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Enhancement of the Kondo effect in a quantum dot formed in a full-shell nanowire
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We analyze results of a recent experiment [D. Razmadze, E. C. T. O’Farrell, P. Krogstrup, and C. M. Marcus,
Phys. Rev. Lett. 125, 116803 (2020)] on transport through a quantum dot between two full-shell nanowires
and show that the observed effects are caused by the Kondo effect enhancement due to a nontrivial geometry
(magnetic flux in a full-shell nanowire) rather than the presence of Majorana bound states. Moreover, we propose
that such a setup presents a unique and convenient system to study the competition between superconductivity
and the Kondo effect and has significant advantages in comparison to other known approaches, as the important
parameter is controlled by the magnetic flux through the full-shell nanowire, which can be significantly varied
with small changes of magnetic field, and does not require additional gates. This competition is of fundamental
interest as it results in a quantum phase transition between an unscreened doublet and a many-body Kondo singlet
ground state of the system.

DOI: 10.1103/PhysRevB.107.134505

I. INTRODUCTION

Semiconducting nanowires with full superconducting shell
were recently introduced as possible realizations of topo-
logical superconductors, which may host Majorana bound
states (MBSs) [1]. MBSs in turn have non-Abelian statistics,
which could be exploited to develop a topologically protected
qubit [2,3]. In nanowires with a thin shell the Little-Parks
effect [4] results in modulation of the superconducting order
parameter with the applied magnetic flux. In case of a thin
nanowire (with a diameter smaller than the superconduct-
ing coherence length) the Little-Parks effect is destructive,
resulting in a lobe structure of the order parameter as a
function of the flux [5,6]. The idea of combining effectively
one-dimensional superconductors with a vortex is already fas-
cinating by itself: the vortex can induce a phase winding of the
superconducting order parameter and result in nontrivial prop-
erties, such as the well-known Caroli–de Gennes–Matricon
bound states in the two-dimensional case [7]. Further ex-
periments with full-shell nanowires were performed [8–10],
including those where the observed zero-bias anomalies were
shown to have nontopological nature [11]. However, a recent
experiment [12] with a gate-controlled quantum dot (QD) in
a full-shell hybrid interferometer showed nontrivial features
in addition to the zero-bias peak. Without a magnetic flux
(zeroth lobe) through the shell a change of occupation of
the QD (from even to odd) leads to a change of a sign of
the supercurrent through the QD, which is known as zero-
π phase transition [13–16]. However, with a flux around
one magnetic flux quantum threading the superconducting
shell (first lobe) the effective Josephson junction seems to
stay in the zero phase even for the odd occupation of the
QD, in agreement with theoretical predictions [17–21] for a
Josephson junction based on the QD between two topological
superconductors hosting MBSs. Such peculiar behavior could
be seen as evidence for the presence of MBSs in the system.
Nevertheless, the authors were not completely satisfied with

the interpretation, as they could not explain some of the ob-
served features, such as an enhancement of the supercurrent
in the odd state in the first lobe, and no signs of fractional
Josephson effect expected in the presence of MBSs were
observed.

In this paper we argue that the results of this experi-
ment can be interpreted as an enhancement of the Kondo
effect [22–26] in the first lobe, including an enhancement of
the supercurrent. It was predicted theoretically [24,27–29] and
shown experimentally [30–32] that if the Kondo effect can
develop on an odd-occupied QD between superconducting
leads, the ground state is a many-body Kondo singlet instead
of a doublet (unscreened electron), which restores the zero
phase behavior and enhances the critical supercurrent. The
phase transition is determined by the ratio of two energy
scales: the Kondo temperature TK and superconducting gap
�. In this paper we show that if the superconducting order
parameter acquires a phase winding around the shell, the
relevant energy scale is not the absolute value of the gap
|�| but an effective gap which is significantly suppressed
due to destructive interference, which in turn leads to the
enhancement of the Kondo effect. Our interpretation is further
supported by the fact that a bright zero-bias feature and no π

phase is observed at the closing of the zeroth lobe (around half
the flux quantum), where no topological superconductivity is
expected. As a result, we can claim that due to the detailed
experimental data provided by Razmadze et al. [12] it is
possible to establish a nontrivial effect of the phase winding
on the coherent transport and the ground state properties of
a QD between two full-shell nanowires, which has not been
predicted before. Further experimental studies of the effect
can enrich the understanding of the underlying fundamental
physics as only elaborate numerical approaches have been
developed to quantitatively capture the QD-based Josephson
junction behavior in the competition regime [24,29,33–39]
(for review see Ref. [40]).
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II. MODEL

In this paper we focus on a QD formed in an uncov-
ered (etched superconductor) and gated region of a full-shell
nanowire. Assuming that electrons in the nanowire form an
accumulation layer at the boundary with the superconducting
shell [1], we use a hollow-shell approximation—transport
through the system is mostly determined by Cooper pairs
propagation along the shell and tunneling between the shells
through the QD. We assume the shell to be much thinner
than the magnetic penetration length and the diameter to be
smaller than the superconducting coherence length, which
results in no quantization of the magnetic flux through the
shell but reentrant lobe structure due to the destructive Little-
Parks effect: superconductivity is fully suppressed when the
flux around odd half-integer multiples of a flux quantum
is applied [6,12]. As a further simplification we model the
shell as a hollow cylinder (in experiments it has rather a
hexagonal cross section) [1,41] with radius R, then the total
magnetic flux through the shell is � = πR2B. We focus on
the single-level QD limit (large level spacing), and the number
of electrons can be considered fixed by the applied gate due
to strong Coulomb interactions on the QD (strong spatial
confinement), which is a common experimental situation. The
simplest model to describe such a system is the superconduct-
ing impurity Anderson model [42] modified by the magnetic
flux though the shell [41,43]:

H = HD +
∑
s=l/r

(
Hs + V s

SD

)
, (1)

HD =
∑

σ

(εd + σVZ )d†
σ dσ + Un↑n↓, (2)

Hs =
∫

dx dθ
∑

σ

[
ψ

†
σθx

(
p2

2ms
− μs

)
ψσθx

+ �s(�)e−inθ+iφsψ
†
σθxψ

†
−σθx + H.c.

]
, (3)

V s
SD =

∫
dθ

∑
σ

ts(θ )ψ†
σθxdσ /(2π ) + H.c. (4)

Here εd is the bare QD energy level, which is controlled by
gate voltage, VZ = μBgB/2 is the Zeeman field (g is the Landé
g factor and μB is the Bohr magneton), σ corresponds to the
electron spin up/down state (±1 if it is a coefficient, ↑ / ↓
if it is an index), d†

σ is the QD electron creation operator
(with spin σ ), nσ = d†

σ dσ is the occupation number operator,
U is the charging energy (which is the largest energy scale
in the system so that the single-level approximation is valid),
ψσθx are the shell operators (we omit the s = l/r index for
the left/right shell), x is the coordinate along the shells, and
θ is the angle around the shell. The superconducting order
parameter in the shells �l/r (�, θ ) = |�(�)l/r |e−inθ+iφl/r de-
pends on magnetic flux � as well as angle θ , φl/r is the phase
at the same angle θ = 0 to the left/right of the QD, n denotes
the number of phase windings defined by an integer of the
ratio of magnetic flux to flux quantum (�0 = π/e, and we
set h̄ = 1 throughout the paper), n = ��/�0�, and p2/(2ms)
and μs are the kinetic term and the chemical potential in the
respective shells. The last term describes tunneling between
the left/right shell and the QD, and the tunneling amplitude

is given by ts(θ )/(2π ) and depends on the azimuthal angle θ ,
as the electron state on the QD is shifted away from the shell
axis due to the QD gating. We work in the zero-temperature
limit (the temperature in relevant experiments is well below
characteristic energies). The main difference from Ref. [41]
is the presence of two superconducting shells instead of one,
which adds up and introduces an additional important param-
eter, namely, the phase difference φ = φl − φr between the
shells (at the same angle θ ). The effective Hamiltonian can be
obtained by integrating out the shells and introducing the QD
Green’s function as G(ω) = [ω − Heff (ω)]−1 [41,43]:

Heff (ω) = Heff,↑(ω) ⊕ Heff,↓(ω),

Heff,σ (ω) =
(

εd + σVz 0

0 −εd + σVz

)
+ �U

σ + �S, (5)

where the first term corresponds to the bare QD. The last two
terms are self-energies from the Coulomb interaction U on
the QD and from the proximity effect induced by the super-
conducting shells, respectively. For a usual S-QD-S junction
(no phase winding) the latter is given by [25,27,29]

�S = −
∑

s

πρst2
s√

�2 − ω2

(
ω |�|eiφs

|�|e−iφs ω

)
, (6)

where ρs is the normal density of states at the Fermi energy
(large bandwidth limit [25]). In case of a superconducting
shell with a flux, one needs to take into account that the
tunneling is angle dependent. We assume symmetric tunneling
tr (θ ) = tl (θ ) = t (θ ) to the left/right shell, as corresponding
results can be easily generalized for an asymmetric case [44].
Furthermore, we expect the tunneling to have a relatively
weak angle dependence (as discussed in Ref. [41] the tun-
neling is determined by the wave function’s tails underneath
the shell, which are not very sensitive to the gating): t (θ ) =
t0 + δt (θ ). Then, one can estimate the proximity term in the
form of Eq. (6) by integrating the shell contribution over
the angle θ . The simplest estimation comes from expanding
t2(θ ) = t2

0 + 2t0δt (θ ) + . . . (for more accurate analysis see
Appendix A). The off-diagonal term takes the form

�S
01 ≈ −

∑
s

2πρSt0|�|eiφs

√
�2 − ω2

∫ 2π

0

t (θ )e−inθ dθ

2π
. (7)

The angle dependence of the phase of the superconducting
order parameter significantly reduces the term in comparison
to the case of zero flux. The full expression for self-energy
from the shell can be rewritten as

�S ≈ − 2〈�S〉√
�2 − ω2

(
ω �eff cos φ

2

�eff cos φ

2 ω

)
. (8)

Here we extracted 〈�S〉 = πρs[
∫ π

−π
dθ
2π

t (θ )]2 = πρst2
0 which

stands for the tunneling energy scale averaged over the an-
gle θ around the shell (the contribution comes from hopping
from QD to shell and back), and φ is the phase difference
between left and right shell (at fixed angle θ ). That allows us
to single out a nontrivial contribution in the numerator of the
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FIG. 1. Schematic representation of Cooper-pair tunneling
through a QD electron state (green sphere) between two hollow-
cylinder superconductors (blue) representing the shells and accu-
mulation layers of underlying nanowires. The tunneling amplitude
t (θ ) (between the QD and each shell) is angle dependent, as the
electron wave function on the QD is shifted from the shell axis
due to gating; the superconducting order parameter on the shell
has nonzero phase winding (n �= 0 for large enough magnetic flux
� > �0/2).

off-diagonal terms (see Appendix A):

�eff ≈ (1 − δ0n)

∣∣∣∣∣2�
∫ π

−π
t (θ )eiθn dθ

2π∫ π

−π
t (θ ) dθ

2π

∣∣∣∣∣ + δ0n|�|. (9)

One can see that for n �= 0 and axially symmetric tunnel-
ing [t (θ ) = const], �eff = 0!. One should note that Eq. (9)
is approximate, and it works well for weak dependence of
tunneling amplitude on θ ; for the general case see analysis
in Appendix A.

The effect can be interpreted as destructive interference,
which can be seen from a schematic of a Cooper-pair tunnel-
ing trajectory between two superconducting hollow cylinders
through a QD electronic state (Fig. 1); for the axially symmet-
ric case a Cooper pair has equal probability to tunnel between
all possible angle positions on superconducting shells. If
there is a phase winding around the shells, each trajectory
corresponds to some phase difference �φ ∈ [0, 2πn], then
summing over all trajectories gives exactly zero (which can
be written as zero effective gap �eff ). However, the effective
QD state (the bound state wave function) is rather not cen-
tered on the shell axis, as the QD is gated from one side,
which results in θ -dependent tunneling amplitude t (θ ) and,
therefore, nonzero �eff . As was discussed in Ref. [41], the
angle dependence of tunneling is rather weak as the tunneling
is determined by the tails of the wave function under the
superconducting shell, which is screening the electrical field
from the gate. The most straightforward consequence of such
a destructive interference is the reduction of the Josephson
effect by a factor �eff/�.

However, that is not the whole story. First of all, as it was
already briefly discussed, if a flux around half flux quantum
is applied, superconductivity is completely suppressed due to
Little-Parks effect. Second, even an S-QD-S junction with-
out magnetic flux shows nontrivial behavior such as zero-π
phase transition. This phase transition was extensively studied
theoretically, starting with the first predictions for transition
induced by changing the occupation of the QD [13–16,45]
and followed by more sophisticated regimes, when the Kondo
effect may play a significant role [24,29,33,35,36,46]. These
effects are due to strong Coulomb interactions on the QD

represented by the �U
σ term in the effective Hamiltonian.

In Ref. [41] it was calculated in Hartree-Fock-Bogoliubov
approximation [27,47] (the lowest U -order expansion)

�U
σ ≈ U

( 〈n−σ 〉 〈dσ d−σ 〉
〈d†

σ d†
−σ 〉 −〈nσ 〉

)
, (10)

which cannot capture the Kondo effect. The latter was studied
with powerful numerical approaches [24,29,33–39]; as of now
no reliable analytical approach capable of tackling the prob-
lem in the most interesting regime of competition between the
Kondo effect and superconductivity has been developed. Fully
analytical methods are available only for special limiting cases
such as Hartree-Fock-Bogoliubov approximation [27,47] and
perturbation in cotunneling [48,49] through the Yu-Shiba-
Rusinov state [50–52] analogs for � 
 TK or slave-boson
mean field approaches in the opposite limit [53,54]. Never-
theless, it is well established that if the Kondo temperature TK

(characteristic energy scale) is large enough in comparison to
the superconducting gap �, the electron on a QD can form
a Kondo singlet with quasiparticles in the superconductor
(Kondo cloud) and, therefore, the junction stays in the zero
phase even in the odd sector, and the cotunneling process is
enhanced which in turn increases the supercurrent [25,29,36].
The Kondo temperature depends on tunneling amplitude,
Coulomb interaction, and bare QD level energy [55]:

TK ∼
√

U� exp
[πεd

2�

(
1 + εd

U

)]
, � = 2〈�s〉. (11)

The exact proportionality factor 0.28 is well defined only in
the middle of the odd occupation region (εd = −U/2) [40,56].
An important question is how the superconducting phase
winding affects this competition.

III. ANALYSIS OF THE EXPERIMENT

In this section we analyze the results of an experiment per-
formed on a S-QD-S junction with a flux through the full-shell
nanowire with the goal to establish topological supercon-
ductivity [12]. Several nontrivial features were reported that
could potentially indicate the presence of Majorana fermions.
First, the differential conductance in a voltage-bias config-
uration was measured, and then the current-phase relation
(CPR) was probed in a superconducting quantum interference
device (SQUID) geometry. The even-occupied regime does
not show anything unexpected: the differential conductance
clearly shows a gap closing around half flux quantum due to
the destructive Little-Parks effect and a gap reopening in the
first lobe [Fig. 2(c) in Ref. [12]]. Current-bias measurements
in the SQUID geometry show a trivial Josephson effect in
both lobes. In the odd-occupied regime a bright zero-bias peak
develops at the closing of the zeroth lobe (around half flux
quantum), which the authors identify as a Kondo peak. In
the destructive regime no peak is visible (superconductivity
is fully suppressed in the shells). The zero-bias feature reap-
pears in the first lobe, but less bright and a bit broadened.
In the current-bias measurement a π phase is absent in the
odd-occupied regime in the first lobe (see Fig. 2 sketching
experimental results presented in Fig. 4 of Ref. [12]), while it
is present in the zeroth lobe (supercurrent reversal). As it was
theoretically predicted, a full-shell nanowire could potentially
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(a) (b)

(c) (d)

FIG. 2. A sketch of the observed switching current of the SQUID
as a function of the flux through the SQUID (Figs. 4 and S8 in
Ref. [12]) at zero field in the shell (a), at 120 mT (one flux quantum)
(b), at 40 mT (c), and at 45 mT (d). Red lines represent the switching
current for the QD in the middle of the even occupation sector, and
blue lines correspond to the odd occupation sector

acquire topological properties in the first lobe [1], which
could explain absence of the π phase and zero-bias peak by
hybridization of a QD electron with MBSs [17–21]. However,
current-bias measurements in SQUID geometry show absence
of the π phase in the center of the odd sector already at the
closing of the zeroth lobe (data in supplemental material of
Ref. [12], Fig. S8); see a sketch in Fig. 2. An enhancement
of the supercurrent in the odd state is clearly visible in com-
parison to the even state, which is a typical feature of the
Kondo effect in S-QD-S junctions [24,29,57]. And all these
features are qualitatively similar to the ones observed in the
first lobe [nicely captured in Figs. 4(e) and 4(f) in Ref. [12]]:
the CPR of the SQUID is given by a sinusoid, but in the odd
state the critical current is larger (higher average value), and
no phase shift is observed; see our sketch of the SQUID CPR
in Fig. 2. That suggests that the observed effects are of the
same origin. As we have shown in the previous section the
superconducting phase winding introduces a new important
energy scale, �eff , which plays the role of the effective gap for
the QD and which is reduced in comparison to |�| due to de-
structive interference. In case of nonzero phase winding n > 0
off-diagonal elements of �S [see Eq. (10)] are smaller by a
factor of �eff/�, which suggests that in such a system the rel-
evant parameter for the quantum phase transition between the
unscreened doublet and the many-body Kondo singlet ground
states is �eff/TK . As a result, we were able to deduce that
in the first lobe for odd occupation of the QD TK > �eff and
the ground state is a Kondo singlet, which explains the zero
phase behavior and the supercurrent enhancement as well as
zero-bias peak in the differential conductance. Another
question arising is whether the Zeeman effect can play a

significant role, because the Zeeman field can split the Kondo
peak if the g factor is large enough [58–60]. However, it
was shown that due to spin-orbit interaction the effective g
factor on a long QD can be renormalized (towards small
values) [61–63]. That significantly complicates theoretical
comparison of Zeeman energy VZ = μBgB and Kondo tem-
perature TK . In Appendix B we provide some simple analysis
of the experimental data. Moreover, in the second device the
peak close to zero energy has a splitting, which contradicts the
idea of MBS.

Another distinctive feature observed in experiment [12]
is a change of dissipation between zeroth and first lobes—a
strong hysteresis in supercurrent though the SQUID in the
zeroth lobe, which indicates an underdamped junction regime
corresponding to low dissipation. In contrast, in the first lobe
no hysteresis is observed; this effect is independent of the QD
occupation; therefore, it is not caused by the Kondo effect
itself. We suggest that the higher damping can be attributed
to lower effective gap (and described in terms of subgap states
induced by the vortex [43]). The different junction dissipation
regime in two lobes also implies a different ratio of criti-
cal and switching current. In the underdamped regime the
switching current (which is measured in the experiment) can
be significantly lower than the actual critical current, as the
macroscopic quantum phase tunneling cannot be neglected,
while in the first lobe strong dissipation (overdamped regime)
should result in the switching current being in good correspon-
dence with the critical current.

The experimental setup in Ref. [12] appears to be a very
convenient and unique device to study competition between
superconductivity and the Kondo effect at relatively low mag-
netic fields without additional gates to control the tunneling
amplitude due to destructive Little-Parks effect. The regime
of competition is specifically interesting to study experimen-
tally as no analytical approach exists to provide quantitative
description of the system in this regime. The setup allowed
the scientists to measure the CPR and differential conduc-
tance in the middle of the odd occupation sector all the way
from the doublet ground state to the Kondo singlet smoothly
varying the superconducting gap by changing the magnetic
flux from zero to a half flux quantum, which does not even
require going into the first lobe. The well-resolved CPR close
to the phase transition (at 40 and 45 mT for the first de-
vice, Fig. 2) has a drastic difference, which is an outstanding
feature of the change in the character of the ground state
and is in perfect qualitative agreement with theoretical pre-
dictions (numerics). We suggest that a measurement of the
CPR at different values of flux with smaller steps around
the transition could be sufficient to establish the transitions
between 0, 0′, π ′, and π phases of such a QD-based junc-
tion [27,47] in the middle of the odd parity sector (previously
such transitions have been observed only as a function of gate
voltage [31,64]). For this we recommend to fabricate an asym-
metric SQUID with an ancilla junction being independent of
the flux through the shell (i.e., a separate superconductor-
insulator-superconductor junction) and having slightly larger
critical current so that the CPR of the S-QD-S junction is
directly observed (large difference in critical currents between
the junctions forming the SQUID decreases the contrast of
the picture). Further study of the first lobe can provide better
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understanding of the Kondo cloud formation due to destruc-
tive interference. Moreover, it could be interesting to study
the effect in shells of larger radius (or thinner shell, so that the
superconducting coherence length is shorter than the shell’s
radius [6]), when the Little-Parks effect does not suppress the
superconducting gap to zero. In that regime suppression of
the gap at half flux quantum may not be enough to enhance the
Kondo effect; however, the phase winding at higher magnetic
fields can still reduce the effective gap to the values below the
Kondo temperature, which would result in a zero-bias peak
only in the first (or higher) lobe.

IV. CONCLUSIONS AND OUTLOOK

We provided a coherent interpretation for the results ob-
served in an experiment [12] on a transport through a QD
between two full-shell nanowires. Due to accurate and suf-
ficient data presented, we were able to establish the effect of
superconducting order parameter phase winding on a ground
state of the QD and attribute it to the Kondo effect. We showed
that the quantum phase transition between a doublet and a
many-body Kondo singlet ground state is controlled by a
parameter �eff/TK � |�|/TK in case of a superconducting
phase winding. We discussed the consequences of this transi-
tions and suggested experiments to test the existing theoretical
results on the regime of competition of the Kondo effect and
superconductivity. Finally, theoretical analysis of the results
suggests that the conductance enhancement due to the Kondo
effect in a vortex may as well explain zero-bias anomalies
observed in different systems, such as the vortices localized at
magnetic impurities of some superconductors [65,66], which
requires further studying.
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APPENDIX A: EFFECTIVE GAP

In this Appendix we derive the effective gap in a more
accurate fashion. The thin superconducting shell Hamiltonian
can be written in cylindrical coordinates as [1,67]

Hs =
[

k2
s + k2

r + (kθ + eAτz )2

2ms
− μs

]
τz

+ |�|(cos[−inθ + iφs]τx + sin[−inθ + iφs]τy), (A1)

where ks, kr , and kθ are the longitudinal, radial, and tan-
gential components of the momentum operator, ms is the
effective electron mass, μs is the chemical potential in the
shell, A = 1

2eR
�
�0

is the vector potential, and τi are Pauli
matrices acting in Nambu-Gorkov space. One can introduce
a generalized angular momentum Jz = −i∂θ + 1

2 nτz + 1
2σz,

which is conserved (commutes with Hamiltonian) [1,43], then
the eigenvalues mJ are good quantum numbers and can take
half-integer values: [

mJ − 1
2 − 1

2 n
] ∈ Z. (A2)

The resulting angular momentum number m is an integer and
fixed by mJ and n in each spin and Nambu sector (note that it is
exact only in the absence of radial spin-orbit interaction [43]).
Due to the term 1

2 nτz in the definition of the generalized
angular momentum, for a fixed spin the Hamiltonian is not
block diagonal in the (m,−m) Nambu sectors, but in the
(m,−m − n) sectors [41]. The retarded Green’s function for
the shell (decoupled from the QD) between two positions θ

and θ ′ is then given by [41]

gs(ω, θ, θ ′) =
∑

m

e−im(θ−θ ′ )

Dm,n

⎛
⎝ω + εks + [m+n−�/(2�0 )]2

2msR2 �e−iφs+inθ ′

�eiφs−inθ
[
ω − εks − [m+�/(2�0 )]2

2msR2

]
e−in(θ−θ ′ )

⎞
⎠, (A3)

where

Dm,n = ω2 − �2 − (εks − Lm)2 − (ω − εks + Lm)(�n − 2
√

�nLm), (A4)

with

Lm =
(
m + �

2�0

)2

2msR2
, �n =

(
n − �

�0

)2

2msR2
. (A5)

Then the proximity effect of the shells on the QD can be
described by the self-energy [41]:

�S (ω) =
∑

s

∫
dks

∫
dθ

2π

dθ ′

2π
t (θ )gs(ω, θ, θ ′)t (θ ′). (A6)

In the middle of the first lobe �/�0 = n = 1 the result can
be written in the form of Eq. (6) but with t replaced by t0 =∫ π

−π
t (θ ) dθ

2π
, which is just the tunneling amplitude averaged

over θ , and |�| in the numerator of the off-diagonal terms

replaced by

�eff =
∣∣∣∣∣
∑

m

t−mtm+n

t2
0

�

∣∣∣∣∣. (A7)

In case of weak modulation compared to the angle-
independent tunneling [t0 
 |δt (θ )|] one gets for n �= 0

�eff ≈ 2

∣∣∣∣∣�
∫ π

−π
t (θ )eiθn dθ

2π∫ π

−π
t (θ ) dθ

2π

∣∣∣∣∣ � |�|, (A8)
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which is the same as Eq. (7) [if one substitutes �eff for � in
the numerator of the off-diagonal terms of Eq. (6)].

Away from the first lobe center (�/�0 �= 1) the off-
diagonal elements have additional terms in the denominator:

�S
01 = −

∑
m

2πρSt−mtm+n|�| cos φ

2√
�2 − (

ω + (n/2+m)(n−�/�0 )
2msR2

)2
. (A9)

However, these terms do not change the qualitative picture;
therefore, Eq. (7) gives a reasonable estimation, which makes
�eff given by (A8) a relevant energy scale instead of |�|.

The spin-orbit interaction was not taken into account in the
simplified hollow-cylinder model, as it can play a role only
in the semiconducting nanowire itself; therefore, it should
not be crucial for the shell modeling and can only affect the
tunneling process to the QD states (introducing small spin-
dependent corrections to the tunneling amplitudes [68]) and
QD parameters. For the latter we can use empirical effective
parameters, i.e., in the main text we stated that the effective
Zeeman splitting is reduced due to spin-orbit interactions so
that the effective g factor is small [61–63]. Therefore, we
claim that including spin-orbit interactions as well as more
realistic (i.e., hexagonal) geometry into consideration should
not affect the result qualitatively.

APPENDIX B: ANALYSIS OF THE KONDO
CONDUCTANCE PEAK

Here we provide a simple estimate from below on the
Kondo temperature based on data provided in Ref. [12] and
supplemental material therein. From Fig. S7 in Ref. [12] we
can see at 45 mT a Kondo enhancement in the odd state (larger
supercurrent amplitude in the odd state in comparison to the
even state and no π phase shift), while at 40 mT we see a
π phase behavior and similar supercurrent amplitudes in odd
and even sectors. As a result, we can crudely estimate the
Kondo temperature from below as TK � � at 45 mT. Nu-
merical renormalization group calculations predict a transition
from a doublet ground state to a many-body Kondo singlet at
TK ≈ 0.3� [33,36,46]; however, it was defined at zero phase
difference, while the current-phase relation at 45 mT already
shows a critical current enhancement as well as zero phase
behavior at all the phases; for nonzero phase the transition
occurs at higher values of TK/� [40,69], which suggests that
the system is already deep in the Kondo regime. The gap is
suppressed at 50 mT; we thus can use a simplified formula

for a thin shell of radius R [70,71]):

�(�) ≈ �0 max

{
1 − ξ 2

R2

(
n − �

�0

)2

, 0

}
, (B1)

where ξ is the superconducting coherence length, and n =
��/�0� is the number of phase windings in the shell (n = 0
for the case here, as the system is still in the zeroth lobe).
Therefore, for an estimate we take 1 − ξ 2

R2 (− 50
120 )2 = 0, as the

center of the first lobe is at B = 120 mT, which corresponds
exactly to one flux quantum. Then at 45 mT

�(�) ≈ �0

[
1 − 122

52

(
45

120

)2
]

= 0.19�0. (B2)

The order parameter in the Al shell may be estimated from be-
low from the differential conductance at zero magnetic field:
�0 > 0.1 meV. Then, we can estimate the Kondo temperature
from below, TK > 19μeV; one can see that this estimate from
below gives a value twice larger than originally assumed. We
stress again that the estimate is crude and well below the real
value; a more accurate evaluation of the Kondo temperature
could be possible with more data around the transition from
the doublet to the Kondo singlet (40–45 mT) or the Kondo
peak analysis in the destructive regime (normal state).

Data on the second device provided in the supplemental
material of Ref. [12] show similar features suggesting an
enhancement of the Kondo effect. Moreover, in Fig. S2 in
Ref. [12] the differential conductance peak at low bias voltage
appears to be split in the first lobe, which may be due to
Zeeman splitting of the Kondo peak. Figure S4 in Ref. [12]
shows that the critical current in the ancilla junction is larger
in the first lobe than in the QD-based junction (the amplitude
of the supercurrent in the SQUID is changing with the QD
occupation), which suggests that the tunneling amplitude in
the second device could be smaller than in the first one. There-
fore, we expect that the Kondo temperature in the second
device is lower (or the effective g factor can be larger) and
the Kondo peak acquires a visible splitting in the magnetic
field (2VZ > TK in the first lobe), which cannot be explained
by MBSs. Furthermore, all three devices show supercurrent
enhancement in the odd state (first lobe) in comparison to
even occupation, which is also a typical feature of the Kondo
effect. In conclusion, the additional data on the second and
third devices in the supplemental material of Ref. [12] support
our idea of an enhancement of the Kondo effect in the first
lobe.
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Rehmann, A. Li, E. P. A. M. Bakkers, F. A. Zwanenburg, D.
Loss, D. M. Zumbühl, and F. R. Braakman, Phys. Rev. Res. 3,
013081 (2021).

[64] R. Delagrange, R. Weil, A. Kasumov, M. Ferrier, H. Bouchiat,
and R. Deblock, Physica B: Condens. Matter 536, 211 (2018).

[65] D. Wang, L. Kong, P. Fan, H. Chen, S. Zhu, W. Liu, L. Cao, Y.
Sun, S. Du, J. Schneeloch, R. Zhong, G. Gu, L. Fu, H. Ding,
and H.-J. Gao, Science 362, 333 (2018).

[66] T. Machida, Y. Sun, S. Pyon, S. Takeda, Y. Kohsaka, T.
Hanaguri, T. Sasagawa, and T. Tamegai, Nat. Mater. 18, 811
(2019).

[67] F. Peñaranda, R. Aguado, P. San-Jose, and E. Prada, Phys. Rev.
Res. 2, 023171 (2020).

[68] J. Danon and Y. V. Nazarov, Phys. Rev. B 80, 041301(R) (2009).
[69] M. Žonda, V. Pokorný, V. Janiš, and T. Novotný, Phys. Rev. B

93, 024523 (2016).
[70] Y. Liu, Y. Zadorozhny, M. M. Rosario, B. Y. Rock, P. T.

Carrigan, and H. Wang, Science 294, 2332 (2001).
[71] N. C. Koshnick, H. Bluhm, M. E. Huber, and K. A. Moler,

Science 318, 1440 (2007).

134505-7

https://doi.org/10.1103/PhysRevLett.126.047701
https://doi.org/10.1126/science.abf1513
https://doi.org/10.1103/PhysRevLett.125.116803
https://doi.org/10.1038/nature05018
https://doi.org/10.1038/nnano.2006.54
https://doi.org/10.1021/nl071152w
https://doi.org/10.1209/0295-5075/109/40010
https://doi.org/10.1103/PhysRevLett.119.046801
http://arxiv.org/abs/arXiv:1809.06370
https://doi.org/10.1103/PhysRevLett.123.117001
https://doi.org/10.1103/PhysRevB.101.014512
https://doi.org/10.1088/2058-7058/14/1/28
https://doi.org/10.1103/PhysRevLett.89.256801
https://doi.org/10.1103/PhysRevB.70.020502
https://doi.org/10.1103/PhysRevB.79.224521
https://doi.org/10.1103/PhysRevB.91.045441
https://doi.org/10.1103/PhysRevB.68.035105
https://doi.org/10.1103/PhysRevB.72.174502
https://doi.org/10.1103/PhysRevB.77.024517
https://doi.org/10.1103/PhysRevB.79.161407
https://doi.org/10.1103/PhysRevB.91.241401
https://doi.org/10.1103/PhysRevLett.109.186802
https://doi.org/10.1143/JPSJ.62.3181
https://doi.org/10.1103/PhysRevB.57.5225
https://doi.org/10.1143/JPSJ.69.1812
https://doi.org/10.1088/0953-8984/19/48/486211
https://doi.org/10.1088/0953-8984/24/38/385303
https://doi.org/10.1103/PhysRevB.103.035419
https://doi.org/10.1103/PhysRevB.105.205412
https://doi.org/10.1088/1361-648X/aafd6a
https://doi.org/10.1103/PhysRevB.105.045418
https://doi.org/10.1103/PhysRev.124.41
http://arxiv.org/abs/arXiv:2207.07606
https://doi.org/10.1103/PhysRevB.95.195114
https://doi.org/10.1038/nnano.2010.173
https://doi.org/10.1143/JPSJ.61.3239
https://doi.org/10.1103/PhysRevLett.82.2788
https://doi.org/10.1103/PhysRevB.87.014509
https://doi.org/10.1103/PhysRevB.92.235422
https://doi.org/10.7498/aps.21.75
https://doi.org/10.1143/PTP.40.435
https://doi.org/10.1103/PhysRevB.67.041301
https://doi.org/10.1103/PhysRevLett.91.266802
https://doi.org/10.1103/PhysRevLett.40.416
https://doi.org/10.1103/PhysRevResearch.2.012065
https://doi.org/10.1103/PhysRevLett.93.047002
https://doi.org/10.1103/PhysRevB.49.11040
https://doi.org/10.1038/34373
https://doi.org/10.1103/PhysRevB.98.075404
https://doi.org/10.1103/PhysRevB.77.045434
https://doi.org/10.1103/PhysRevB.98.165403
https://doi.org/10.1103/PhysRevResearch.3.013081
https://doi.org/10.1016/j.physb.2017.09.034
https://doi.org/10.1126/science.aao1797
https://doi.org/10.1038/s41563-019-0397-1
https://doi.org/10.1103/PhysRevResearch.2.023171
https://doi.org/10.1103/PhysRevB.80.041301
https://doi.org/10.1103/PhysRevB.93.024523
https://doi.org/10.1126/science.1066144
https://doi.org/10.1126/science.1148758

