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Bound states around impurities in a superconducting bilayer
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We theoretically study the appearance of bound states around impurities in a superconducting bilayer. We
focus our attention on s-wave pairing, which includes unconventional odd-parity states permitted by the layer
degree of freedom. Utilizing numerical mean-field and analytical T -matrix methods, we survey the bound-state
spectrum produced by momentum-independent impurity potentials in this model. For even-parity s-wave pairing,
bound states are only found for impurities which break time-reversal symmetry. For odd-parity s-wave states,
in contrast, bound states are generically found for all impurity potentials, and fall into six distinct categories.
This categorization remains valid for nodal gaps. Our results are conveniently understood in terms of the
“superconducting fitness” concept, and show an interplay between the pair-breaking effects of the impurity and
the normal-state band structure.
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I. INTRODUCTION

The robustness of conventional superconductors to the
presence of nonmagnetic impurities is famously guaranteed
by Anderson’s theorem and the isotropic gap function [1].
However, if the disorder breaks time-reversal symmetry or
the superconductor has an unconventional sign-changing gap,
introducing a finite concentration of impurities rapidly sup-
presses the critical temperature to zero [2]. This pair-breaking
effect is also evidenced by a single impurity with the appear-
ance of bound states localized at the impurity with energy
within the superconducting gap. So-called Yu-Shiba-Rusinov
states were first proposed for magnetic impurities in con-
ventional superconductors [3–5]. Impurity bound states also
appear in fully gapped unconventional superconductors for
both magnetic and nonmagnetic impurities [6–9], while sub-
gap resonances appear in nodal superconductors due to the
hybridization with the nodal quasiparticles [10,11]. Impurity
bound states have attracted much attention over the last sev-
eral decades [12] as they can be directly detected by scanning
tunneling microscopy experiments [13], and hence act as a
test of the pairing symmetry [14,15]. More recently, it has
been claimed that topological superconductivity is realized in
the bands formed by overlapping bound states on chains of
magnetic impurities [16–18].

Recently it has been observed that the superconductivity of
Bi2Se3-based compounds is remarkably robust against disor-
der [19–21], despite strong evidence that it realizes a nematic
odd-parity state which is not protected by Anderson’s theorem
[22]. This has prompted interest in the possibility that the
strong spin-orbit coupling (SOC) in this compound might
be responsible for the enhanced robustness of the pairing
state [21,23–29]. Particular attention has been directed at the
unconventional odd-parity s-wave states allowed by the sub-
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lattice structure of these materials [30], and it has been found
that these states can be surprisingly robust against chemical
potential disorder [23,26,27]. A key parameter in this theory
is the “superconducting fitness” [31,32], which measures the
degree to which the pairing state pairs electrons in the same
band: the fitter the gap, the higher the degree of intraband
pairing, and the weaker the suppression of the critical temper-
ature by disorder. The fitness concept has also been extended
to other impurity potentials, allowing the identification of
impurities which are pair breaking for a given pairing state
[21,27,28,33].

Thus far the study of impurities in odd-parity s-wave super-
conductors has mainly focused upon the effect on the critical
temperature [21,23,26–29]. The tuning of the pair-breaking
effect by the normal-state band structure should nevertheless
also influence the existence and structure of impurity bound
states in such superconductors. This motivates us to study
the bound states around an impurity in a minimal model with
odd-parity s-wave states to clarify the role of superconducting
fitness. Specifically, we consider impurities in a supercon-
ducting Rashba bilayer [34] using two distinct methods: a
numerical self-consistent mean-field theory for a tight-binding
model, and an analytic non-self-consistent T -matrix theory.
Examining all momentum-independent impurity potentials,
we find that the bound states belong to distinct classes which
depend on the symmetry of each impurity and its fitness with
respect to a given pairing state. Bound states are still possible
for fit impurities when the pairing state is unfit with respect
to parts of the normal-state Hamiltonian. Our results also hold
for virtual bound states which appear when the pairing state
has nodes.

Our paper is organized as follows: In Sec. II, we intro-
duce the two-dimensional tight-binding bilayer model and
our approximation schemes. We summarize the concept of
superconducting fitness in Sec. II A, while the self-consistent
mean-field theory and the T -matrix approximation are
introduced in Secs. II B and II C, respectively. In Sec. III,
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TABLE I. Summary of possible s-wave pairing states in a bilayer superconductor. The columns give the description, the matrix form, the
irreducible representation, and the value of the effective gap at the Fermi surface of the two models considered here. We adopt the shorthand
notation t̃⊥ = t⊥/μ and α̃ = α/μ.

Description Matrix Irrep Effective gap (2D) Effective gap (3D)

Uniform intralayer singlet �0η0iσy A1g �0 �0

Interlayer singlet �0ηxiσy A1g �0|t̃⊥| �0|m̃|
Staggered intralayer singlet �0ηziσy A2u �0

√
1 − t̃2

⊥ �0ṽ
√

k2
x + k2

y

Interlayer triplet �0ηyσziσy A1u �0

√
1 − t̃2

⊥ �0

√
1 − m̃2

Interlayer triplet {�0ηyσxiσy, �0ηyσyiσy} Eu {�0α̃| sin(kya)|,�0α̃| sin(kxa)|} {
�0ṽ

√
k2

y + k2
z , �0ṽ

√
k2

x + k2
z

}

we present our numerical and analytical results for the bound
states and develop the classification scheme for the isotropic
even-parity singlet state (Sec. III A) and the fully gapped
odd-parity s-wave states (Sec. III B). In Sec. IV we extend
our analysis to nodal gaps in a three-dimensional continuum
model, and find that our symmetry classification remains valid
for the virtual bound states. In Sec. V we summarize our
conclusions and discuss future work.

II. MODEL AND METHODS

As a minimal model we consider superconductivity in a
two-dimensional square bilayer lattice with an impurity. This
is described by the Hamiltonian

H = H0 + Himp + Hint. (1)

The first term describes the motion of the noninteracting elec-
trons

H0 =
∑
ri,rj

c†
ri
Hri,rj crj , (2)

where crj = (cA,rj,↑, cA,rj,↓, cB,rj,↑cB,rj,↓)T , and cη,rj,σ is the
destruction operator for a spin-σ electron on layer η = A, B
at rj, and the matrix elements are

Hri,rj = [−t (δri,rj±ax̂ + δri,rj±aŷ) − μδri,rj ]η0σ0

+ t⊥δri,rjηxσ0 + λx,ri,rjηzσx + λy,ri,rjηzσy, (3)

where the σμ and ημ are the Pauli matrices for spin and layer
degrees of freedom, respectively, and ηνσμ is to be understood
as a Kronecker product. The first line in Eq. (3) includes
the intralayer nearest-neighbor hopping t and the chemical
potential μ, the second line describes the coupling of the
layers via the hopping t⊥ between the A and B sites in each
unit cell, and a Rashba SOC of strength α in each layer

λx,ri,rj = ± α

2i
δri,rj±aŷ, (4)

λy,ri,rj = ∓ α

2i
δri,rj±ax̂. (5)

The Rashba SOC is generically present as the A and B sites
are not inversion centers [34]. To preserve the global inversion
symmetry, which swaps the A and B layers, the Rashba SOC
has an opposite sign in each layer as encoded by the ηz Pauli
matrix in Eq. (3).

The second term in Eq. (1) is

Himp = c†
r0

V̂impcr0 . (6)

This describes an impurity located at site r0 which couples to
the electrons via one of the 16 impurity potentials tabulated
in Table II, i.e., V̂imp = V αβηασβ . We consider each impurity
potential individually, i.e., we only take one of the V αβ = V
to be nonzero at a time.

The layer degree of freedom allows for unconventional
s-wave (i.e., intra-unit cell) pairing states as listed in Table I.
We include these states in Eq. (1) via the phenomenological
pairing interaction

Hint = g

4

∑
rj

{(
c†

rj
�̂νc†

rj

)(
crj�̂νcrj

)}
, (7)

where g is the effective coupling constant and �̂ν is one of
s-wave pairing potentials. In the following we set the coupling
constant to be nonzero in a single pairing channel at a time.

Performing a mean-field decoupling of the interac-
tion Hamiltonian in the Cooper channel, we obtain the
Bogoliubov–de Gennes (BdG) Hamiltonian

HBdG = 1

2

∑
ri,rj

�†
ri

(
H̃ri,rj �̂ri,rj

�̂†
ri,rj

−H̃T
ri,rj

)
�rj . (8)

Here �rj = (cT
rj
, c†

rj
)T is an eight-component spinor of

creation and annihilation operators, H̃ri,rj = Hri,rj + V̂imp

δri,r0δrj,r0 , and the pairing term is given by

�̂ri,rj = 1
2δri,rj g〈crj�̂νcrj〉�̂ν, (9)

where 〈. . . 〉 represents the thermally weighted expectation
value.

A. Superconducting fitness

Due to the presence of the layer degree of freedom, the
normal-state Hamiltonian (2) describes a two-band electronic
system. Expressed in momentum space, the band energies are
given by

E±,k = −2t[cos(kxa) + cos(kya)] − μ

±
√

α2sin2(kxa) + α2sin2(kya) + t2
⊥, (10)

where a is the lattice constant. The multiband nature has an
important consequence for the superconductivity: pairing can
occur between electrons in both the same and different bands.
Of the pairing potentials listed in Table I, only the uniform sin-
glet state pairs electrons in time-reversed states, which guar-
antees purely intraband pairing; the other superconducting
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states will in general involve both intraband and interband
pairing.

The concept of the superconducting fitness has recently
been developed as a way to quantify the degree of interband
pairing [31,32]. For the pairing potential �̂ = �0�̂ν , where
�0 is the amplitude and �̂ν is a dimensionless matrix for
pairing in channel ν, we define the fitness function

Fν,k = H0,k�̂ν − �̂νHT
0,−k, (11)

which is only nonzero if the interband pairing is present. For
the two-band system considered here the fitness can be related
to the gap opened at the Fermi energy

�eff,k = |�0|
√

1 − F̃ν,k, (12)

where

F̃ν,k = Tr{|Fν,k|2}
(E+,k − E−,k)2

. (13)

Equation (13) takes values between 0 and 1, with F̃ν,k = 0
indicating a perfectly “fit” pairing state where there is only in-
traband pairing and thus the gap is maximal, whereas F̃ν,k = 1
implies that only interband pairing is present and no gap is
opened at the Fermi energy at weak coupling.

The concept of superconducting fitness has been extended
to the impurity potential [27]. In a two-band system, whether
or not the impurity is pair breaking in the channel ν is given
by the solution of

V̂imp�̂ν − λ�̂νV̂ T
imp = 0, (14)

where λ = −1 (1) implies that the impurity is (is not) pair
breaking. In the case of onsite singlet pairing this is equivalent
to whether or not the impurity breaks time-reversal symme-
try, and is thus a restatement of Anderson’s theorem [1]; for
the nontrivial s-wave pairing potentials Eq. (14) therefore
establishes a generalized Anderson’s theorem. An important
difference compared to the usual Anderson’s theorem is that
the critical temperature of the odd-parity s-wave states is gen-
erally suppressed even when the impurity is not pair breaking
if the fitness 0 < F̃ν,k < 1, albeit more slowly compared to the
usual Gor’kov theory [2].

B. Real-space mean-field theory

We solve the self-consistency equations (9) for the pairing
potential in real space by diagonalizing the BdG Hamiltonian
(8) implemented on a finite lattice with periodic boundary
conditions [35]. For the calculations of the impurity bound-
state spectrum we choose a 31×31 lattice with the impurity
located at the center.

The four parameters (t, μ, t⊥, α) of our tight-binding
model describe a large variety of different band structures.
Although our primary aim is to understand the influence of the
intertwined spin and layer degrees of freedom on the impurity
bound-state spectrum, the bound states can also be influenced
by the shape of the Fermi surface and the Fermi velocity
[36,37]. To control for this variation we observe that in the
absence of intralayer hopping t = 0, the isoenergy lines of the
bands (10) in the Brillouin zone are the same for all parameter
choices so long as α 	= 0. Thus, for fixed filling, the shape of

FIG. 1. The Fermi surface of the bilayer model with kFa = 0.9.

the Fermi surface is the same for all values of t⊥ and α. This
is equivalent to setting the chemical potential to be

μ = α

√
sin2(kFa) +

(
t⊥
α

)2

, (15)

for some fixed kF; in the following we choose kFa = 0.9 which
gives the Fermi surface shown in Fig. 1. Since the intralayer
hopping appears with the identity matrix in Eq. (3), it does
not influence the gap at the Fermi surface, and we thus do
not expect that setting t = 0 will qualitatively affect our re-
sults. This assumption will later be verified using the analytic
T -matrix theory in Sec. II C.

The Fermi velocity in our model is given by

vk = α2a

2μ
[sin(2kxa)x̂ + sin(2kya)ŷ], (16)

where kx and ky lie on the Fermi surface sin2(kxa) +
sin2(kya) = sin2(kFa). The magnitude of the Fermi velocity
decreases with increasing t⊥, which should reduce the coher-
ence length even for fixed pairing potential, and may affect the
impurity bound-state spectrum. We keep the Fermi velocity
constant by scaling α as

α = α0√
2

⎛
⎝1 +

√
1 + 4t2

⊥
α2

0sin2(kFa)

⎞
⎠

1/2

, (17)

where α0 is the value of α at t⊥ = 0. In the following we set α0

as the unit of energy. For fixed kFa, the normal-state properties
of the bilayer model now only depend on the ratio t⊥/α0.

The effective gap of the six s-wave pairing states at the
Fermi energy is given in Table I. All but the uniform singlet
depend on the parameters of the model, reflecting the pair
breaking by the spin-layer texture of the normal-state band
wave functions. Importantly, we see that the A1g, A1u, and A2u
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produce full isotropic gaps at the Fermi energy. In contrast,
the two Eu states have point nodes. Since impurity bound
states are only well defined in the presence of a full gap, we
will not examine the Eu states within the mean-field theory;
the impurity virtual bound states which appear in these cases
will be analyzed using the T -matrix theory developed below.
Moreover, we will also not present results for the nontrivial
A1g state, as this is essentially equivalent to the trivial A1g

state when only a single band crosses the Fermi energy [27].
In solving the mean-field equations, the effective coupling
constant g in Eq. (7) is chosen such that the pairing amplitude
�0 = g

2 〈crj�̂νcrj〉 = 0.08α0 in the absence of the impurity.

C. T -matrix theory

To complement the numerical mean-field calculation we
also study the appearance of bound states at the impurity site
within the T -matrix approximation. This has the benefit that it
can be performed analytically if we relax the self-consistency
requirement (9), i.e., we treat �0 = g

2 〈crj�̂νcrj〉 as indepen-
dent of rj.

The non-self-consistent T matrix is defined as

T (iωn) = [1̂ − V̂impG0(iωn)]−1V̂imp, (18)

where V̂imp is the impurity potential in Nambu grading and

G0(iωn) = 1

N

∑
k

G0(k, iωn)

is the momentum average of the Green’s function G0(k, iωn)
of the superconductor in the absence of the impurity, with N
the number of lattice points.

Analytic expressions for the Green’s functions are com-
plicated and the exact evaluation of the momentum sum in
Eq. (18) is difficult. To make progress, we replace the sum
with an integral over energy near the Fermi surface and a
Fermi-surface average

1

N

∑
k

→
∫ �

−�

N (ξ )dξ 〈. . .〉FS, (19)

where N (ξ ) is the density of states (DOS) and � is an energy
cutoff. Although analytic expressions for the DOS of the tight-
binding model exist, here we pursue a more general approach
by adopting a linear approximation to the DOS,

N (ξ ) = N0 + ξN ′
0, (20)

where N0 is the DOS at the Fermi energy and N ′
0 is the

first-order derivative with respect to energy. The parameter
N ′

0 reflects the particle-hole asymmetry of the DOS. Although
the presence of particle-hole asymmetry is not essential for
the formation of bound states, it is necessary for achieving
quantitative agreement with the tight-binding model.

Using these approximations, the momentum-averaged
Green’s functions for the three pairing states are

G0(iωn) = −iωng0(η0 + t̃⊥ηx )σ0τ0 − y(η0 + t̃⊥ηx )σ0τz

−

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g0�
A1g

eff (η0 − t̃⊥ηx )iσyτx, A1g

g0�
A1u
eff

√
1 − t̃2

⊥ηyσxτx, A1u

g0�
A2u
eff

√
1 − t̃2

⊥ηzσyτy, A2u

(21)

where τ j are the Pauli matrices in Nambu space and its product
with η and σ matrices implies a Kronecker product, t̃⊥ =
t⊥/μ, and

g0 = N0π

2
√

ω2
n + �2

eff

. (22)

The parameter y ≈ N ′
0� encodes the particle-hole asymmetry,

and we treat it as a fitting parameter. A sketch of the derivation
of Eq. (21) is provided in Appendix A. In particular, we show
that Eq. (21) is valid for any band structure where only a single
band crosses the Fermi energy. This gives us confidence that
our results hold beyond the restricted parameter space chosen
for the lattice model where we set t = 0.

The relatively simple form of the integrated Green’s func-
tion allows us to evaluate the T matrix (18) analytically. The
impurity bound states are then determined by making the an-
alytic continuation iωn → ω + i0+ and solving for the poles
at subgap energies |ω| < �eff. In the following, we express
our results in turns of dimensionless quantities ω̃ = ω/|�eff|,
Ṽ = π

2 N0V , and ỹ = y/( π
2 N0).

III. BOUND STATES

The central result of our work is that the bound states which
form around impurities fall into a number of distinct classes,
which exhibit qualitatively different behavior as a function of
interlayer coupling t̃⊥ and impurity strength Ṽ . The classifi-
cation of the 16 possible momentum-independent impurities
for the different pairing states is summarized in Table II, and
is based on whether the impurity preserves time-reversal (T )
or combined parity-time-reversal (PT ) symmetries, and the
fitness of the impurity with respect to the pairing state. A1g

interlayer pairing this gives rise to three distinct categories of
the spectrum, whereas for the A1u and A2u states there are six
categories.

Before discussing the distinct cases in detail, we first
comment on the significance of time-reversal (T ) or com-
bined parity-time-reversal (PT ) symmetry. As these are both
antiunitary symmetries, Kramers’ theorem dictates that the
spectrum is two-fold degenerate when either is present. Since
the clean BdG Hamiltonian is symmetric under both time-
reversal and inversion, their presence or absence is determined
entirely by the impurity.

A. A1g intralayer singlet pairing

The intralayer singlet A1g state pairs electrons in time-
reversed states, and is thus subject to Anderson’s theorem.
Since the normal-state Hamiltonian has time-reversal symme-
try, this state is perfectly fit in the clean limit and there is
only intraband pairing. The only pair-breaking impurities are
those that break time-reversal symmetry, and we accordingly
only find bound states around the impurities in these cases, as
shown as a function of impurity strength and interlayer cou-
pling in Figs. 2 and 3, respectively. These figures also show
the excellent quantitative agreement between the mean-field
and the T -matrix theories. Analytic expressions for the bound
states obtained via the T -matrix method are complicated and
are given in Appendix B 1.
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TABLE II. Categorization of bound-state spectra for the s-wave states considered in this paper. The symmetry row shows whether the
impurity preserves (breaks) [�(✗)] time-reversal symmetry T and combined parity-time-reversal symmetry PT . The fitness row indicates the
solution for λ in Eq. (14), with λ = +1 (−1) indicating a fit (unfit) impurity for each pairing state. The final row shows the classification of the
bound states. For the A1g pairing, bound states only appear for time-reversal symmetry-breaking impurities, and we find two categories a∗ and
b∗, respectively corresponding to the panels (a) and (b) in Figs. 2 and 3. For the odd-parity A1u and A2u states we find six different categories
a–f, corresponding to the panels (a)–(f) in Figs. 4 and 5. For the A2u and Eu pairing states, this classification also holds for the virtual bound
states in Fig. 7.

Impurity
η0σ0 ηxσ0 ηyσ0 ηzσx ηzσy ηzσz ηzσ0 ηyσx ηyσy ηyσz ηxσx ηxσy ηxσz η0σx η0σy η0σz

Symmetry T � � ✗ ✗ ✗ ✗ � � � � ✗ ✗ ✗ ✗ ✗ ✗

PT � � � � � � ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

A1g +1 +1 −1 −1 −1 −1 +1 +1 +1 +1 −1 −1 −1 −1 −1 −1
A1u +1 −1 −1 −1 −1 +1 −1 −1 −1 +1 −1 −1 +1 +1 +1 −1

Fitness A2u +1 −1 +1 −1 −1 −1 +1 −1 −1 −1 +1 +1 +1 −1 −1 −1
Eu,x +1 −1 −1 −1 +1 −1 −1 −1 +1 −1 −1 +1 −1 +1 −1 +1
Eu,y +1 −1 −1 +1 −1 −1 −1 +1 −1 −1 +1 −1 −1 −1 +1 +1

A1g a* a* a* a* b* b* b* b* b* b*
A1u a b d d d c d d d c f f e e e f

Classification A2u a b c d d d c d d d e e e f f f
Eu,x a b d d c d d d c d f e f e f e
Eu,y a b d c d d d c d d e f f f e e

Our results reveal two distinct classes of bound states: class
(a) impurities where the bound states are twofold degenerate,
and class (b) impurities where the bound states are not degen-
erate. The degeneracy of the states in case (a) is ensured by
a generalized Kramers’ theorem based on the preserved PT
symmetry; in contrast, in case (b) both T and PT symmetries
are broken, and there is no symmetry enforcing degeneracy.
We note that even in case (b) the spectra are twofold degener-
ate in the case of vanishing interlayer coupling.

B. Odd-parity A1u and A2u states

We now turn to the bound-state spectrum in the case of the
fully gapped odd-parity states, which is considerably richer
than the A1g state. The classification of the spectra is the same
for the two odd-parity states, reflecting the fact that in the
clean limit the BdG Hamiltonian is the same up to unitary

(a) (b)

FIG. 2. Subgap spectrum as a function of the dimensionless
impurity strength Ṽ for the intralayer singlet A1g pairing. (a), (b) Cor-
respond to the impurity classifications for this pairing state tabulated
in Table II. The circles are the results of the self-consistent mean-field
theory. The dashed gray line is the analytic prediction for the gap
edge, and the solid red line represents the results of the analytic T -
matrix theory for the subgap states. The interlayer impurity hopping
is set as t̃⊥ = 0.54 and the particle-hole asymmetric strength is set as
ỹ = 0.50.

transformation, specifically we have

HBdG,A2u = U †HBdG,A1uU, (23)

where HBdG,A1u (A2u ) is the BdG Hamiltonian matrix for the A1u

(A2u) state in the absence of the impurity, and

U =
(

exp
(
i π

4 ηxσz
)

0

0 exp
(−i π

4 ηxσz
)
)

. (24)

The impurity potential is generally not invariant under this
unitary transform: this allows us to map each impurity poten-
tial in the A1u pairing state to another impurity potential in the
A2u pairing state. It also follows from Eq. (23) that the fitness
of the A1u and A2u states are the same in the clean limit, with
both pairing states unfit with respect to the interlayer coupling
t⊥. Both states are perfectly fit when t⊥ = 0, and in this limit
there also exists a unitary transformation that maps the odd-
parity state to the A1g intralayer singlet state [30]. We therefore
expect that the bound states for the odd-parity s-wave pairing
will strongly depend on the interlayer coupling.

(a) (b)

FIG. 3. Subgap spectrum as a function of the dimensionless in-
terlayer hopping t̃⊥ for the intralayer singlet A1g pairing. (a)–(d)
Correspond to the four possible impurity classifications for this pair-
ing state tabulated in Table II. The normalized impurity strength is
set as Ṽ = 0.64 and the particle-hole asymmetric strength is set as
ỹ = 0.50. The same style is used as in Fig. 2.
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(a) (b)

(c)

(e)
(f)

(d)

FIG. 4. Subgap spectrum as a function of the dimensionless
impurity strength Ṽ for the odd-parity A1u or A2u pairing states.
(a)–(f) Correspond to the six possible impurity classes summarized in
Table II. The interlayer impurity hopping is set as t̃⊥ = 0.54 and the
particle-hole asymmetric strength is set as ỹ = 0.50. The same style
is used as in Fig. 2.

We find six different classes of bound-state spectra, which
are shown in Figs. 4 and 5 as a function of Ṽ and t̃⊥,
respectively. There is again excellent agreement between
the self-consistent real-space lattice theory and the contin-
uum T -matrix approximation, using the same particle-hole
asymmetry parameter ỹ = 0.50 as for the A1g results. The
dependence on the impurity strength shows a clear difference
between the fit impurities [cases (a), (c), and (e)] and the unfit
impurities [cases (b), (d), and (f)]: although bound states are
generally present, only for the unfit impurities do the bound
states cross zero energy as a function of impurity strength. The
closing of the gap by the impurity evidence the pair-breaking
nature of the unfit impurities. The role of the fitness with
respect to the normal-state Hamiltonian is clearly revealed
by the dependence on the interlayer coupling t⊥ shown in
Fig. 5: bound states for the fit impurities are always absent for
vanishing intralayer coupling, as anticipated by the mapping
between the odd-parity and the A1g states.

Greater insight is provided by the analytic expressions for
the bound states found in the T -matrix theory. These expres-
sions are generally rather complicated, so to more clearly
reveal the relationship we set ỹ = 0; general expressions with
ỹ 	= 0 are provided in Appendix B 2. In the particle-hole-
symmetric limit, the bound states are

ω̃ = ± λ + (
1 − t̃2

⊥
)
Ṽ 2√

1 + 2
(
1 + St⊥ t̃2

⊥
)
Ṽ 2 + (

1 − t̃2
⊥
)2

Ṽ 4
, (25)

(a) (b)

(c) (d)

(e) (f)

FIG. 5. Subgap spectrum as a function of the dimensionless
interlayer hopping t̃⊥ for the odd-parity A1u or A2u pairing states.
(a)–(f) Correspond to the six possible impurity classes summarized
in Table II. The normalized impurity strength is set as Ṽ = 0.64 and
the particle-hole-asymmetric strength is set as ỹ = 0.50. The same
style is used as in Fig. 2.

where λ = ±1 is the solution to Eq. (14) (i.e., the fitness of
the impurity), and the parameter St⊥ = +1 (−1) according
as the impurity commutes (anticommutes) with the interlayer
hopping term. The combinations of (St⊥ , λ) give rise to four
distinct bound state spectra: (1,1) corresponding to cases (a)
and (e), (1,−1) corresponding to (b) and (f), (−1, 1) cor-
responding to (c), and (−1,−1) corresponding to (d). The
difference between the (a) and (e) [or (b) and (f)] cases is only
apparent for nonzero asymmetry parameter ỹ. In particular,
a nonzero value of the asymmetry parameter is necessary to
lift the twofold degeneracy of the bound states, and is also
responsible for the asymmetric dependence on the impurity
potential seen in cases (a) and (b), and the interlayer coupling
strength in case (b). These effects of the asymmetry parameter
are consistent with previous work [7,9].

Despite these limitations, Eq. (25) nevertheless reveals the
role of fitness. We first consider the different impurity fitness
cases λ = ±1: in the case of the fit impurity λ = 1, the numer-
ator of Eq. (25) is always positive and so the impurity cannot
close the gap; on the other hand, for unfit impurities λ = −1

the numerator vanishes at a critical value Ṽ = 1/

√
1 − t̃2

⊥,
thus closing the gap. We also observe that the bound-state
energies depend nontrivially on the interlayer coupling, re-
flecting the interplay of the impurity with the spin and layer
degrees of freedom of the clean Hamiltonian, and thus the
normal-state fitness of the pairing potential. The dependence
on St⊥ is generally more subtle, but in the case St⊥ = −1 it
ensures that the term under the square root is a complete
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square. For λ = 1 this cancels the numerator, and thus there
are no subgap states due to the impurity.

The parameters St⊥ and λ also enter the Born approxi-
mation result for the suppression of the critical temperature
by the presence of a finite concentration nimp of impurities
[26,27]. Here the critical temperature is given by the solution
of the equation

ln

(
Tc

Tc0

)
= �

(
1

2

)
− �

(
1

2
+ 1

4πkBTcτ

)
, (26)

where Tc0 is the critical temperature in the clean limit and the
effective scattering rate is

τ−1 = πnimp|V |2N0
(
1 + St⊥ t̃2

⊥ − λ〈1 − F̃ν,k〉FS
)
. (27)

The first two terms inside the brackets give the normal-state
scattering rate, while the bulk fitness parameter (13) controls
the effective scattering rate in the superconducting state. For
the unfit impurities with λ = −1 the effective scattering rate
is higher than the normal-state scattering rate, and the critical
temperature is thus suppressed by increasing impurity concen-
tration faster than the Abrikosov-Gor’kov predictions for an
odd-parity state [2]; conversely, the fit impurities with λ = 1
have a lower effective scattering rate than in the normal state,
and so the critical temperature displays a weaker suppression
than predicted by the usual theory. Intriguingly, in case (c)
with (St⊥ , λ) = (−1, 1), the scattering rate vanishes, implying
that there is no suppression of the critical temperature. Our
results are consistent with the observation that the presence of
impurity bound states, even when produced by the fit impuri-
ties, indicates some degree of pair breaking.

C. Sublattice localized impurities

A general impurity potential may involve a linear combi-
nation of all the matrices listed in Table II, and hence includes
both fit and unfit components. Since the formation of bound
states is a nonlinear effect we cannot directly infer the bound-
state spectrum of a general impurity potential from the spectra
produced by each component. A physically interesting case of
a multicomponent impurity has the impurity potential local-
ized on a single sublattice, i.e. arising from the replacement
of an atom at a particular sublattice site by another species.
The corresponding impurity potential has the matrix form
(η0 ± ηz )σμ, which involves two matrices which generally
belong to different classes in Table II.

In Fig. 6 we plot the subgap spectrum for sublattice-
localized potential (μ = 0) and magnetic (μ = x, y, z)
impurities in the two odd-parity states. For both pairing states
the subgap spectrum is independent of the polarization of the
magnetic impurity. For the A2u state, the two components of
the potential (magnetic) impurity are both fit (unfit). Consis-
tent with our argument above, only the subgap states of the
unfit magnetic impurity cross zero energy.

The situation with the A1u state is more subtle, as for both
potential and magnetic impurities one component is fit and the
other is unfit. In the particle-hole-symmetric limit (i.e., ỹ = 0),
the subgap states asymptotically go to zero at infinite impurity
strength; switching on particle-hole asymmetry shifts the zero
crossing to a finite value of Ṽ . Thus, the presence of the unfit

(a)
(b)

(c)
(d)

FIG. 6. Subgap spectrum for sublattice-localized impurities as a
function of the dimensionless impurity strength Ṽ for odd-parity A1u

(left) or A2u (right) pairing states. The top (bottom) row corresponds
to potential (magnetic) impurities localized to a single sublattice. The
interlayer impurity hopping is set as t̃⊥ = 0.54 and the particle-hole
asymmetric strength is set as ỹ = 0.50. The same style is used as in
Fig. 2.

impurity potential is still consistent with the appearance of a
zero crossing of the subgap states.

IV. THREE-DIMENSIONAL MODEL

The full gap of the A1u and A2u states in the two-
dimensional tight-binding model is convenient for numerical
calculations. However, in three dimensions the A2u state
generically has point nodes. Due to hybridization with the
low-lying quasiparticle states in the vicinity of these nodes,
the impurity bound states found above are replaced by
resonances or so-called virtual bound states [10,12,35]. Al-
though it is numerically prohibitive to study the subgap
spectra of the three-dimensional system using the tight-
binding mean-field theory, the non-self-consistent T -matrix
approximation can be readily applied to this problem. Con-
sidering the excellent agreement between the mean-field
theory and the T -matrix approximation observed above
for the two-dimensional model, we expect that the T -
matrix approximation will also give accurate results in three
dimensions.

A. Minimal model

Close to the � point, and keeping terms up to linear order
in momentum, a minimal three-dimensional generalization of
our normal-state Hamiltonian is

H (k) = − μη0σ0 + mηxσ0 + vzkzηyσ0

+ vkxηzσy − vkyηzσx, (28)

where m is the mass term, v is the in-plane velocity, and vz

is the out-of-plane velocity. The presence of the out-of-plane
velocity vz extends the model to three dimensions; scaling the
z component of the momentum allows us to eliminate the
velocity anisotropy, i.e., in the following we set vz = v. In
terms of the parameters of the tight-binding model we have
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m = t⊥ and v = αa. We note that a term proportional to ηzσz

is allowed by symmetry, but we neglect it as it appears with
much higher power of momenta: for the tetragonal system
considered here it requires taking the momentum expansion
to the fifth order, whereas for trigonal or hexagonal systems it
appears at the third order.

B. A1g and A1u pairing states

The momentum-averaged Green’s function for both the A1g

and A1u pairing states in the three-dimensional model is the
same as in Eq. (21), and thus the conclusions of Sec. III remain
valid. We note that including the ηzσz term in the Hamiltonian
does introduce some gap anisotropy for the A1u state and
may therefore modify our results. So long as this term is
small compared to the other terms in Eq. (28), however, we
expect that the effects on the bound-state spectrum will be
small.

C. A2u pairing state

The gap opened by the A2u pairing state on a three-
dimensional Fermi surface is required by symmetry to have a
node along the kz axis [2]. In our model, the gap at the Fermi
energy is given by

�A2u (k) =�0ṽ

√
k2

x + k2
y , (29)

where ṽ = v/μ. Restricted to the kz = 0 plane we re-
cover the two-dimensional theory, with a uniform gap
�0

√
1 − m̃2.

The derivation of the momentum-averaged Green’s func-
tion G0(ω) is quite similar to that in Appendix A, except that
accounting for the variation of the gap over the Fermi surface
gives a more complicated frequency dependence:

G0(ω) = − N0πω̃

4

[
π + i ln

(
1 + ω̃

1 − ω̃

)]
(η0 + m̃ηx )σ0τ0 − y(η0 + m̃ηx )σ0τz

+
[

iN0π

√
1 − m̃2[ω̃ − (1 + ω̃2) tanh−1(ω̃)]

4
− N0π

2

√
1 − m̃2(1 + ω̃2)

8

]
ηzσyτy. (30)

The virtual bound states are most clearly resolved by exam-
ining the local density of states (LDOS) at the impurity site;
the deviation of the LDOS from the background contribution
from the bulk electronic structure is given by

δNimp(ω) = − 1

2π
Im Tr[G0(ω)T (ω)G0(ω)(τ0 + τz )], (31)

where T (ω) is the T matrix, and the factor of 1
2 (τ0 + τz ) in

the trace selects the electronlike components of the Green’s
function.

In Fig. 7 we plot the deviation of the LDOS equation (31)
for impurity potentials corresponding to the same classifica-
tion as in Fig. 4. We immediately observe that the spectrum is
very similar to the fully gapped two-dimensional model, but
with the impurity bound states broadened into virtual bound
states due to the hybridization with bulk quasiparticles. This
indicates that the impurity physics is still largely controlled
by the fitness parameters as found above. Case (c) appears to
be an exception to this rule, as we observe subgap features
in the three-dimensional system whereas there are no bound
states in two dimensions. This discrepancy is expected since
the cancellation in Eq. (27) no longer holds: specifically, the
Fermi-surface average of the fitness is now less than 1 − t̃2

⊥
due to the nodal gap, and so there is a finite effective scattering
rate, and thus the impurity is pair breaking in three dimen-
sions.

A number of other features of the LDOS are notable.
The subgap resonances become sharper as one approaches
the middle of the gap, reflecting the reduced density of
bulk quasiparticle states, which vanish at zero energy. The
LDOS also has a pronounced particle-hole asymmetry which
arises from the particle-hole asymmetry of the normal state
[38,39]. We also observe that the LDOS features fade out with

increasing impurity potential strength. This is likely due to the
shift of wave-function weight away from the impurity site as
the potential increases.

D. Eu pairing states

The gaps opened by the Eu pairing states in the three-
dimensional model have a similar form compared to the A2u

state, albeit with point nodes along the x and y axes. Indeed,
the momentum-space BdG Hamiltonian for the clean A2u state
can be mapped to that for each of the Eu states; specifically,
for the two Eu states we have

HBdG,Eu,x (kx, ky, kz ) =U †
x HBdG,A2u (kz, ky,−kx )Ux, (32)

HBdG,Eu,y (kx, ky, kz ) =U †
y HBdG,A2u (kx, kz,−ky )Uy, (33)

where

Ux =
(

exp
(−i π

4 ηxσy
)

0

0 exp
(
i π

4 ηxσy
)
)

, (34)

Uy =
(

exp
(
i π

4 ηxσx
)

0

0 − exp
(−i π

4 ηxσx
)
)

. (35)

Note that the swapping of the momentum components in
Eqs. (32) and (33) does not change the momentum-averaged
Green’s function, and thus does affect our results in the T -
matrix theory. Thus, as for the A1u and A2u states in the
two-dimensional model, our results for the A2u state in the
three-dimensional model can be mapped to each Eu state
individually, with due alteration of the impurity potential by
the unitary transform. The impurity potentials corresponding
to each of the subgap spectra in Fig. 7 are listed in Table II.
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FIG. 7. Deviation of the LDOS at the impurity site from the bulk
DOS as a function of dimensionless impurity strength Ṽ for the A2u

pairing state. (a)–(f) Correspond to the six possible impurity classes
summarized in Table II. We set m̃ = 0.54 and ỹ = 0.50.

V. DISCUSSION

We have studied the appearance of impurity bound states
in a model of a superconducting bilayer using numerical
self-consistent mean-field and analytic non-self-consistent T -
matrix methods. We find that the spectrum of bound states
around an impurity is controlled by the fitness of the pairing
state with respect to both the normal-state band structure
and the impurity potential. The bound-state spectrum due to
different impurities falls into distinct categories which are
summarized in Table II. Our results reflect the conclusion of
a generalized Anderson’s theorem for the odd-parity states,
namely, that the pair-breaking impurities are those which are
unfit [21,27]. In particular, only the bound states of unfit im-
purities cross zero energy with increasing impurity potential
strength. Unlike the original Anderson’s theorem, however,
a finite concentration of fit impurities still typically leads
to a suppression of the critical temperature. Bound states
can occur for these fit impurities if the pairing state is un-
fit with respect to the normal-state Hamiltonian, but do not

cross zero energy. The classification scheme also holds for
virtual bound states in the case of nodal pairing, and the
subgap spectrum shows close qualitative agreement with the
true bound states. We have thus seen how the interplay of
the two types of fitness controls the form of the bound-state
spectrum. The good quantitative agreement between the nu-
merical and analytic techniques ensures the validity of our
conclusions.

Fitness is fundamentally a way of quantifying multiband
effects in a superconductor. Our results therefore imply that
multiband physics can play an important role in supercon-
ductivity, even when only a single band crosses the Fermi
energy. It is instructive to compare our results with Refs. [7,9],
where impurity bound states in a single-band fully gapped un-
conventional superconductor were studied for a momentum-
independent impurity potential. These works found much less
diversity of the impurity bound-state spectrum. This appar-
ently contradicts our findings, as the odd-parity s-wave states
we study are equivalent to p-wave pseudospin-triplet pair-
ing states when projected onto the Fermi surface [40], and
thus have the same form as the states studied in Refs. [7,9].
However, the projected impurity potential is typically both
momentum and pseudospin dependent [23,28], accounting
for the difference with Refs. [7,9]. The conclusions of effec-
tive single-band models with simple impurity potentials must
therefore be treated with caution for materials where spin
and other degrees of freedom (e.g., orbital or sublattice) are
strongly mixed in the normal-state bands.

This highlights a tension in our theoretical treatment: On
the one hand, the impurity Hamiltonian is more naturally
expressed in the local layer-spin basis; on the other hand,
superconductivity is more usually expressed in the band-
pseudospin basis. Although computationally convenient, the
relevance of the odd-parity s-wave states to realistic materials
is unclear. As pointed out in Ref. [26], however, uncon-
ventional disorder effects can be present for an arbitrary
odd-parity state according to the degree to which it resembles
an odd-parity s-wave state when projected onto the Fermi
surface. This resemblance should manifest in the presence
of the anomalous term in the momentum-integrated Green’s
function (21), albeit with a different prefactor. As such, we
expect that the impurity bound states should obey the same
classification scheme found here, although the detailed form
of the bound states may be different.

The bilayer superconductor model considered here belongs
a large class of two-band Hamiltonians which have been pro-
posed to describe a diverse variety of compounds [30,41–45].
Our theory can be readily applied to these systems due to
the similar forms of the Green’s functions. Moreover, the
unconventional s-wave states at the heart of our theory occur
in any system where the electrons have additional (nonspin)
degrees of freedom, and so we expect that similar impurity
physics will also be present in systems with three or more
bands. Directly applying our results to these cases is difficult,
however, as both the relation between the gap and the fitness
function (12) and the definition of the impurity fitness (14)
hold only for two-band systems. Nevertheless, the concept of
the fitness is valid for an arbitrary number of bands, and this
should allow the development of a generalized Anderson’s
theorem also to more complicated systems.

134514-9



ZHU, HACKNER, AND BRYDON PHYSICAL REVIEW B 107, 134514 (2023)

Finally, we note that the role of fitness in determining
the spectrum of the bound states suggests a general principle
guiding the existence of subgap states in a superconductor. It
has recently been pointed out that the appearance of impurity
bound states at a magnetic impurity in an s-wave supercon-
ductor is connected to the appearance of odd-frequency pair
correlations which are localized about the impurity [46,47].
Intriguingly, the existence of odd-frequency pair correlations
is directly connected to superconducting fitness [48]. We spec-
ulate that the conclusions of these works could equally well
be formulated in terms of fitness, and that this principle can
hence be extended to the existence of subgap states around
any inhomogeneity in a superconductor.
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APPENDIX A: MOMENTUM-AVERAGED
GREEN’S FUNCTION

The Green’s function is formally written as

G0(k, iωn) = [iωn − HBdG(k)]−1, (A1)

where HBdG(k) is the BdG Hamiltonian

HBdG(k) =
(

H0,k �

�† −HT
0,k,

)
, (A2)

where � is the pairing potential and H0,k is the normal-state
Hamiltonian. The two-dimensional and three-dimensional
models are particular examples of a normal-state Hamiltonian
with the generic form

H0,k = ε01̂4 + �ε · �γ , (A3)

where �γ = (γ1, γ2, γ3, γ4, γ5) are the Euclidean Dirac matri-
ces and �ε = (ε1, ε2, ε3, ε4, ε5) is the vector of the correspond-
ing coefficients. The normal-state Hamiltonian describes a
two-band system with energies

ε±,k = ε0 ± |�ε|. (A4)

In the context of our bilayer model the γ matrices are given
by

�γ = (ηxσ0, ηyσ0, ηzσx, ηzσy, ηzσz ) (A5)

with coefficients

ε0 =
{−2t[cos(kxa) + cos(kya)] − μ, 2D
−μ, 3D (A6)

�ε =
{

(t⊥, 0, α sin(kya),−α sin(kxa), 0), 2D
(m, vzkz, vky,−vkx, 0), 3D. (A7)

In the following we will express all results in the general
notation.

1. Full Green’s functions

Performing the matrix inverse in Eq. (A1) we obtain the
full Green’s functions for the A1g, A1u, and A2u pairing states.
Neglecting terms which average to zero across the Fermi
surface we have

G0(k, iωn) = 1(
ω2

n + E2−
)(

ω2
n + E2+

){−iωn
(
ω2

n + ε2
0 + |�ε|2 + �2

0

)
1̂4τ0 − ε0

(
ω2

n + ε2
0 − |�ε|2 + �2

0

)
1̂4τz

+ 2iωnε0ε1γ1τ0 − ε1
(
ω2

n − ε2
0 + |ε|2 + �2

0

)
γ1τz + F

}
, (A8)

where the anomalous component F is

F =

⎧⎪⎨
⎪⎩

−2�0ε0ε1iγ2γ4τx − �0
(
ω2

n + ε2
0 + |�ε|2 + �2

0

)
iγ3γ5τx, A1g, � = �0η0iσy = �0iγ3γ5

−2iωn�0ε1γ3τy − �0
(
ω2

n + ε2
0 − 2ε2

1 − 2ε2
5 + |�ε|2 + �2

0

)
iγ1γ3τx, A1u, � = �0ηyσziσy = �0iγ1γ3

−2iωn�0ε1iγ1γ4τx − �0
(
ω2

n + ε2
0 − 2ε2

1 − 2ε2
2 + |�ε|2 + �2

0

)
γ4τy, A2u, � = �0ηziσy = �0iγ4

(A9)

and the dispersion E± is given by

E± =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
(|ε0| ± |�ε|)2 + �2

0, A1g√
ε2

0 + |�ε|2 + �2
0 ± 2

√
ε2

0 |�ε|2 + �2
0

(
ε2

1 + ε2
5

)
, A1u√

ε2
0 + |�ε|2 + �2

0 ± 2
√

ε2
0 |�ε|2 + �2

0

(
ε2

1 + ε2
2

)
, A2u.

(A10)
The Fermi surface of the noninteracting system is defined by
|ε0| − |�ε| = 0. This is equivalent to lim�0→0 E− = 0, and so
E− corresponds to the low-energy dispersion. For the odd-
parity states and |�0| � |�ε|, we can approximate E− in this

region by

E− ≈
√

(|ε0| − |�ε|)2 + �2
eff, (A11)

where �eff = �0

√
1 − F̃ν is the effective gap introduced in

Eq. (12).

2. Low-energy approximation

Our aim here is to derive an expression for the Green’s
function which is valid close to the Fermi surface. Formally
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we can decompose the Green’s function as

G0 = G+
0

2
(
ω2

n + E2+
) + G−

0

2
(
ω2

n + E2−
) . (A12)

Since the − branch corresponds to the low-energy disper-
sion, discarding the contribution from the + branch gives us
the Green’s function projected onto a low-energy subspace.
Neglecting terms of order �0/|�ε| and higher, we obtain

G−
0 ≈ −iωn1̂4τ0 + sgn(ε0)ξ−1̂4τz

+ iωnsgn(ε0)ε̂1γ1τ0 − ε̂1ξ−γ1τz

+

⎧⎪⎨
⎪⎩

−sgn(ε0)ε̂1�0iγ2γ4τx − �0iγ3γ5τx, A1g

−�0
(
1 − ε̂2

1 − ε̂2
5

)
iγ1γ3τx, A1u

−�0
(
1 − ε̂2

1 − ε̂2
2

)
γ4τy, A2u.

(A13)

Note that the Green’s function depends on the sign of ε0.
Fermi surfaces where ε0 have different signs corresponding to
different bands. In the cases we consider we have ε0 = −μ <

0, but our analysis remains valid for a momentum dependent
ε0 so long as only one band crosses the Fermi energy.

To finally obtain the momentum-averaged Green’s function
(21) we perform the integral over ξ− and an average over the
Fermi surface as shown in Eq. (19). With the exception of
the coefficients of 1̂4τz and γ1τz, these integrals converge as
� → ∞ and so we approximate∫ �

−�

N (ξ−)

ω2
n + ξ 2− + �2

eff

dξ− ≈
∫ ∞

−∞

N (ξ−)

ω2
n + ξ 2− + �2

eff

dξ−

= N0π√
ω2

n + �2
eff

. (A14)

The coefficients of 1̂4τz and γ1τz are only nonzero when the
particle-hole asymmetry of the normal-state DOS is taken into
account. These terms are cutoff dependent, and in the limit
� � |�eff| we can approximate them as∫ �

−�

N (ξ−)ξ−
ω2

n + ξ 2− + �2
eff

dξ− ≈ −2N ′
0� ≡ −2y, (A15)

and we define ỹ = y/( π
2 N0) as a dimensionless fitting param-

eter.

APPENDIX B: ANALYTICAL EXPRESSION FOR BOUND
STATES WITH PARTICLE-HOLE ASYMMETRY

It is necessary to include the particle-hole asymmetry pa-
rameter y to obtain quantitative agreement between the exact

diagonalization and the T -matrix results for the impurity
bound states. These expressions are complicated and are given
here for completeness.

1. A1g pairing

Impurity bound states are realized in the class a∗ and b∗,
and have a general dependence on the normalized impurity
potential strength

ω̃ = ± 1 − β2Ṽ 2√
1 + α2Ṽ 2 + α4Ṽ 4

. (B1)

The coefficients βi, α j are given by the following:
(i) class a∗: β2 = (1 − m̃2)(1 + ỹ2), α2 = 2(1 − m̃2)

(1 − ỹ2), and α4 = [(1 − m̃2)(1 + ỹ2)]2;
(ii) class b∗: β±

2 = (1 ± m̃)2(1 + ỹ2), α±
2 = 2(1 ± m̃)2

(1 − ỹ2), and α±
4 = [(1 ± m̃)2(1 + ỹ2)]2.

2. A1u and A2u pairing

Impurity bound states are realized in all classes except c,
and have the general dependence on the normalized impurity
potential strength

ω̃ = ± 1 + β1Ṽ + β2Ṽ 2√
1 + α1Ṽ + α2Ṽ 2 + α3Ṽ 3 + α4Ṽ 4

, (B2)

where the coefficients βi and α j are given by the following:
(i) class a: β1 = 2ỹ, β2 = (1 − m̃2)(1 + ỹ2), α1 = 4ỹ,

α2 = [2 + 2m̃2 + (6 − 2m̃2)ỹ2], α3 = 4ỹ(1 − m̃2)(1 + ỹ2),
and α4 = [(1 − m̃2)(1 + ỹ2)]2;

(ii) class b: β1 = 2m̃ỹ, β2 = (m̃2 − 1)(1 + ỹ2), α1 =
4m̃ỹ, α2 = [2 + 2m̃2 + (−2 + 6m̃2)ỹ2], α3 = 4m̃ỹ(m̃2 − 1)
(1 + ỹ2), and α4 = [(m̃2 − 1)(1 + ỹ2)]2;

(iii) class d: β1 = 0, β2 = (m̃2 − 1)(1 + ỹ2), α1 = 0,
α2 = −2(m̃2 − 1)(1 − ỹ2), α3 = 0, and α4 = [(m̃2 − 1)(1 +
ỹ2)]2;

(iv) class e: β±
1 = ±2ỹ, β±

2 = (1 − m̃2)(1 + ỹ2), α±
1 =

±4ỹ, α±
2 = [2 + 2m̃2 + (6 − 2m̃2)ỹ2], α±

3 = ±4ỹ(1 − m̃2)
(1 + ỹ2), and α±

4 = [(1 − m̃2)(1 + ỹ2)]2;
(v) class f : β±

1 = ±2m̃ỹ, β±
2 = (m̃2 − 1)(1 + ỹ2),

α±
1 = ±4m̃ỹ, α±

2 = [2 + 2m̃2 + (−2 + 6m̃2)ỹ2], α±
3 = ±4m̃ỹ

(m̃2 − 1)(1 + ỹ2), and α±
4 = [(m̃2 − 1)(1 + ỹ2)]2.
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