energy:

FM = (∇ × A)2

8π
− ∇ × A · H0

4π
, (2)

where H0 is the external magnetic field and A is the vector
potential. There is another term associated with the magnetic
field H = ∇ × A. It is the contribution to the GL free energy
related to the transverse Zeeman magnetization in the Eu

superconductor [10,24]

FZeeman = −2igeffμBH (�1�
∗
2 − �∗

1�2), (3)

where geff is a GL coupling constant between superconduc-
tivity and the Zeeman field. According to Ref. [24], we
can neglect the magnetization, since the term FZeeman/FM ∼
T 2

c /μ2 � 1.
As usual in the GL theory of superconductivity, the electro-

magnetic field causes the coordinate dependence of the order
parameter and couples with it through the gauge-invariant
gradients Dj = −ih̄∂ j + (2e/c)Aj . As a result, we should
consider additional gradient terms in the GL free energy,
which are allowed by the crystal symmetry. The considered
topological superconductor has a hexagonal crystal symmetry,

and the corresponding contribution is [10,25]

FD = J1(Di�a)∗Di�a + J2εi jεab(Di�a)∗Dj�b

+ J3(Dz�a)∗Dz�a + J4[|Dx�1|2 + |Dy�2|2 − |Dx�2|2

− |Dy�1|2 + (Dx�1)∗Dy�2 + (Dy�1)∗Dx�2

+ (Dx�2)∗Dy�1 + (Dy�2)∗Dx�1], (4)

where summation is implied over repeating indices i = x, y,
a = 1, 2, εkl is the Levi-Civita symbols, J1,2,3,4 are phe-
nomenological GL coefficients, and J1 > J4.

We also assume that the crystal lattice of the sample is
deformed by force. The coupling of the strain with the su-
perconductivity gives rise to an additional term in the GL free
energy [10]

Fu = gN (uxx − uyy)(|�1|2 − |�1|2)2

+ 2gN uxy(�∗
1�2 + �1�

∗
2 ), (5)

where uik are the components of the strain tensor and gN is
a GL coupling constant between the order parameter and the
strain. The total GL free energy is the sum of all listed above
terms:

FGL = F0 + FD + FM + Fu. (6)

B. Abrikosov vortex

The magnetic field related to the isolated Abrikosov vortex
is weak and does not affect the value of the order parameter.
Since B2 > 0 in F0, the ground state order parameter is a
real-valued vector in the absence of the magnetic field. Thus,
the phase of the order parameter θ arises only due to the
magnetic field produced by the Abrikosov vortex. Far from
the core of this vortex, the local value of the order parameter
� = �0 exp (iθ ) is dictated by the structure of the spin vortex.
Under assumptions made, the magnetic field distribution in
the Abrikosov vortex can be obtained following a standard
procedure [26]. The calculation details are presented in Ap-
pendix A. Here we write down only the results.

The magnetic field in the vortex away from its core can be
written as

H (ρ) = 
0

2πλ2
K0

(ρ

λ

)
, ρ2 = x2

1 + k
+ y2

1 − k
, (7)

where K0(r) is the zero-order MacDonald’s function, 
0 =
π h̄c/e is the magnetic flux quantum, k = J4/J1, and λ and
ξ are the effective London penetration depth and coherence
length.

λ2 = c2

32πe2J1(1 − k2)�2
0

, ξ 2 = J1h̄2

2B1�
2
0

, (8)

κ = λ/ξ 	 1 is the GL parameter, and �2
0 = −[a +

gN (uxx − uyy)]/2B1 is an equilibrium order parameter. Note
that the lines of the current in the Abrikosov vortex have an
elliptic geometry and the expression for the first critical has a
usual form for the type-II superconductor [26].

C. Spin vortex

According to Ref. [13], the strain can generate the spin
vortices of two types in the nematic superconductor. These
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TSC
Spin vortex

Abrikosov vortex

FIG. 1. A schematic picture of the system. TSC is the topological
superconductor, the deformed region is indicated by yellow, and the
Abrikosov and spin vortices are shown by green.

vortices have normal cores, like the Abrikosov vortex. The
structures of the order parameter in the spin vortices of types
I and II are

��I = �(r, z)(cos ϕ, sin ϕ), ��II = �(r, z)(− sin ϕ, cos ϕ),

(9)

where (r, ϕ, z) are the cylindrical coordinates. The Majorana-
Kramers pair exists near the core of the vortex of type I,
and it does not exist near the core of the vortex of type II
[13]. The spin vortex arises when the strain exceeds some
critical value. This value depends on the applied force and
the boundary conditions of a particular problem. We assume
here that the mechanical problem has cylindrical symmetry. In
this case, in the cylindrical coordinates, we have uxx − uyy =
u(r, z) cos 2ϕ and 2uxy = u(r, z) sin 2ϕ. We consider the sim-
plest and the most illustrative case, assuming that the strain
amplitude u(r, z) is constant within the cylinder with radius lu
(see Fig. 1). We also neglect the unimportant z dependence of
the problem values and assume that the strain is not too large,
that is, |gN u| < |a|.

First, we calculate the GL free energy associated with
creating the spin vortex of type I or type II. The process of
calculations is described in Appendix B. Here we present only
the result

F I(II)
SV = π

4B1

[
gN u(∓2a + 3gN u)l2

u

− 4(J1 ± J4)(a ∓ gN u) ln
lu

ξI(II)

]
, (10)

where F I(II)
SV means the GL free energy of the spin vortex of

type I(II) and ξI = ξ
√

1 + k and ξII = ξ
√

1 − k are effective
coherence lengths (or core sizes) for the vortex of type I and
type II, respectively.

The spin vortex arises in the strained nematic supercon-
ductor if F I(II)

SV < 0. After a simple algebra, we obtain that the
existence of the spin vortex is thermodynamically favorable if
the deformation u lies within the limits∣∣∣∣∣2

3

(
ξI(II)

lu

)2

ln
lu

ξI(II)

∣∣∣∣∣ <

∣∣∣∣gN u

a

∣∣∣∣ � 2

3
. (11)

The type of the spin vortex depends on the sign of the value
gN u: the vortex is of type I if gN u < 0 and of type II if gN u >

0. We also see from the condition Eq. (11) that the size of
the deformed area should be large enough to generate the spin

vortex. In particular, the spin vortex does not arise if lu � ξ .
A characteristic value of the ratio |gN u/a| ≈ 0.2–0.6 for the
topological superconductors Bi2Se3 was extracted from the
experimental data in Refs. [11,27]. Thus, we can conclude that
the conditions (11) can be satisfied in a real experiment.

III. INTERACTION BETWEEN ABRIKOSOV VORTEX
AND SPIN VORTEX

Now we consider a strained sample with the Abrikosov
and spin vortices in zero external magnetic fields. Let the
center of the spin vortex be located at the coordinate origin,
and the center of the Abrikosov vortex is at the point (x0, y0)
(see Fig. 1). It is convenient to characterize the distance
between vortices by a radius ρ0 in the elliptic coordinates
ρ2

0 = x2
0/(1 + k) + y2

0/(1 − k). We assume that lu > ρ0 > 2ξ

to vortex started interacting. If the free energy decreases with
the decrease of ρ0, the spin and Abrikosov vortices attract
each other.

The Abrikosov vortex changes the phase of the order
parameter. Following a standard approach, we make the fol-
lowing gauge transformation:

A = 1

2
∇χ, θ = π


0
χ, (12)

where χ is the scalar potential, vector potential A =
(Ax, Ay, 0) is determined from Eq. (7) as ∇ × A = H, and θ is
the phase of the order parameter. From the gauge transforma-
tion, Eq. (12), we obtain the following equations for the scalar
potential:

∇xχ = y
0√
1 − k2πλρ

K1

⎛
⎝1

λ

√
(x − x0)2

1 + k
+ (y − y0)2

1 − k

⎞
⎠,

∇yχ = −x
0√
1 − k2πλρ

K1

⎛
⎝1

λ

√
(x − x0)2

1 + k
+ (y − y0)2

1 − k

⎞
⎠,

(13)

where K1 is the modified Bessel function. Thus, the order
parameter can be presented as

��I = �(r, z) exp

(
i
π


0
χ (r, ϕ)

)
(cos ϕ, sin ϕ),

��II = �(r, z) exp

(
i
π


0
χ (r, ϕ)

)
(− sin ϕ, cos ϕ). (14)

We substitute the gradients of the scalar potentials, Eqs. (13),
and the order parameters, Eqs. (14), in the GL free energy,
Eq. (6). As a result, the GL free energy of the considered two-
vortex system can be presented in the form

F I(II)
SMV =

∫
a ∓ gN u

4B1

[
−a ∓ 3gN u − 2J1(1 ± k)

x2 + y2

]
dV + F I(II)

int .

(15)

The first term is the free energy associated with the existence
of the spin vortex. The contribution in the free energy F I(II)

int
includes the terms dependent on the distance between the spin
and Abrikosov vortices. (Note, we omit the electromagnetic
contribution of the Abrikosov vortex to the free energy since
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FIG. 2. The part of GL free energy responsible for the interaction between the spin and Abrikosov vortices plotted with the following
parameters: a/B1 = −1, k = J1/J4 = 0.5, ξ/λ = 0.25, ξ/lu = 0.07. Panel (a) corresponds to the spin vortex of type I at gN u/a = 0.25,
and panel (b) corresponds to the spin vortex of type II at gN u/a = −0.25. The blue line is the calculations by Eq. (16), and the red line is the
analytical formula (17).

it has a standard form and in the limit λ 	 ξ , it is independent
of ρ0.) In the case ρ0 > ξ we can derive for F I(II)

int the explicit
expression

F I(II)
int = a ∓ gN u

4B1

∫
2J1(1 ∓ k)(x2 + y2)

[(−1 + k)x2 − (1 + k)y2]λ2

× K2
1

⎛
⎝1

λ

√
(x − x0)2

1 + k
+ (y − y0)2

1 − k

⎞
⎠dV, (16)

where the upper (lower) sign corresponds to the type-I (II)
spin vortex, and the integration is performed over the sample
volume. The factor before the integral in Eq. (16) is equal
to the equilibrium value of the GL order parameter in the
deformed sample, and the GL coefficients J1 and k reflect the
anisotropy of the system. The technical details are described
in Appendix C. Thus, Fint is the part of the free energy associ-
ated with the interaction between the vortices. The interaction
force is a derivative ∇ρ0 Fint. This force decays exponentially
when the distance between vortices ρ0 exceeds the London
penetration depth λ since the modified Bessel function K1(x)
at x 	 1 can be approximated as K1(x) ∝ e−x/

√
x.

The physical meaning of the obtained result is as follows.
A pattern of the current flowing around the Abrikosov vortex
is distorted near the spin vortex’s normal core, giving rise to
the interaction between vortices. In the case of a usual super-
conductor with a scalar order parameter, a similar mechanism
causes an attraction between a normal inclusion and the vortex
[28]. We show that it is also true for the considered nematic
superconductor.

In general, the interaction between the vortices should
include additional contributions of a different nature. The
first one arises due to a dependence of the free energy of
the Abrikosov vortex on the order parameter �, which can
vary with coordinates in the strained sample. However, in the
considered approximation, u(r, y) = const, this term does not
contribute to the force ∇x,yFint. In a more general case, it is
small if the strain varies over the macroscopic scale lu. The
second term is usual short-range pinning on a normal inclu-
sion (with a characteristic scale ξ ) [28]: the Abrikosov and
spin vortices have normal cores, and it is thermodynamically

favorable to join the cores. Such a term is of significance when
ρ0 < ξ .

In Fig. 2 we show the function F I(II)
int (ρ0) calculated nu-

merically from Eq. (16). Evidently, the interaction between
vortices is significant only when ρ0 < λ, otherwise, it is expo-
nentially small. When ξ � ρ0 � λ we can derive an analytical
formula for F I(II)

int (ρ0) using asymptotes of the modified Bessel
functions (see Appendix C):

F I(II)
int = J1π (a ∓ gN u)

2B1

(
ξ 2

ρ2
0

+ 2 ln
ρ0

ξ

)
. (17)

Free energy acquires its minima when ρ0 = ξ . We see that
in the case of both type I and type II vortices, the Abrikosov
vortex attracts to their cores if ρ0 � ξ . When ρ0 � ξ the short-
range pinning comes into play, and the attraction between the
vortices increases significantly [28]. The qualitative behavior
of the free energy remains the same for all temperatures lower
than critical. Temperature only renormalizes the length scale
ξ 2(T ) ∝ 1/(Tc − T ) and prefactor a ∓ gN u ∝ Tc − T .

Note, that the interaction of the Abrikosov vortex with the
spin vortex has the same nature as usual pinning. However,
this interaction is much stronger than the pinning on a point
defect. Really, the length lz of the core of the spin vortex along
the z direction is equal to the sample size in that direction.
This value is much larger than the size dz of a usual point
defect. Accordingly, the force between the vortices is about
lz/dz 	 1 larger than the force between the Abrikosov vortex
and the point defect.

IV. ANALYSIS OF ZERO-ENERGY STATES

Localization of the quasiparticles near vortex cores is a
common feature of superconductors. In the case of topological
superconductivity, of special interest is the existence of zero-
energy Majorana states in the spectrum of such quasiparticles
(see, e.g., Refs. [13,22,23]). According to Eq. (16), the spin
and mass vortices attract each other. Consequently, the spin
vortex, either of type I or of type II, and the Abrikosov vortex
have a common core in the ground state. The order parameter
phase in the joint spin-mass vortex differs from the phases
of separate spin or mass vortices [see Eqs. (14)], which can
modify the quasiparticle states near the common core. To
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clarify this issue, we need a microscopical treatment of the
problem.

Now, we assume that lu → +∞ and seek localized zero-
energy solutions of BdG equations near the common vortex
core. Previously, in Ref. [13], we have shown that the spin vor-
tex can (or cannot) host Majorana-Kramer’s pairs depending
on the type of the vortex. The Majorana-Kramer’s pairs are
protected by time-reversal symmetry. The Abrikosov vortex
lifts this symmetry; therefore, the topological properties of the
spin-mass vortex would be different.

The BdG Hamiltonian in the considered case is [29]

HBdG(k) = H0(k)τz + ��τx, (18)

where the single-electron Hamiltonian H0 is [30]

H0(k) = −μ + mσz + υσx(sxky − sykx ) + υzkzσy. (19)

Here σ , s, and τ are the Pauli matrices acting in orbital, spin,
and electron-hole spaces, respectively, and the superconduct-
ing order parameter is �� = �(r)σy�s �n, k is the momentum,
μ is the chemical potential, m is a single-electron gap, and
υ and υz are the in-plane and transverse Fermi velocities,
respectively. Following the GL consideration, we choose �n
as �n = [cos (ϕ + νπ/2), sin (ϕ + νπ/2)], where ν = 0 and
ν = 1 correspond to the type-I spin vortex and type-II spin
vortex, respectively. According to the results of Sec. III, the
presence of the Abrikosov vortex in the common core gives
rise to an additional phase in the order parameter. Using
Eq. (14), we present symbolically this additional phase as
��τx → ��τxeinθτz .

The spin-mass vortex can be described by introducing a
“defect term” in the Hamiltonian

U ∗
SVU ∗

AV
��0UAVUSV, (20)

where ��0 = �(r)σysxτx is the superconducting order param-
eter in the absence of the vortices, USV = e−isz[ϕ/2+(ν−1)π/4] is
the spin vortex operator, and UAV = e−inϕτz/2 is the Abrikosov
(mass) vortex operator. The spin vortex generates vorticity in
the spin space s and can be induced in the Hamiltonian by the
transformation U ∗

SV�0USV [15,23]. The mass vortex generates
vorticity in the mass space τ and can be induced by the trans-
formation U ∗

AV�0UAV [15,31]. Together, these transformations
generate the term associated with the spin-mass vortex.

Further study of possible Majorana states near the vortex
core repeats the procedure described in detail in Ref. [13].
We diagonalize Hamiltonian (18) with order parameter in the
form Eq. (20). Then, we perform a set of rather cumbersome
transformations and seek zero-energy solutions to the prob-
lem. However, we observe that such solutions do not exist
either in the case of type-I or type-II spin vortices. We put
all the calculations in Appendix D. Thus, we do not have Ma-
jorana fermions in the considered two-vortex system. At the
same time, for the spin vortex of type I without the Abrikosov
vortex, the Majorana-Kramers pair exists near the vortex core.
The obtained results are briefly summarized in Table I.

V. CONCLUSIONS

We analyze the structure of the Abrikosov and strain-
induced spin vortices in the nematic superconductor with
vector order parameter within the GL approach. We found

TABLE I. The table shows that the existence of the Majorana
fermions (MFs) in the topological superconductor depends on the
topological defects. Here we have four cases: both types of spin
vortices (SVs) with or without the Abrikosov vortex (AV).

SV type Without AV With AV

Type I 2 MF No MF
Type II No MF No MF

the conditions under which the nucleation of the spin vortices
is possible. We consider the interaction between the spin and
mass (Abrikosov) vortices in the nematic superconductor. We
show that the Abrikosov vortex attracts to the spin vortex,
either of type I or of type II. As a result, in the ground state, the
mass and spin vortices have a common core. Such a situation
is quite similar to the superfluid 3He, where the spin-mass
vortex was observed [16].

The attraction of the vortices reduces the inhomogeneity of
the system. The reason for that is simple: in the case of sepa-
rate vortices, there are two singular points that correspond to
the vortex cores where phase gradients diverge. The combined
spin-mass vortex has only one core and, therefore, one point
where the gradient terms are large. In contrast to the inter-
action of the Abrikosov vortices, there is no electromagnetic
repulsion between spin and mass vortices since the spin vortex
does not carry the electrical current.

We get that the strain should be large enough to generate
the spin vortex for a finite radius of the deformed area lu,
Eq. (11). The deformation scale lu can be either macroscopic
(lu 	 ξ ) or microscopic (lu ∼ ξ ). However, in the case of
small area of deformation lu � ξ , even strong deformation
does not generate the spin vortex.

The core of the spin-mass vortex can be considered as
a topological defect in the system. However, no Majorana
zero-energy modes are localized near the core in contrast to
the case of the spin vortex of type I. Note also that, typically,
the Fermi energy is much larger than the value of the order
parameter, EF =

√
μ2 − m2 	 �. In this case, as shown for

a similar system [32], a scale of the minigap between the
states localized near the vortex core should be of the order
of �2/EF ∼ 10−3�, that is, quite small.

As we can see from Eq. (20), the defect term that
introduces the spin-mass vortex in the system can be decom-
posed as USMV = UHQVUHQV, where UHQV ∝ exp[iϕ(sz +
τz )/4] corresponds to the half-quantum vortex (HQV) [15].
So, the spin-mass vortex can be formally considered as a
doubled half-quantum vortex. In Ref. [33], it was shown that
HQVs can appear in a narrow region of parameters in a doped
topological insulator. It is an intriguing question whether we
can get isolated HQVs in the considered system. However, the
main reason why we have a spin vortex in the system is the
presence of the strain that forces the nematic superconductor
to obey cylindrical symmetry. We assume that the strain is
rather strong, and we can apply only the first GL equation to
determine the vector structure of the order parameter. Thus,
in the considered case here, we can rule out the possibility of
forming separate HQVs, while in different geometry, it might
be possible.
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The combined spin and Abrikosov vortices can be detected
by scanning tunneling microscopy (STM) or scanning super-
conducting quantum interference device microscopy (SSM).
There are two possible scenarios for an experiment. In the first
case, we observe the displacement of the Abrikosov vortex
lattice under the local force that generates the spin vortex. In
the second scenario, we can move the Abrikosov vortex into
the strained area lu using the needle of the STM. Then we
again check the displacement of the Abrikosov vortex using
the STM or SSM. Control of the nematic superconductivity
by the strain was demonstrated in Ref. [34]. The Abrikosov
vortices in doped topological superconductors were observed
in STM measurements in Ref. [21]. So, we believe that an
experimental observation of the spin-mass vortices in doped
topological insulators is a feasible task.
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APPENDIX A: ABRIKOSOV VORTEX IN THE NEMATIC
SUPERCONDUCTOR

Here we obtain a solution of the GL equations, which
corresponds to an isolated Abrikosov vortex along the z axis
located far from the core of the spin vortex and the sample
boundaries. In this case, we can assume that the order param-
eter is constant in the scale of the London penetration depth
λ � lu. If �� is independent on the polar angle ϕ, we can
choose �� = (�, 0) and the problem is reduced to a standard
one for type-II superconductors [26,35]. We choose the vector
potential in the form A = (Ax, Ay, 0). Thus, the GL gradient
term. Eq. (4). becomes

FD = (J1 + J4)h̄2

∣∣∣∣∂�

∂x

∣∣∣∣
2

+ (J1 − J4)h̄2

∣∣∣∣∂�

∂y

∣∣∣∣
2

+ i
2eh̄

c
Ax(J1 + J4)

(
�∗ ∂�

∂x
− �

∂�∗

∂x

)

+ i
2eh̄

c
Ay(J1 − J4)

(
�∗ ∂�

∂y
− �

∂�∗

∂y

)

+
(

2e

c

)2

|�|2[A2
x (J1 + J4) + A2

y (J1 − J4)
]
. (A1)

We make the following transformation:

x̃ = x√
1+ k

, ỹ = y√
1− k

, Ax = Ãx√
1 + k

, Ay = Ãy√
1− k

,

where k = J4/J1 < 1. In so doing, we obtain

FD

J1
= h̄2

(∣∣∣∣∂�

∂ x̃

∣∣∣∣
2

+
∣∣∣∣∂�

∂ ỹ

∣∣∣∣
2
)

+ i
2eh̄

c

[(
�∗ ∂�

∂ x̃
− �

∂�∗

∂ x̃

)
Ãx

+
(

�∗ ∂�

∂ ỹ
− �

∂�∗

∂ ỹ

)
Ãy

]
+

(
2e

c

)2(
Ã2

x + Ã2
y

)|�|2.
(A2)

To derive the GL equations, we should minimize the total free
energy FGL = F0 + FD + Fu + FM, Eq. (6), with respect to the
order parameter and the vector potential.

First, we minimize the GL free energy with respect to the
complex conjugate order parameter and get

δ�∗FGL

J1
= −h̄2

(
∂2�

∂ x̃2
+ ∂2�

∂ ỹ2

)
+ i

4eh̄

c

(
Ãx

∂�

∂ x̃
+ Ãy

∂�

∂ ỹ

)

+
(

2e

c

)2(
Ã2

x + Ã2
y

)
� + a + gN (uxx − uyy)

J1
�

+ 2B1

J1
�|�|2 = 0. (A3)

After a straightforward algebra, we obtain the first GL equa-
tion in the form

− ∇2� + i
4π


0

(
Ãx

∂�

∂ x̃
+ Ãy

∂�

∂ ỹ

)
+

(
2π


0

)2(
Ã2

x + Ã2
y

)
�

+ a + gN (uxx − uyy)

J1h̄2 � + 2B1

J1h̄2 �|�|2 = 0, (A4)

where 
0 = π h̄c/e. In the considered case, the role of the
strain reduces to a renormalization of the parameter a in F0.

The second GL equation we derive by minimizing the GL
free energy with respect to the vector potential

δÃFGL = 1

4π (1 − k2)
(∇ × ∇ × Ã) + iJ1

2eh̄

c

× (�∗∇� − �∇�∗) + 2J1

(
2e

c

)2

Ã|�|2 = 0.

(A5)

We write down the GL equations in the coordinates
(x̃, ỹ, z). It is convenient to rewrite them in the cylindrical
coordinates (ρ, ϕ, z) and introduce the modulus and phase of
the order parameter � = |�|eiθ (to be brief, we omit below
| · · · |). In the new notations we rewrite the GL Eqs. (A4) and
(A5) in the form

− ∇2� +
(

∇θ − 2π


0
Ã

)2

� − 2i∇�

(
∇θ − 2π


0
Ã

)

− i∇2θ � + a + gN (uxx − uyy)

J1h̄2 � + 2B1

J1h̄2 �3 = 0, (A6)

1

4π h̄2(1 − k2)
(∇ × ∇ × Ã) = J1

4π


0
�2

(
∇θ − 2π


0
Ã

)
.

(A7)

The doped topological insulator is a type-II superconductor
[1,5,11,36]. We assume that the GL parameter κ 	 1. In this
case, the order parameter is a constant if ρ 	 ξ and becomes
� = �0 = −[a + gN (uxx − uyy)]/2B1. Thus, we can calcu-
late the vector potential and the magnetic field from (A7)
following a standard approach for the type-II superconductors
[26]. We seek a solution of Eq. (A7), which depends only
on ρ and place a corresponding delta-function term in the
coordinate origin to take into account the vortex core. As a
result, we have from Eq. (A7)

�H + c2

32πe2�2
0J1(1 − k2)

(∇ × ∇ × H) = 
0δ(ρ)�ez. (A8)

134515-6



INTERACTION BETWEEN SPIN AND ABRIKOSOV … PHYSICAL REVIEW B 107, 134515 (2023)

The solution of the latter equation corresponding to the
Abrikosov vortex reads

H (ρ) = 
0

2πλ2
K0(ρ/λ), A(ρ) = − 
0

2πλ
K1(ρ/λ),

1

λ2
= 32πe2�2

0J1(1 − k2)

c2
. (A9)

In the chosen gauge θ = 0. Near the vortex core, ρ � ξ , we
can readily observe that all the terms related to the magnetic
field are of the order of 1/κ and can be neglected [26]. Then,
from the first GL equation, (A6), we get

f ′′(ρ̃ ) + 1

ρ̃
f ′(ρ̃) − 1

ρ̃2
f = f (ρ̃)3 − f (ρ̃),

f (ρ) = �(ρ)

�0
, �2

0 = −a + gN (uxx − uyy)

2B1
, (A10)

ρ̃ = ρ

ξ
, ξ 2 = J1h̄2

2B1�
2
0

.

Thus, the equation for the order parameter near the core
of the Abrikosov vortex is the same as in the case of an
s-wave type-II superconductor [35]. Therefore, we have the
same asymptote for order parameter as in the s-wave type-II
superconductor and can cut the singularities in H (ρ) and A(ρ)
at ρ → 0 putting ρ = ξ .

APPENDIX B: GL FREE ENERGY OF THE SPIN VORTEX

Here we derive the GL free energy of the spin vortex given
in Sec. II C. We assume that the mechanical problem has a
cylindrical symmetry, that is, a force produces the strain in
the z direction, which acts on a plate sample that has the form
of a disk. As stated in Sec. II C, we assume that the strain
is constant and |a| > gN u, and we do not have any magnetic
field. In this case, the GL free energy, Eq. (6), consists of the
following terms:

F0 = a(|�1|2 + |�2|2) + B1(|�1|2 + |�2|2)2

+ B2|�∗
1�2 − �1�

∗
2|2,

FD = (J1 + J4)

(
∂�1

∂x

)2

+ (J1 − J4)

(
∂�1

∂y

)2

+ (J1 − J4)

(
∂�2

∂x

)2

+ (J1 + J4)

(
∂�2

∂y

)2

+ 2J4

(
∂�1

∂x

∂�2

∂y
+ ∂�1

∂y

∂�2

∂x

)
,

Fu = gN u(r, z)(|�1|2 − |�2|2) cos 2ϕ

+ gN u(r, z)(�∗
1�2 + �1�

∗
2 ) sin 2ϕ.

The spin vortex order parameter can be written as [13]

��I = �(r, z)(cos ϕ, sin ϕ), ��II = �(r, z)(− sin ϕ, cos ϕ).

(B1)

We substitute these order parameters into the free energy of
the spin vortex. Thus, to get the energy of the spin vortex and
the critical strain, we have to evaluate the following integral

over the sample volume

FSV =
∫

dV (F0 + FD + Fu).

We put � = �0 and in the cylindrical coordinates with the
accuracy ξ 2/l2

u � 1 obtain

F I(II)
SV =

∫ lu

ξI(II)

∫ 2π

0

1

4B1r
[∓2a(±J1 + J4 + gN r2u)

+ gN u(±2J1 + 2J4 + 3gN r2u)]dr dϕ, (B2)

where the upper (lower) sign corresponds to the type-I (II)
spin vortex, and ξI(II) = ξ

√
1 ± k is the coherence length for

the type-I (II) spin vortex. Thus, we get the GL spin vortex
free energy in the form

F I(II)
SV = π

4B1

[
gN u(∓2a + 3gN u)l2

u

− 4(J1 ± J4)(a ∓ gN u) ln
lu

ξI(II)

]
. (B3)

APPENDIX C: ATTRACTION BETWEEN THE SPIN
AND MASS VORTICES

Here we evaluate the GL interaction energy between the
Abrikosov and spin vortices, Eq. (16):

F I(II)
int = a ∓ gN u

4B1

∫
2J1(1 ∓ k)(x2 + y2)

[(−1 + k)x2 − (1 + k)y2]λ2

× K2
1

⎛
⎝1

λ

√
(x − x0)2

1 + k
+ (y − y0)2

1 − k

⎞
⎠dV, (C1)

where (x0, y0) are the coordinates of the Abrikosov vortex.
To be brief, we present the calculation details for the case of
the type-I spin vortex. For the type-II vortex, the derivation is
similar.

We introduce the polar coordinates (ρ, θ ) related to (x, y)
by the following transformation:

x = (ρ cos θ + ρ0 cos θ0)
√

1 + k, (C2)

y = (ρ sin θ + ρ0 sin θ0)
√

1 − k,

x0 = ρ0 cos θ0,

y0 = ρ0 sin θ0.

Then, the integral (C1) becomes

F I
int = −2J1(a − gN u)

4B1

∫ lu

ξ

ρK2
1 (ρ/λ)

√
1 − k2dρ

×
∫ 2π

0
R(ρ, θ, ρ0, θ0)dθ, (C3)
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where∫ 2π

0
R(ρ, θ, ρ0, θ0) dθ

=
∫ 2π

0

{
ρ2 + ρ2

0 + kρ2 cos 2θ

(1 + k)λ2
(
ρ2 + ρ2

0 + 2ρρ0 cos [θ − θ0]
) + ρ0[kρ0 cos 2θ + 2ρ{cos (θ − θ0) + k cos (θ + θ0)}]

(1 + k)λ2
(
ρ2 + ρ2

0 + 2ρρ0 cos [θ − θ0]
)

}
dθ. (C4)

To evaluate the latter integral, we turn to integration in the complex plane z using the following substitution:

z = eiθ , dθ = dz

iz
, z0 = eiθ0 . (C5)

The integral (C4) becomes∫ 2π

0
R(ρ, θ, ρ0, θ0)dθ = −i

∮
|z|=1

k

{
ρ2(z4 + 1)z2

0 + ρ2
0 z2

(
z4

0 + 1
) + 2ρρ0

(
z2z2

0 + 1
)

2(1 + k)λ2z2z0(ρ0z + ρz0)(ρz + ρ0z0)
+ 1

zλ2(1 + k)

}
dz. (C6)

The function under the integral has three poles

z1 = 0, z2 = − z0ρ

ρ0
, z3 = − z0ρ0

ρ
. (C7)

We can put z0 = 1 since the choice of position θ = 0 is arbi-
trary due to rotational symmetry of the problem. We calculate
the integral (C6) using the residue theorem. If ρ0/ρ � 1 we
get∫ 2π

0
R(ρ, θ, ρ0, θ0)dθ = 2π i

[
Res
z=z1

R + Res
z=z3

R
] = 2π

(1 + k)λ2

(C8)

and if ρ0/ρ > 1 we have∫ 2π

0
R(ρ, θ, ρ0, θ0)dθ = 2π i

[
Res
z=z1

R + Res
z=z3

R
]

= 2π
[
ρ2

0 − k
(
ρ2 − ρ2

0

)]
(1 + k)λ2ρ2

0

. (C9)

We consider the case ρ0 � ξ . Then, the integral (C1) becomes

F I
int = F I

int(ρ0 � ξ )

= −J1π (a − gN u)
√

1 − k2

B1λ2(1 + k)

[∫ lu

ρ0

ρK2
1 (ρ/λ)dρ

+
∫ ρ0

ξ

ρ
[
1 + k

(
1 − ρ2/ρ2

0

)]
K2

1 (ρ/λ)dρ

]
. (C10)

In the case of interest lu < λ, when the vortices interact with
each other, we can use the asymptote K1(ρ/λ) � λ/ρ and
derive

F I(II)
int = J1π (a ∓ gN u)

2B1

(
ξ 2

ρ2
0

+ 2 ln
ρ0

ξ

)
. (C11)

Here we add the result for the type-II spin vortex, which can
be derived using a similar approach.

APPENDIX D: BOGOLIUBOV–DE GENNES EQUATIONS

Here we present a detailed analysis of the possible exis-
tence of the zero-energy states near the core of the spin-mass

vortex. We can consider only the states with kz = 0 and
rewrite the Hamiltonian, Eq. (18), with defect term, Eq. (20),
in the polar coordinates:

HBdG = −μτz + mσzτz + iυσxsxτz

[
ei(ϕ+π/2)sz∇r

− 1

r
eiϕsz∇ϕ

]
+ �σysxτxei[(sz+nτz )ϕ+νπ/2sz]. (D1)

The dependence of the Hamiltonian on the polar angle ϕ can
be removed by the transformation

ψ (r, ϕ) = exp [i(l − sz/2 − nτz/2)ϕ]
ψ̃ (r)√

r
, (D2)

where l is an orbital number and ψ is the eight-component
spinor ( f1↑, f1↓, f2↑, f2↓, h1↑, h1↓, h2↑, h2↓)T. Here, 1 and 2
are the orbital indices, ↑ and ↓ are the spin projections, and f
and h represent the electron and hole states. The wave function
is single valued if l = 0,±1,±2, . . .. Thus, the Hamiltonian
(D1) becomes

Heff = e−i(l−sz/2−nτz/2)ϕHBdGei(l−sz/2−nτz/2)ϕ

= −μτz + mσzτz + iυσxsxτz

×
[

isz∇r − i

r
(l − sz/2 − nτz/2)

]

+ �σysxτxei(νπ/2)sz . (D3)

The Hamiltonian, Eq. (18), has a symmetry [H, σzsz] = 0.
Thus, there is a basis in which the Hamiltonian is decomposed
in two spin-orbital blocks with σzsz�̂± = ±�̂± and in this
basis the operator σzsz is diagonal. Here �̂+ = (�+, 0)T and
�̂− = (0, �−)T where

�+(−) = (h1(2)↓, h1(2)↑, f2(1)↓, f2(1)↑)T.
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The transformation that decomposes the Hamiltonian Heff can
be presented in matrix form as

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D4)

After transformation, P†HeffP, we obtain the Hamiltonian Heff

in the block-diagonal form

Heff =
(

Hβ=+1 0
0 Hβ=−1

)
, (D5)

where 0 corresponds to the 4 × 4 zero matrix and

Hβ = (μ + βmcz + iυcy∇r )τz − nυ

2r
cx + β�cyτxe−i(πν/2)cz ,

(D6)

where β = ±1 and we assume that l = 0 since we are only
interested in the zero-energy states. Here ci is the Pauli matrix
that acts in the spin-orbital space, τi acts in particle-hole space,
the case ν = 0 corresponds to the type-I spin vortex, and ν =
1 corresponds to the type-II spin vortex.

To simplify the further analysis, we can assume that m →
0. In this case, we have a topologically equivalent system. If
such a system has no zero-energy modes, therefore, the system
does not have these modes when m �= 0.

In the case of the type-I spin vortex and Abrikosov vor-
tex (ν = 0), the Hamiltonian anticommutes with the operator
cyτy, {H, cyτy} = 0. The operator cyτy is diagonalized by the
transformation

P0 = 1

2

⎛
⎜⎜⎝

1 0 −1 0
0 −1 0 1
0 1 0 1
1 0 1 0

⎞
⎟⎟⎠. (D7)

We apply this transformation to the Hamiltonian Hβ (D6),
P†

0 HβP0, and obtain

H I
β =

(
0 H I

t=−1
H I

t=+1 0

)
, (D8)

where

H I
t = −μκz + t

(
iβ�κz + inυ

2r
κy − υκx∇r

)
. (D9)

Here t = ±1 and κi are the Pauli matrices that act in the space
�Lν=0 = (L1, L2)T = ( f1(2)↑ ± h2(1)↓, f1(2)↓ ∓ h2(1)↑)T for β =
+1(−1). Thus, for the type-I spin vortex and the Abrikosov
vortex, we have four blocks of 2 × 2 equations.

In the case of the type-II spin vortex and Abrikosov vor-
tex (ν = 1), the Hamiltonian anticommutes with the operator
cyτx, {H, cyτx} = 0. The operator cyτx is diagonalized by the

transformation

P1 = 1

2

⎛
⎜⎜⎝

i 0 −i 0
0 i 0 −i
0 1 0 1
1 0 1 0

⎞
⎟⎟⎠. (D10)

Then we apply this transformation to the Hamiltonian Hβ

(D6), P†
1 HβP1, and obtain

H II
β =

(
0 H II

t=−1
H II

t=+1 0

)
, (D11)

where

H II
t = −μκz + t

(
−iβ� + υκy∇r + inυ

2r
κx

)
. (D12)

Here t = ±1 and κi are the Pauli matrices that act in the
space �Lν=1 = (L1, L2)T = ( f1(2)↑ ∓ ih2(1)↓, f1(2)↓ ∓ ih2(1)↑)T

for β = +1(−1). Thus, for the type-II spin vortex and the
Abrikosov vortex, we also have four blocks of 2 × 2 equa-
tions.

Now we seek zero-energy solutions to the BdG equations.
Thus, we solve equations Ht �L = 0. We assume that the super-
conducting order parameter is a step function, namely, � = 0
for r � ξ and � �= 0 for r > ξ . For the type-I spin vortex
(ν = 0) and one Abrikosov vortex (n = 1), we have(

L′′
2 + 1

r
L′

2

)
υ2 + (μ − itβ�)2L2 = 0,

L1(μ − itβ�) = −tυL′
2. (D13)

Solutions regular at r � ξ can be presented in the forms

L1 = C1J1

(
rtμ

υ

)
,

L2 = C1J0

(
rtμ

υ

)
, (D14)

where Jm(x) are the mth-order Bessel functions. Solutions
regular at r > ξ are

for β = +1 :

L1 = C̃1

[
iJ1

(
rt (μ − it�)

υ

)
+ Y1

(
rt (μ − it�)

υ

)]
,

L2 = C̃1

[
iJ0

(
rt (μ − it�)

υ

)
+ Y0

(
rt (μ − it�)

υ

)]
;

(D15)

for β = −1 :

L1 = C̃1

[
−iJ1

(
rt (μ + it�)

υ

)
+ Y1

(
rt (μ + it�)

υ

)]
,

L2 = C̃1

[
−iJ0

(
rt (μ + it�)

υ

)
+ Y0

(
rt (μ + it�)

υ

)]
.

(D16)

Here Ym(x) are the mth-order Neumann functions. Solutions
(D14) and (D15)–(D16) cannot be matched at r = ξ . Thus,
there are no zero-energy solutions localized near the spin-
mass vortex core.
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Now we consider the type-II spin vortex (ν = 1) and one Abrikosov vortex (n = 1). For this case, the transformed BdG
equations read (

L′′
2 + 1

r
L′

2

)
υ2 + [μ2 + �2]L2 = 0,

L1(μ + it�β ) = −itυL′
2. (D17)

The solutions of the latter equation are

L1 = iμ + t�β√
μ2 + �2

[
C2J1

(
rt

√
μ2 + �2

υ

)
+ C3Y1

(
rt

√
μ2 + �2

υ

)]
,

L2 = C2J0

(
rt

√
μ2 + �2

υ

)
+ C3Y0

(
rt

√
μ2 + �2

υ

)
. (D18)

These solutions are not regular at r > ξ . Thus, there are no zero-energy solutions localized near the spin-mass vortex core.
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