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This paper shows that the WKB quantization rule is suitable for the Andreev bound states in nonuniform
superconductors. We consider nonhomogeneous superconductivity gap functions �(x) in superconductors with
the Bogoliubov quasiparticle energy E , the Fermi level EF , and the total momentum p at EF + E . The Andreev
bound states in the well of slowly varying |�(x)| are studied, and the well may also be induced by the
phase variation of �(x) for massless Dirac fermions. By applying the WKB method to the Bogoliubov–de
Gennes equation, we obtain two main results: (i) For EF ∼ 0, the bound states are determined by

∫ RE
LE

|p dx| =
( 1

2 + n)π h̄, where n ∈ N0 and LE and RE are the boundary points between the classically allowed region and

forbidden regions, and (ii) for EF � E and |�(x)|, the bound states are given by
∫ RE

LE
|p ± pF |dx = ( 1

2 + n)π h̄
with small py(z). Empirical quantization conditions are provided for broader parameter regions. In addition to
applying the traditional WKB method, we also develop a generalized WKB method to tackle semimetals with
parabolic dispersion relationships. The applications of our results are discussed, for example, Dirac π junctions
or nonchiral Majorana wires, SNS junctions, the excitation threshold, and the tunneling rate in NSN junctions.
In the π junction, the Majorana zero modes correspond to the zero-point energy in the WKB formalism. This
observation may provide insights into the Majorana bound state in a vortex and the Majorana fermions in
high-energy physics.

DOI: 10.1103/PhysRevB.107.134506

I. INTRODUCTION

The WKB method is a powerful tool in quantum mechanics
[1,2]. For slowly varying potentials, the WKB method con-
veniently gives the approximate wave function, bound-state
energy, and tunneling rate for the Schrödinger equation. In
particular, this method gives the exact bound-state energy of
the quantum harmonic oscillator after adding a correction 1

2 h
to the Bohr-Sommerfeld quantization rule

∮
p dq = nh. The

pioneering researchers of this method, Wenzel [3], Kramers
[4], Brillouin [5], and Jeffreys [6], discovered an effective
treatment of the turning points between the classically allowed
region and forbidden regions, which will be adopted in this
paper. Compared with the WKB approximation, Ref. [7] gives
an exact formula, which takes an additional integral form,
to calculate the bound-state energy. In recent decades, the
WKB method has been extended to several fields, for exam-
ple, the supersymmetry WKB [8–11] advances in providing
exact eigenvalues for shape-invariant potentials, although the
ground-state wave function is a prerequisite; remarkably, the
WKB approximation has been applied to the famous Wheeler-
DeWitt equation in quantum gravity [12,13]; Caroli et al.
[14] and Bardeen et al. [15] developed a method with the
WKB approximation to solve the excitations in the vortex
line in type-II superconductors and Beenakker and van Houten
applied this method to bound states in superconducting con-
striction [16]. We note that in these applications of the WKB
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approximation, problems are all about second-order differen-
tial equations. At the same time, Ref. [17] pointed out that
the WKB method is also suitable for higher-order differential
equations. In this paper, except for applying the traditional
WKB method to massless Dirac fermions and Schrödinger
fermions, we also provide an example, the Bogoliubov–de
Gennes (BdG) equation of the semimetals with parabolic
dispersion relationships, which is reduced to a fourth-order
differential equation under specific conditions.

The present paper will discuss the bound states in the BdG
equation with slowly varying gap functions. These bound
states are important for thermodynamics and Josephson cur-
rent in superconductors [16,18,19]. The study of the bound
states in SNS junctions starts from Andreev’s levels. An-
dreev considered a square well of the gap function �(x),
with �(x) = 0 inside the normal layer, and obtained a series
of discrete energy levels which are irrelevant to the phase
difference of the superconductors on two sides. The physics
of Andreev’s levels is elegant: An electron motion process and
a hole motion process form a reflection period together in the
reciprocating process. This behavior yields a standing wave
in the normal layer [20,21]. Based on Andreev’s levels, Kulik
made progress in connecting the phase difference between
the two superconductors with the bound states by considering
the phase coherence [22]. The gap functions considered in
this paper are more general, for instance, the well in Fig. 1,
where the electronlike and holelike excitations convert into
each other at the boundary regions. In addition, the conversion
may manifest through the retroreflection or specular reflection
[23]. We assume that �(x) changes smoothly and slowly so
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FIG. 1. Depiction of an Andreev bound state ϕ(x), a mixed state
of the electron and hole, in a well of �(x); ϕ(x) roughly demonstrates
the distribution probability of the bound state.

that the WKB method is suitable for applications. Our basic
procedures conform to the insights of Wentzel et al. and Wein-
berg, and auxiliary techniques are developed to cope with the
fourth-order differential equations, i.e., the generalized WKB
(GWKB) method.

In the following sections we first prove the quantization
conditions for the bound states given in the abstract. We study
the massless Dirac fermions on the surface of a strong topo-
logical insulator (TI) in Sec. II, the semimetals with parabolic
dispersion relationships in Sec. III, and Schrödinger fermions
in normal metals in Sec. IV. Different parameter limits are
targeted separately. The pairing potentials in the BdG equa-
tions may be inherent or induced by the proximity effect, and
only the s-wave pairing is considered. After the proof of the
quantization rules, we elaborate on some application exam-
ples in Sec. V [the π (0) junction in Sec. II D]. We then discuss
the significance and experimental realization of these bound
states and generalize the quantization condition to broader
parameter regions in Sec. VI. We summarize in Sec. VII. In
addition, numerical simulations are provided in the Supple-
mental Material [24]. To simplify notation and without loss of
clarity, we ignore spins in most of the discussion.

II. MASSLESS DIRAC FERMIONS

We consider the surface states of a strong TI with the
Hamiltonian H0 = vF ( p̂xσx + p̂yσy) − EF , with vF the Fermi
velocity, p̂x (y) the momentum operators in the x (y) direction,
σx (y) the Pauli matrices, and EF the Fermi level. When an s-
wave superconductor covers the surface states, the excitations
are described by the Dirac–Bogoliubov–de Gennes (DBdG)
equation [23,25](

H0 �(x)
�∗(x) −H0

)(
�

�

)
= E

(
�

�

)
, (1)

where the gap function or pairing function �(x) = �reiθ ,
with �r a real function and θ the accompanying phase,
and �(x) couples the electron spinor � = (�1, �2)T and
the hole spinor � = (�1,�2)T . Here �1 (2) denotes the up-
(down-) spin electron component and �1 (2) denotes the
down- (up-) spin hole component. The normalization con-
dition is

∫
(�†� + �†�)dr = 1. Similar equations can also

be found in graphene sheets covered by superconducting
layers. The excitation spectrum for uniform �(x) is E =√

|�|2 + (EF ± h̄vF |k|)2, where the electronlike and holelike
bands coincide when EF = 0. Since we discuss the bound
states in the one-dimensional well of the gap function, the
translational invariance of the gap function breaks in the x

direction, while �(x) is translationally invariant in the y di-
rection. Therefore, py is always a good quantum number. In
the following, we discuss three limits of the parameters ky and
EF : (i) ky �= 0 and EF ∼ 0, (ii) ky = 0 and EF �= 0, and (iii)
|h̄vF ky| � EF . In these situations, the BdG equation will be
mapped to the Schrödinger equation. Except for these limits,
our experience is that the obtained quantization condition of
the Andreev bound states appertains to broader parameter
ranges only if we find effective potentials and semiclassical
momenta. As an application, the π junction and 0 junction
are discussed in Sec. II D and the results are close to those
obtained by the transfer-matrix method [18] despite different
boundary conditions.

A. Case of ky �= 0 and EF ∼ 0

In this case, ky is a good quantum number. Therefore, we
assume �(y) and �(y) ∝ eikyy, and py can be regarded as
a fixed parameter. The substitutions of the second and third
equations into the first and fourth equations in the system of
equations yield

v2
F p̂2

x�1 − ih̄vF (∂x�)�2 = (
E2 − ��∗ − v2

F p2
y

)
�1,

v2
F p̂2

x�2 + ih̄vF (∂x�
∗)�1 = (

E2 − ��∗ − v2
F p2

y

)
�2. (2)

If the ∂x� and ∂x�
∗ terms are negligible, we have the relation-

ship
∫ RE

LE
pxdx = ( 1

2 + n)π h̄ by letting px = (E2 − ��∗ −
v2

F p2
y )1/2/vF . Recall that LE and RE denote the left and right

boundary points between the classically allowed and forbid-
den regions. We can also include the ∂x� and ∂x�

∗ terms.
Using the substitution

�1 = ± �(x)∂xθ (x) − ieiθ (x)∂x�r (x)√
�2

r (x)[∂xθ (x)]2 + [∂x�r (x)]2
�2, (3)

we obtain

v2
F p̂2

x�1 = (
E2 − ��∗ − v2

F p2
y ∓ V0

)
�1,

v2
F p̂2

x�2 = (
E2 − ��∗ − v2

F p2
y ∓ V0

)
�2,

(4)

with V0 = h̄vF

√
�2

r (x)[∂xθ (x)]2 + [∂x�r (x)]2. Now
the DBdG equation is mapped to the Schrödinger
equation and the normalization condition is changed to∫

�∗
1 �1dr = 1 and

∫
�∗

2�2dr = 1. The quantization
relationships are

∫ RE

LE
p±

x dx = ( 1
2 + n)π h̄ by letting

p±
x = (E2 − ��∗ − v2

F p2
y ∓ V0)1/2/vF . The ∂xθ (x) terms

in V0 mean that phase variation provides an alternative
method for creating effective potential wells for bound states.

The bound states obtained by the substitutions in Eq. (3)
are exact for real gap functions � or � with a constant phase
θ and approximate for slowly varying θ (x). The π junction
and 0 junction studied in this paper belong to the former type;
in S2A in [24] we give an example of the latter type. Details
about Eq. (3) are in S2A in [24]; in addition, the complete-
ness proof of these bound states still needs further analysis.
The coefficients in the substitution between �1 and �2 must
be continuous, and as it is proportional to the argument of
ρ = ∂x�r (x) + i�r (x)∂xθ (x), ρ cannot cross the branch point
zero. If ρ crosses the branch point, we must multiply a factor
eiπ in the substitution to recover the continuous wave func-
tions and V0 changes accordingly. One forbidden and two
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(a) (b) (c)Im( )

Re( )

FIG. 2. Depictions of possible trajectories of ρ(x). (a) and (b) do
not cross the branch point, while (c) crosses. To avoid the branch
point, the dashed line in (c) is the corrected trajectory after a π -phase
rotation.

allowed trajectories of ρ(x) are drawn in Fig. 2. The dashed
line in Fig. 2(c) shows how to avoid the branch point. The 0
junction discussed later is an example of Fig. 2(c) type.

B. Case of ky = 0 and EF �= 0

Derived from the DBdG equation with ky = 0, we have the
equations

H2
0 � + [(H0 + EF )�]� = (E2 − ��∗)�,

H2
0 � − [(H0 + EF )�∗]� = (E2 − ��∗)�.

(5)

We assume �(x)[�(x)] = � ′(x)[�′(x)]eikF x with h̄vF kF =
EF . The substitutions �1 = �2 and �1 = �2 near the Fermi
wave vector kF yield

−h̄2v2
F ∂2

x �1 − ih̄vF (∂x�)�2 = (E2 − ��∗)�1,

−h̄2v2
F ∂2

x �2 + ih̄vF (∂x�
∗)�1 = (E2 − ��∗)�2,

(6)

where the wave functions are in the reduced form �(�) →
�(�)e−ikF x to cancel the common eikF x terms. Similarly, we
can get these equations near −kF by the substitutions �1 =
−�2 and �1 = −�2. The formula in the abstract includes two
directions ±x of the momentum. To be concise, we consider
the momentum near pF . If the ∂x� and ∂x�

∗ terms are negli-
gible, we have the relationship

∫ RE

LE
(p − pF )dx = ( 1

2 + n)π h̄
by letting p = (E2 − ��∗)1/2/vF + pF .

To include the ∂x� and ∂x�
∗ terms, using the substitution

in Eq. (3), we obtain the same equations in Eq. (4). The
quantization relationships are

∫ RE

LE
�p± dx = ( 1

2 + n)π h̄ by
letting �p± = (E2 − ��∗ ∓ V0)1/2/vF .

The conditions �1 = +(−)�2 and �1 = +(−)�2 can be
regarded as the +x- (−x-) moving electron and the −x- (+x-)
moving hole (also see the Appendix in Ref. [23]). Whether the
assumptions �1 = ±�2 and �1 = ±�2 are satisfied needs to
be checked. In particular, for the π and 0 junctions discussed
below, these assumptions are shown to be rigorous in S2B in
[24]. According to S2B, we observe that

∫ RE

LE
�p±dx = ( 1

2 +
n)π h̄ capture the bound states in both assumptions except for
the zero-mode degeneracy.

C. Case of |h̄vF ky| � EF

We continue from Eq. (5). Let kFy = ky, the Fermi wave
vector kF = (kFx, kFy), and h̄vF |kF | = EF . The kFy is a good
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FIG. 3. (a) Example of the π -junction gap function �(x) and the
effective potentials V± with ξ0 = 2 and �0 = 1. (b) Phase diagram
of the number of bound-state energy levels where the black dashed
contour lines are the possible maximum phase accumulation in V+
for certain ξ0 and �0. The integers in the phase regions denote the
number of energy levels, and the half integers on the contour lines
denote the largest phase integrals with the unit π . (c) Energy spec-
trum of E versus ky for the two bound-state levels in V+ with ξ0 = 2
and �0 = 1. The solid (n = 0) and dash-dotted (n = 1) lines are the
exact results and the dashed lines are the corresponding results the
WKB method gives. The exact result for n = 0 and the result (MX)
by Ma and Xu’s quantization condition coincide. The exact result
and WKB result for n = 1 almost coincide. Note that n = 1 in V+
corresponds to n = 0 in V−, which is not plotted. (d) The DOS plot
of the energy spectrum in (c). For all plots, EF = 0.

quantum number. We express � and � as⎛
⎝ 1eikF r · a(x)

kFx+ikFy√
k2

Fx+k2
Fy

eikF r · b(x)

⎞
⎠ (7)

and define �x = (a(x), b(x))T and �x = (a′(x), b′(x))T .
Since |h̄vF ky| � EF , we can make the approximations a(x) ≈
b(x) and a′(x) ≈ b′(x). Then we have

H2
0 �x + (H0�)�x ≈ (E2 − ��∗)�x,

H2
0 �x − (H0�

∗)�x ≈ (E2 − ��∗)�x,
(8)

where H0 → H0 + EF to cancel EF . The following proce-
dure is similar to that in the preceding section. Therefore,
the quantization relationships are

∫ RE

LE
�p±dx = ( 1

2 + n)π h̄.
These discussions are invariant for negative EF cases except
that the positions of the electron and hole bands are ex-
changed.

D. The π junction and 0 junction

We consider EF ≈ 0 and the π -junction gap function
�(x) = �0 tanh(x/ξ0), with �0 a constant and ξ0 a dissipating
length concerning the BCS coherence length and the junction
width. Therefore, the gap functions on the left- and right-hand
sides tend to ∓�0, respectively, as shown in Fig. 3(a), which

134506-3



XIONG FAN AND XI DAI PHYSICAL REVIEW B 107, 134506 (2023)

means a π -phase shift. We make the following discussion
based on the results in Sec. II A.

For the π junction, we should include the ∂x� and ∂x�
∗

terms. With a fixed py, using the substitution

�1 = ±i�2, (9)

we obtain

v2
F p̂2

x�1 + [��∗ ∓ h̄vF ∂x�(x)]�1 = (
E2 − v2

F p2
y

)
�1,

v2
F p̂2

x�2 + [��∗ ∓ h̄vF ∂x�
∗(x)]�2 = (

E2 − v2
F p2

y

)
�2.

(10)

The quantization conditions are
∫ RE

LE
p±

x dx = ( 1
2 + n)π h̄ by

letting p±
x = [E2 − v2

F p2
y − ��∗ ± h̄vF ∂x�(x)]1/2/vF .

We let h̄ = vF = 1. The effective potentials are V± =
��∗ ∓ h̄vF ∂x�(x) = �2

0 tanh2(x/ξ0) ∓ �0
ξ0

sech2(x/ξ0),
which is the Rosen-Morse potential [26] considering
tanh2(x/ξ0) = 1 − sech2(x/ξ0); an example is shown
in Fig. 3(a). The exact bound-state energy is given by
E+(n, ky) = √

�2
0 − (�0 − n

ξ0
)2 + k2

y with �0 − n
ξ0
� 0 and

E−(n, ky) = √
�2

0 − (�0 − n+1
ξ0

)2 + k2
y with �0 − n+1

ξ0
� 0.

When using dimensional units, we only make the
substitutions 1/ξ0 → h̄vF /ξ0 and ky → vF py. Here E±
correspond to the bound states in V± and we note that
E+(n + 1, ky ) = E−(n, ky). The phase diagram of the
number of bound-state energy levels is shown in Fig. 3(b).
The dashed lines are the value of

∫ REm

LEm
p+

x dx, where

Em = √
k2

y + ��∗ is the possible maximum bound-state
energy. The integral

∫ REm

LEm
p+

x dx means the possible maximum
phase accumulation within V+; hence one more bound-state
level appears every time

∫ REm

LEm
p+

x dx adds π . The energy
levels above the 0.5π phase line are well described by
the WKB method, while the first bound states with small
ξ0 and �0 are beyond the WKB domain. However, the
n = 0 bound states have analytical solutions, i.e., the
Majorana zero modes. The zero modes have twofold
degeneracy counting both the time-reversal and particle-hole
symmetries M1 = (1, 0, 0,−i)T exp[− ∫ x

0 �(x′)dx′] and
M2 = (0, 1,−i, 0)T exp[− ∫ x

0 �(x′)dx′] with ky = 0.
The WKB results are approximate. To realize the exact

results, we must use the exact quantization condition [7] or
equivalently add a correction term to the WKB quantization
condition. The exact quantization condition for n = 0 in V+
is

∫ RE

LE
p+

x dx = ( 1
2 + ν)π with the correction index ν = 1

2 +√
1 + �0ξ0(

√
�0ξ0 − √

1 + �0ξ0), and ν is invariant to n ac-
cording to Ma and Xu’s conclusions [7]. We obtain ν ≈ −0.05
for ξ0 = 2 and �0 = 1. Now the zero modes are recovered
as shown in Fig. 3(c) and these correspond to the zero-point
energy in the WKB formalism. Note that we can find the
correction term even when the exact E± and constructed
eigenvectors are unknown, yet an analytical ν may not be
available for general inexactly solvable effective potentials.

Now we turn to degeneracy. The first energy level with
ky �= 0 is not degenerate. Starting from the second energy
level, (E , ky) bound states are doubly degenerate originating
from the time-reversal symmetry of the motion in the x di-
rection. These properties can be explained by the difference
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FIG. 4. (a) Example of the 0-junction gap function �(x) and the
effective potentials V± for ξ0 = 2 and �0 = 1. (b) Phase diagram
of the number of bound-state energy levels; the other information is
similar to that in Fig. 3(b). (c) Energy spectrum of E versus ky for the
two bound-state levels at ξ0 = 2 and �0 = 1; the other information is
similar to that in Fig. 3(c). (d) The DOS plot of the energy spectrum
in (c). For all plots, EF = 0.

between the two effective potentials V±. The first energy
level only exists in V+, which is lower. In contrast, the two
degenerate bound states in higher levels exist in both V±,
which gives twofold degeneracy. As mentioned previously,
the zero modes are special because of the symmetry and
two-component spinors. If we check the wave functions of
the two degenerate bound states in V±, the one in V+ has one
more node than the other in V− because these have different
bound state numbers in the WKB formalism. Similar results
are also given by the transfer-matrix method despite different
boundary conditions [18]. If choosing some other gap func-
tions with smaller variations in the middle area of the junction,
we possibly see that the effective potentials have double
wells where Andreev bound states may oscillate between
two wells, which can be solved by the WKB approximation
as well.

As a comparison, we discuss a zero-phase Gaussian-like
gap function �(x) = �0(1 − ηe−(x/ξ0 )2

), with �0 a constant
and η and ξ0 two coefficients concerning the junction width
and the BCS coherence length. In this discussion, we take
η = 1, which may describe a critical junction width with
which the pairing parameter almost vanishes in the middle.
The phase diagram in Fig. 4(b) of the number of bound states
levels is similar to the π junction. However, the energy spec-
trum is fundamentally different. The bound-state excitation
spectrum in Fig. 4(c) is gapped, which is also shown in the
density of states (DOS) plot in Fig. 4(d) where two Van Hove
singularities are caused by the two flat bottoms of the two
bands. Since two effective potentials in Fig. 4(a) are symmet-
ric about each other, (E , ky) states are all doubly degenerate.
From another perspective, the twofold degeneracy origi-
nates from the time-reversal symmetry of the motion in the
x direction.
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III. SEMIMETALS WITH PARABOLIC
DISPERSION RELATIONSHIPS

Briefly, the BdG equation will be reduced to a fourth-order
differential equation; then we analyze the asymptotes, which
is followed by the treatment of the turning points. After ap-
proximations, the wave functions obtained by the Frobenius
method around the turning points approach the asymptotes.
The quantization condition is derived through the relation-
ships between these wave functions. The detailed proof is
given in S2C in [24].

We use a simple Hamiltonian H0 = p̂2

2m σx − EF , with m
the effective mass to model the bipartite semimetal with a
parabolic dispersion relationship. The bilayer graphene under
low-energy approximation may be a typical example despite
the minor difference in the Hamiltonian [27,28]. We first
assume py(pz ) = 0 and EF = 0, and physically py(pz ) should
not affect the quantization condition in the x direction, which
will be illustrated later. We consider negligible phase variation
and use the simplified notation �∗ → �. The corresponding
BdG equation is

(H0τz + �τx )� = E�, (11)

where � = [(�1, �2), (�1,�2)]T and the τ are Pauli
matrices. The excitation spectrum for uniform �(x) is
E =

√
(p2/2m)2 + �2, where the electronlike and holelike

bands coincide. The corresponding mean-field Hamiltonian
may be written as H = ∫

[
∑

σ (ϒ†
1,σ , ϒ

†
2,σ )H0(ϒ1,σ , ϒ2,σ )T +

(ϒ†
1,↑, ϒ

†
2,↑)�I (ϒ†

1,↓, ϒ
†
2,↓)T + H.c.]dr, with ϒ the field op-

erator and σ the ↑ and ↓ spins. After some substitutions, we
get

(
h̄2

2m

)2

∂4
x �1(�2) = [E2 − �(x)2]�1(�2), (12)

where we have discarded the derivative terms of � as we
assume that the gap function changes slowly. As the two
equations are equivalent, we study one of them: ( h̄2

2m )2∂4
x �1 =

(E2 − �2)�1.
In S2C in [24] we use the GWKB method to prove that the

quantization condition for Eq. (12) is
∫ RE

LE
p dx = ( 1

2 + n)π h̄,

where p = h̄k0, with k0 = ( E2−�2

(h̄2/2m)2 )1/4. Our formulas are also
verified by the numerical simulations of the original equa-
tions in S1C in [24].

According to the Heisenberg uncertainty principle, the
coherence length is ξ0 ∼ h̄/�p [29], which is at the same
magnitude as the electron wavelength λ = h̄/p. This is a
major approximation, since generally ξ0 � λ in BCS super-
conductors. However, we also note that the flat band may
promote the possibility of BCS superconductivity [30–32].
The enhancement of the density of states near the flat band
may make the mean-field BCS mechanism effective. As our
model for the Schrödinger fermions also has a Van Hove
singularity at the Fermi level, it is a potential platform for
superconductivity.

The momenta in other directions are good quantum num-
bers, which physically do not affect this quantization rule for
EF ≈ 0. Relevant discussions are provided in Sec. V A.

IV. SCHRÖDINGER FERMIONS

The kinetic energy in the y and z directions can be ab-

sorbed by EF for Schrödinger fermions: p̂2

2m − EF → p̂2
x

2m −
E ′

F . Hence, we only consider the one-dimensional BdG equa-
tion

E� =
[(

− h̄2∂2
x

2m
− EF

)
σz + �(x)σx

]
�, (13)

where � = (�,�)T and � (�) is the one-component electron
(hole) wave function. The excitation spectrum for uniform
�(x) is E = √

(p2
x/2m − EF )2 + �2. We assume EF � �

and E and ignore the phase variation of �. By canceling �

and dropping the derivatives of �, we have(
h̄2

2m

)2( − ∂2
x − k2

F

)2
�(x) = (E2 − �2)�(x). (14)

In contrast, Ref. [16] includes the phase change, and the final
result therein only depends on the phase difference of the two
superconductors in a constriction with slight separation be-
tween the two superconductors. As explained in Sec. V A, our
formalism may also include the phase change by �2 → ��∗
for specific gap functions.

In S2D in [24] we derive the quantization condition of
the bound states in Eq. (14) and our treatment includes more
details than Andreev’s simplifications. Letting k̄ = (E2−�2 )1/2

vF h̄ ,

the result is
∫ RE

LE
k̄ dx = (n + 1

2 )π , i.e.,
∫ RE

LE
|p ± pF |dx =

(n + 1
2 )π h̄. In three-dimensional materials, ky and kz can be

absorbed by EF and pF ; for this reason, we use vectors.
To compare with others’ results, when � = 0 in the normal

layer with the distance d of an SNS junction, the bound
states are E = (n + 1

2 )π h̄vF /d with the degeneracy 4 (spin in-
cluded). This formula takes an additional 1

2π h̄ compared with
Andreev’s bound states and agrees with Kulik’s result when
E � �0, the superconducting gap, and the phase difference
χ = 0.

From the previous discussions of massless Dirac fermions
and Schrödinger fermions, we find that the quantization con-
dition for the bound states with EF � � and E mainly
depends on the excitation spectrum in the homogeneous limit
rather than the original dispersion relationship. The reason
is apparent. For EF � � and E , the band distinction dis-
appears between different dispersions near EF in the scale
of E .

V. OTHER APPLICATIONS

In Sec. II D we discussed the π junction and 0 junction
for massless Dirac fermions. Here we discuss applications for
Schrödinger fermions and semimetals with parabolic disper-
sion relationships.

A. SNS junctions

We consider the following gap function induced by the
proximity effect inside the normal layer −d/2<x<d/2 [33]:

�(x) = �Le−(x+d/2)/ξ + �Re−(d/2−x)/ξ . (15)
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FIG. 5. Numerical results (NUM) and the results by the rough formula based on the GWKB method for the semimetal with EF ∼ 0. For
small ky, we see that even the rough formula works well, and we can adjust the function �2 to improve the approximation.

Here ξ ∝ 1
(T −Tc )1/2 is the Ginzburg-Landau coherence length

and �L and �R are the gap functions with the same magnitude
�0 at the left and right sides, respectively. According to the
Josephson effect, the Josephson current Js ∝ sin χ , with χ the
phase difference between �L and �R.

Kulik considered the case d � ξ0, the BCS coherence
length under the extremely-low-temperature condition T �
Tc. In Kulik’s bound states, a coherent connection between �L

and �R exists through the bound states and this yields that the
discrete energy levels depend on the phase difference. Here,
to show one application of our theory on the Josephson effect,
we consider that 2ξ � d � 4ξ with T not very close to Tc.
Then we make the following approximation to simplify ��∗:

��∗ = �2
0e−2(x+d/2)/ξ + �2

0e−2(d/2−x)/ξ + 2�2
0e−d/ξ cos χ

≈ �2
0e−d/ξ

(
4ed/ξ − 8

d2
x2 + 2 + 2 cos χ

)
= η1x2 + η2.

(16)

According to the conclusion about Schrödinger fermions,
when EF � � and E , we have∫ RE

LE

(E2 − ��∗)1/2

h̄vF
dx =

(
n + 1

2

)
π. (17)

Therefore,

En = [
2
√

η1h̄vF
(
n + 1

2

) + η2
]1/2· (18)

The cos χ term in η2 leads to the Josephson effect because
roughly we observe dEn/dχ ∝ sin χ [34].

When EF ∼ 0 for the semimetal with a parabolic disper-
sion relationship, from the previous discussion, the quantiza-
tion rule is ∫ RE

LE

(E2 − ��∗)1/4

(h̄2/2m)1/2
dx =

(
n + 1

2

)
π. (19)

As a result, the discrete levels are given by

En =
⎡
⎣(

3�
(

1
4

)(
n + 1

2

)
π3/2√η1(h̄2/2m)1/2

4�
(

3
4

)
)4/3

+ η2

⎤
⎦

1/2

·

(20)

In the case of a semimetal with EF ∼ 0, as other momentum
components are good quantum numbers, according to the

excitation spectrum with uniform �(x), E =√
(p2/2m)2 + �2, the quantization rule may be

modified by
∫ RE

LE
pxdx = ( 1

2 + n)π h̄, with px =
√

2m{[E (n, ky, kz )2 − ��∗]1/2 − Eq} and Eq = h̄2k2
y

2m + h̄2k2
z

2m .
This integration is generally difficult; to obtain a rough
analytical expression we approximate the bound-state energy

by E (n, ky, kz )2 = E0(n)2 + E2
q + 2Eq

√
E2

0 − �2, where

E0(n) is the bound-state energy for (ky, kz ) = 0 and �2 is an
adjustable function based on the form of the gap function.

The term
√

E2
0 − �2 can be considered as a dressed kinetic

energy in the x direction and the coupling term Eq

√
E2

0 − �2

between different directions is analogous to the coupling
term within (p2/2m)2. In Fig. 5 we compare the numerical
values and the approximate values by choosing � = 1

2 x2

and �2 = E2
0 /2 for a two-dimensional semimetal. As shown,

the small difference for small ky verifies the effectiveness of
this simplified bound-state energy. Such a rough analytical
expression for the bound-state energy should already be
helpful for many problems, and we can optimize �2 to obtain
more precise results. An alternative method is determining
the integral numerically, which is more precise and still
convenient.

B. Excitation threshold

de Gennes used the variation method to calculate the exci-
tation threshold in nonuniform superconductors in Chap. 5 of
Ref. [35]. In this section we compare our result with his.

de Gennes considered a parabolic order parameter with the
minimum �min,

�(x) = �min

(
1 + x2

δ2

)
, (21)

and obtained the threshold energy

E2
0 = �2

min(1 + μ2/3), (22)

where μ ∼ h̄2

2mδ2�min
. In addition, de Gennes gave an estimate

example: Given δ ∼ h̄vF
�min

, μ ∼ 10−2.
Substitution of n = 0 in our quantization rule for

Schrödinger fermions with large EF gives the threshold
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energy

E2
0 = �2

min

(
1 +

√
2h̄vF

δ�min

)
. (23)

Given the same δ, we have E2
0 = �2

min(1 + √
2), showing a

significant error compared with de Gennes’s result. This is
a reasonable error because the basis of the WKB and our
approximation is slowly changing �(x) and small derivative
terms of �(x) in Eq. (14). Apparently, this δ value is not in
our range when �min is not small. If we adjust δ � h̄vF

�min
, the

conclusions of the two results are consistent, i.e., E0 � �min.
Alternatively, a faster approach is to use the limit vF ∼ 0

to achieve the same result. There are three reasons. The first
is because de Gennes actually uses k⊥ in a direction perpen-
dicular to the x direction to cancel the Fermi energy, which
results in an effective EF ∼ 0 in the x direction; the second
is that vF in our formalism is the velocity in the x direction
since our problem is reduced to a one-dimensional problem;
and the third is that we can get the vF ∼ 0 limit for the
reduced EF ∼ 0 based on our empirical formula. Therefore,
the method taken by de Gennes in fact leads to our formalism.

C. Tunneling

Andreev reflection tells us that a hole will be reflected
when an electron in a normal metal flows into a super-
conductor. Therefore, two electrons are absorbed by the
superconductor to form one Cooper pair. However, if the
superconductor layer has a finite width, there is a possibility
for the unpaired electrons to escape the superconductor. Now
we calculate the tunneling probability in an NSN junction with
a finite but large width L � ξ0 of the superconductor layer.
Since the width of the superconductor is large, the crossed
Andreev reflection can be ignored.

We discuss Schrödinger fermions with EF � � and E ,
and � = 0 in the normal layers. The incident electron has the
wave function

ψi = eik1x

(
1

0

)
, (24)

with k1 = kF + E
vF h̄ . The reflected wave is

ψr = rheik2x

(
0

1

)
+ reeik3x

(
1

0

)
, (25)

with k2 = kF − E
vF h̄ , k3 = −k1, and rh (re) the reflected am-

plitude for the hole (electron). In the superconductor region
0 < x < L, our approximation gives

ψs(x) = C√
κ (x)

exp

(∫ x

0
κ1dx′

)(
1

γ

)
, (26)

with κ1 = ikF − (�2−E2 )1/2

h̄vF
, C a constant, γ a ratio, and κ (x) =

(�2−E2 )1/2

h̄vF
. The tunneling probability is given by

T̃ ∼
∣∣ exp

( − ∫ L
0 κ dx′)∣∣2

12

= exp

(
−2

∫ L

0
κ dx′

)
. (27)

VI. DISCUSSION

These bound states manifest themselves in low-
temperature and -energy experiments. For example, Andreev
discussed the thermodynamics of these bound states, which is
important for very low temperatures, typically approximately
0.1 K for vF ∼ 106 m/s and the normal layer thickness of
approximately 102μm [20]. Titov et al. studied the thermal
conductance of Andreev modes which is realized by the
specular Andreev reflection in a graphene channel with
superconducting boundaries [18]. These bound states are
also characterized by infrared spectroscopy if we shed
low-frequency light on superconductors. The photon energy
should be controlled to be comparable to the bound-state
energy difference and smaller than the excitation energy of
Cooper pairs. These features may be exploited to examine
whether a superconductor has defects in specific regions and
the size of the defects.

For the experimental realization, as mentioned by de
Gennes, the spatial variation of �(x) can be fabricated by
depositing different metals on thin superconductors [35]. The
order parameter depends on many variables, leading to other
possible methods. For instance, we can continuously dope or
change the materials of a bulk superconductor in one direction
to adjust the order parameter; for thin samples, the tempera-
ture gradient also yields varying �(x), etc.

Regarding moderate EF , it is not rigorously determined
whether Schrödinger fermions still have such a concise quan-
tization rule, while the large EF condition is not necessary
for Dirac fermions with ky = 0 presenting the advantage of
generality. Momenta in other directions also cause difficulty.
However, in particular, when extreme precision is not re-
quired, our experience and viewpoint are that the GWKB
(WKB included) and Bohr-Sommerfeld quantization condi-
tions should both work well for broader parameter ranges of
nonuniform superconductors. In addition, the GWKB quan-
tization condition should work better if there is no abrupt
change in the gap function. The crucial step is finding the
proper semiclassical momentum, effective potentials, and pF

based on the excitation spectrum of homogeneous supercon-
ductors (an example is in S1E [24]), since generally we need
to deal with the chemical potentials and other momenta or
other terms which may couple with the momentum we must
know. Special care is required when the excitation spectra
have gaps. For example, purely electronlike bound states may
exist in the gap between the holelike and electronlike bands
[18,23] (also see S1E in [24]).

VII. SUMMARY

We have provided the quantization conditions for the
Andreev bound states in the wells of nonuniform super-
conductors. We have rigorously studied several parameter
limits for massless Dirac fermions, semimetals with parabolic
dispersion relationships, and Schrödinger fermions. These
quantization conditions should be easily applied to many
problems concerning Andreev bound states in TI surface
states, graphene, and other Dirac materials; semimetals like
bilayer graphene; and normal metal superconductors. We also
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have provided empirical quantization conditions for other pa-
rameter regions as mentioned previously.

We have discussed the π and 0 junctions for the TI surface
states as examples and demonstrated the bound-state spec-
trum and the phase diagram of the number of bound-state
levels. The Majorana zero modes in the π junction are found
to correspond to the zero-point energy in our method. The
Majorana bound state in a vortex may also be understood
better in this way. For a vortex �0(r)eiϑ with r and ϑ the
polar coordinates, we can do a radial section along a diameter
in the vortex and then this section becomes a π junction.
Therefore, the Majorana bound state in a vortex should also
correspond to the zero-point energy. A detailed analysis is
beyond the scope of the present work. In quantum field theory,
the zero-point energy is the result of quantum fluctuation of
the universe, which has great significance such as the Casimir
effect. In analogy to our observation, we may ask whether the

Majorana fermion in high-energy physics comes from vacuum
fluctuations.

We have also discussed other applications such as the SNS
junctions, excitation threshold, and NSN junctions. In addi-
tion, our treatment of a fourth-order differential equation is
attributable to progress in mathematical physics. The GWKB
method may inspire solutions to other fourth-order or even
higher-order Bessel-type ordinary differential equations. In
another paper, we exploit the GWKB method to reveal bound
states in general higher-order differential equations [36]. The
results therein are useful to solve other energy-momentum dis-
persion relationships such as the cubic dispersion or beyond.
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