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Nematic single-component superconductivity and loop-current
order from pair-density wave instability
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We investigate the nematic and loop-current-type orders that may arise as vestigial precursor phases in a model
with an underlying pair-density wave (PDW) instability. We discuss how such a vestigial phase gives rise to a
highly anisotropic stiffness for a coexisting single-component superconductor with low intrinsic stiffness, as is
the case for the underdoped cuprate superconductors. Next, focusing on a regime with a mean-field PDW ground
state with loop-current and nematic xy (B2g) order, we find a preemptive transition into low- and high-temperature
vestigial phases with loop-current and nematic order corresponding to xy (B2g) and x2 − y2 (B1g) symmetry,
respectively. Near the transition between the two phases, a state of soft nematic order emerges for which we
expect that the nematic director is readily pinned away from the high-symmetry directions in the presence of
an external field. Results are discussed in relation to findings in the cuprates, especially to the recently inferred
highly anisotropic superconducting fluctuations [Wårdh et al., arXiv:2203.06769], giving additional evidence for
an underlying ubiquitous PDW instability in these materials.

DOI: 10.1103/PhysRevB.107.134504

I. INTRODUCTION

One major challenge in the study of cuprate high-
temperature superconductors is to unravel the intricate inter-
play of “intertwined” electronics orders [1], and their relation
to the pseudogap. Spin and charge orders have been shown to
be ubiquitous phenomena in these compounds [2–5], as well
as nematic order [6–10]. Another pertinent electronic order
is the spatially modulated superconducting state, known as
a pair-density wave (PDW) [11,12], which is conceptually
related to the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)-type
[13,14] type states. The PDW came to prominence in the
cuprate context to explain the anomalous suppression of su-
perconductivity at 1/8 doping in the striped superconductor
La2−xBaxCuO4 [2,15–18]. More recently, to explain the ap-
parent residual superconductivity in the pseudogap, in the
form of a prevalent diamagnetic response [19], together with
the omnipresent charge-density wave (CDW), PDW order has
also been suggested as the “mother state” of the pseudogap
itself [20,21]. Related to this, PDW has been discussed in
the context of Fermi arcs [22], and the anomalous quantum
oscillations at large magnetic fields [23–25]. More direct
signatures have been reported based on scanning tunnel-
ing spectroscopy [26,27]. Furthermore, numerous evidence
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points towards a time-reversal-symmetry breaking intraunit
cell magnetic order present in the pseudogap phase [28–33].
This has spurred the suggestion of various kinds of mag-
netoelectric (ME) orders, specifically so-called loop-current
orders [34–38], which break time-reversal symmetry and par-
ity but preserve their product.

Another recent theme in the physics of strongly correlated
materials and the cuprates is that of vestigial orders, which
refers to the emergence of a secondary order parameter that
breaks a subgroup of symmetries of a multicomponent order
parameter at a critical temperature that may surpass that of the
underlying order. Such discrete broken symmetry has been
discussed both in the context of nematic order [39–41] and
broken time-reversal symmetry [42–45], as well as partially
broken continuous symmetry phases of multicomponent su-
perconductors [46].

Vestigial order is natural to appeal to as a source for
intracell order when the multicomponent order is related to
the point group of the lattice and has been studied as a
source of nematicity, with evidence in iron-based, topologi-
cal, and cuprate superconductors [41,47–50]. In hole-doped
Ba1−xKxFe2As2 a recent study shows evidence for a state
with incoherent pairing but broken time-reversal symmetry
consistent with a vestigial state of a multiband superconduc-
tor [51]. In the cuprates, vestigial-nematic order has been
suggested to possibly arise both from spin and charge order
[52,53], as well as PDW [54]. It has also been shown that
loop-current orders can arise as a vestigial order that preempts
a magnetoelectric PDW (ME-PDW) state [54]. In this paper
we explore the occurrence and competition between various
PDW-vestigial phases, motivated both by an explicit model
for stabilizing PDW order based on pair-hopping interactions
[55,56] (see also [57]), and by recent experiments on strongly
nematic phase fluctuations in a cuprate superconductor [58].
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FIG. 1. Possible interpretation of cuprate phase diagram with a
PDW as the mean-field pseudogap state setting up vestigial nematic
as well as loop-current (LC) order. Near and above Tc in the under-
doped part of the superconducting (SC) dome, this is consistent with
the anisotropic superconducting fluctuations seen in LSCO [58,61],
due to the closeness of a PDW instability and presence of nematic
order. The inset shows the possibility of splitting the vestigial ne-
matic phase into low- and high-temperature phases of xy(B2g) and
x2 − y2(B1g) nematic order, respectively, due to an underlying mag-
netoelectric PDW (ME-PDW).

First, we show how the relation between PDW and homo-
geneous superconductivity naturally generates an anisotropic
superconducting state in a vestigial nematic PDW phase. In
turn, this anisotropy can become strongly enhanced due to low
phase stiffness [59,60], which in itself may also be related
to a proximate PDW instability [55,56]. Transport measure-
ments in La2−xSrxCuO4 (LSCO) have shown evidence of an
electronic nematic order [61]. These measurements indicate
highly anisotropic superconducting fluctuations near the un-
derdoped critical point, with only a small anisotropy of the
normal electrons [58]. This is consistent with the collective
dynamics of the superconductor being highly susceptible to
nematic order, along the lines presented in the present paper.
A caricature of a phase diagram based on such a scenario, with
interplay between superconductivity and vestigial PDW order,
is presented in Fig. 1.

In tetragonal symmetry, loop-current (LC) order is as-
sociated with a vector �l = (lx, ly), transforming in the Eu

representation. In the second part of the paper we will explore
a scenario with an underlying ME-PDW state with LC order,
which is invariant under reflection in the crystallographic di-
agonal xy (lx = ly), with subleading xy (or B2g) nematic order
lxly. This phase is naturally preempted by a phase without
the long-range PDW order but with vestigial LC and nematic
order [54], which we refer to as an xy LC phase. We show that
this preemptive transition can be split further into low- and
high-temperature phases. The low-temperature phase coin-
cides with the xy LC phase, while the high-temperature phase
breaks the tetragonal symmetry differently, by developing
LC order which is invariant under reflection in the crystallo-
graphic axis lx �= 0, ly = 0, i.e., x2 − y2 (or B1g) nematic order
l2
x − l2

y . We refer to this as an x2 − y2 LC phase. Besides giv-
ing a richer phase diagram with both B1g and B2g symmetric
orders, arising from the same underlying ME-PDW state, we
find near the first-order transition between the x2 − y2 and xy
LC phases a state with approximate rotational symmetry in �l .

This yields a very soft nematic order that is highly susceptible
to external fields that may pin the nematic director away from
the high-symmetry directions.

Outline

This paper is composed of two main results parts and
is outlined as follows. In Sec. II the considered model is
discussed. This model is based on the phenomenology of an
instability to a PDW state developed in [55,56], but shares fea-
tures with other discussed models for a PDW state [21,57,62–
64]. In the first results part, Sec. III, the model is decomposed
into possible vestigial order parameters which is then used
to develop an effective model of a uniform, but anisotropic,
superconducting state, Eq. (18). In Sec. III B we discuss how
the proximity to a PDW instability, with concomitant vestigial
nematic order, can give rise to a very large stiffness anisotropy
of the superconductor.

In the second results part, Sec. IV C, we explore the pos-
sible vestigial phases to a PDW state, implicitly assumed
in Sec. III. Here we focus on a parameter regime where
the xy ME-PDW is stable, exploring its potential vestigial
phases.

II. MODEL

A PDW state denotes a state where paired electrons
have finite momenta �Q ∼ 〈c↓,kc↑,−k+Q〉. We consider the
situation when a PDW state (with a spatially modulated su-
perconducting order) is near degenerate with a homogeneous
superconducting state. The partition function takes the form
Z = ∫

D� e−S with

S = 1

T

∫
�x

r0|�(�x)|2 + �∗(�x)ε( �D)�(�x)

+ 1

2T

∫
�x1,�x2
�x3,�x4

U (�x1, �x2, �x3, �x4)�(�x1)�∗(�x2)�(�x3)�∗(�x4),

(1)

where �D = −i �∇ − 2e �A. The action S is given by the most
general [two-dimensional (2D)] Ginzburg-Landau expression,
with interaction U , to fourth order in superconducting order,
which respects U (1) gauge symmetry, translational symmetry,
and the point-group symmetry D4h. In order to describe an
instability towards PDW order the superconducting “disper-
sion” ε( �p) should develop minima at finite momenta. We
consider a general dispersion to sixth order in momenta �p =
(px, py),

ε( �p) = ap2 + bp2
x p2

y + c(p2)2 + d (p2)3 + e
(
p2

x p4
y + p2

y p4
x

)
,

(2)

and to ensure stability we take d > 0, e > −4d . This
renormalized dispersion naturally occur in models with pair-
hopping interactions [55,56], but can also be considered
a phenomenological model for coexisting zero- and finite-
momentum superconductivity.

The instability to PDW order can occur in two different
ways. The first, as shown in Figs. 2(a)–2(c), is a continuous
evolution of the pairing momenta from p = 0 to finite p,
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FIG. 2. The dispersion (2) shown for various a and c, and d > 0, e = 0, b > 0. Left: Dispersion along the crystal axis, x, (black), and along
the diagonal (red). [(a)–(c)] Successive decrease of a for c > 0. A finite q develops continuously from zero. [(d)–(f)] Successive decrease of a
for c < 0. (d) For big enough a, there is only a stable state at q = 0; (e) by decreasing a a metastable q �= 0 state develops, which eventually
becomes (f) the new stable state. Right: The corresponding PDW ordering vectors.

parametrized by a going from positive to negative for c > 0.
When a = 0 the dispersion of the homogeneous supercon-
ductor becomes flat, constituting a Lifshitz point, where the
stiffness to fluctuations goes to zero. The second, occurring
when c < 0 and shown in Figs. 2(d)–2(f), is a discontinuous
jump in p through the development of a distinct metastable
state at finite momenta p �= 0, which becomes stable when a is
decreased sufficiently. The dispersion (2) allows local minima
along both the axes and the diagonals. In general eight finite
momentum vectors are allowed, ±Q1,±Q2,±Q1, and ±Q2
given by Q1 = Q(1, 0), Q2 = Q(0, 1), Q1 = Q(1, 1)/

√
2,

and Q2 = Q(−1, 1)/
√

2.
In order to analyze the fluctuations near the onset of these

finite momentum orders we will go on reexpressing Eq. (1)
by expanding in the various finite momentum superconduct-
ing order parameters. We will, however, leave the explicit
form of the fourth-order term U in Eq. (1) unspecified and
instead infer the expansion by considering all symmetry-
allowed terms. Before writing down the expression for the
expanded action, we first discuss formally what terms are
allowed.

A. Symmetry and order parameters

We consider the tetragonal point-group symmetry D4h gen-
erated by {C4, σv, σh}, where C4 is a fourfold rotation about
the z axis, σv reflection in the xz(yz) plane, and σh reflection
in the xy plane. The different momenta of the PDW order lead
to eight different complex order parameters, and one ordinary
homogeneous superconducting field �0. The latter is assumed
to be a single-component complex field, transforming in a
one-dimensional representation of the point group, e.g., a
dx2−y2 wave order. The set of order parameters, �, is divided
into three sectors, A, B, and SC, � = �A ⊕ �B ⊕ �0. �A =
{�Q1 ,�−Q1 ,�Q2 ,�−Q2} and �B = {�Q1

,�−Q1
,�Q2

,�−Q2
}

contain the PDW fields and do not transform into each other
under D4h, but their form is related by a 45◦ twist. These are
denoted by black and red in Fig. 2. Besides the point-group
symmetry, the action will be invariant under U (1) gauge sym-
metry, translational symmetry, and time-reversal symmetry.
Under these symmetries the order parameters transform as

�Q
U (1)−−→ �Qeiθ , �Q

T−→ �QeiT·Q, and �Q
T−→ �∗

−Q.

1. Composite order parameters

The action will be made up of all possible products of �

that transform trivially under the full symmetry group U (1) ⊗
T ⊗ T ⊗ D4h. These will be second-order terms, �∗ ⊗ �,
and fourth-order terms, �∗ ⊗ � ⊗ �∗ ⊗ �. (Terms including
derivatives are discussed in Sec. II A 2.) The possible vesti-
gial phases will be described by a set of order parameters,
{φ1, φ2, . . . }, which are to second order in the primary fields
φ ∼ �∗ ⊗ �, and transforming in nontrivial irreducible repre-
sentations. We reexpress the action in these composite order
parameters, integrating out the PDW fields, �. The new action
will thus be made up of products of these composite order
parameters, that transform trivially under the full symmetry
group. The breaking of symmetries and emergence of vesti-
gial phases is then understood in the language of a Landau
phase transition L = aφ2 + bφ4 where the order parameter φ

develops a nonzero expectation value for a < 0, thus breaking
the corresponding symmetry of the system.

We are especially interested in composite orders
that only break the point-group symmetries, i.e.,
nonsuperconducting intraunit cell orders. There are
nine bilinears that transform trivially under U (1) ⊗ T ,
which we write as �(2) = �

(2)
A ⊕ �

(2)
B ⊕ |�0|2, where

�
(2)
A = {|�Q1 |2, |�−Q1 |2, |�Q2 |2, |�−Q2 |2} and �

(2)
B =

{|�Q1
|2, |�−Q1

|2, |�Q2
|2, |�−Q2

|2}. Again, �
(2)
A and �

(2)
B

do not mix under D4h and can be decomposed further into
their irreducible representations, �

(2)
A = A1g ⊕ B1g ⊕ Eu and

�
(2)
B = A1g ⊕ B2g ⊕ Eu, which are listed in Table I.

The decomposition into bilinears implies the existence of
two nematic order parameters, transforming as B1g and B2g, as
well as two polar vector orders, transforming as Eu. The polar-
vector order li = |�Qi |2 − |�−Qi |2 is odd under parity and has
the symmetry of a toroidal moment, which shares symmetry
with the so-called loop-current (LC) order, and we will refer
to it as such. We will refer to an ME-PDW as a PDW with
finite expectation value on LC order.

2. Derivative terms

Derivative terms arise by forming products between �D =
(Dx, Dy) (transforming as Eu) and the bilinears �(2). For �0,
transforming as A1g, no linear derivative terms can arise to
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TABLE I. Possible irreducible representations of the set
of composite orders (bilinears) �(2) = �

(2)
A ⊕ �

(2)
B ⊕ |�0|2,

where �
(2)
A = {|�Q1|2 , |�−Q1 |2, |�Q2 |2, |�−Q2 |2} and �

(2)
B =

{|�Q1
|2, |�−Q1

|2, |�Q2
|2, |�−Q2

|2}.

Irreducible
Bilinears representations

|�0|2 A1g, z2

ψB : |�Q1 |2 + |�−Q1 |2 + |�Q2 |2 + |�−Q2 |2 A1g, x2+y2

Nx2−y2 : |�Q1 |2 + |�−Q1 |2 − |�Q2 |2 − |�−Q2 |2 B1g, x2−y2

�lA : [|�Q1 |2 − |�−Q1 |2, |�Q2 |2 − |�−Q2 |2] Eu, (x, y)

ψA : |�Q1
|2 + |�−Q1

|2 + |�Q2
|2 + |�−Q2

|2 A1g, x2+y2

Nxy : |�Q1
|2 + |�−Q1

|2 − |�Q2
|2 − |�−Q2

|2 B2g, xy

�lB :

[
|�Q1

|2−|�−Q1
|2−|�Q2

|2+|�−Q2
|2

√
2

,

|�Q1
|2−|�−Q1

|2+|�Q2
|2−|�−Q2

|2
√

2

]
Eu, (x, y)

any order in �0. Mixing with PDW bilinears, transforming as
2A1g ⊕ B1g ⊕ B2g ⊕ 2Eu, linear derivatives are allowed both
to second and fourth order in fields. But, terms linear in
derivatives imply an instability of the PDW momenta. Thus,
expanding around stable local minima of Eq. (2) will to first
nonvanishing order generate second-order terms in derivative
and fields.

We do have the possibility of including derivative terms
that are to fourth order in fields. However, usually these terms
are irrelevant compared to derivative terms arising to second
order in fields. We will assume this is still true for the PDW

fields, for which these terms will be neglected. However,
near the Lifshitz point, where the dispersion for �0 becomes
flat, derivative terms acting on �0, occurring to fourth order
in fields, will be important to include. To second order in
derivatives and to fourth order in fields, we can form products
between an A1g derivative term and the A1g bilinears, or the
B1g (B2g) derivative term with the B1g (B2g) bilinears. The first
term contributes to the isotropic stiffness and is of no particu-
lar interest (it can be included in the overall renormalization);
the second type of term will, however, generate an anisotropic
stiffness in the presence of (vestigial) nematic order from the
PDW fields.

Terms linear in derivative do occur by coupling to the
Eu bilinears. This coupling will shift the zero momentum
�0 in the presence of LC. But as long as the dispersion is
well approximated with a parabola, this shift will not change
the dispersion around the stable point, and the response will
remain isotropic. Therefore, we will neglect these terms even
in the presence of LC order.

B. Expanded action

We find the expanded action (1) in terms of the irreducible
representation discussed above as S = SPDW + S0 + SPDW−0,
where S0 contains the homogeneous superconducting field

S0 =
∫

�x
κ| �D�0|2 + r0|�0|2 + u

2
|�0|4, (3)

SPDW the PDW fields, and SPDW−0 their interaction. SPDW

can be divided further, SPDW = SA + SB + SA−B, one for each
sector, respectively, which will take the same form, but with
independent parameters:

SA =
∫

�x

∑
q=±Q1,2

κ1| �D�q|2 + κ2

[ ∑
q=±Q1

(|Dx�q|2−|Dy�q|2) −
∑

q=±Q2

(|Dx�q|2−|Dy�q|2)

]
+

∑
q=±Q1,2

r|�q|2 + u0

2
|�q|4

+ u1

2
[|�Q1 |2 + |�−Q1 |2 − |�Q2 |2 − |�−Q2 |2]2 + u2

2
[(|�Q1 |2 − |�−Q1 |2)2 + (|�Q2 |2 − |�−Q2 |2)2],

SA−B =
∫

�x
v0

[ ∑
q=±Q1,2

|�q|2
][ ∑

q′=±Q1,2

|�q′ |2
]

+ v1√
2

(|�Q1 |2−|�−Q1 |2, |�Q2 |2−|�−Q2 |2)

× (|�Q1
|2−|�−Q1

|2−|�Q2
|2+|�−Q2

|2, |�Q1
|2−|�−Q1

|2+|�Q2
|2−|�−Q2

|2),

SPDW−0 =
∫

�x
γ0|�0|2

[ ∑
q=±Q1,2

|�q|2
]

+ γ1(|Dx�0|2 − |Dy�0|2)(|�Q1 |2 + |�−Q1 |2 − |�Q2 |2 − |�−Q2 |2), (4)

where we absorbed a factor 1/T in all coefficients. As stated
previously, the coefficients could be traced back to the exact
form of the full Ginzburg-Landau model, Eq. (1), but we will
consider them as independent parameters [65].

SB has the same form as SA with Q1,2 → Q1,2 and x, y →
x, y where x = x+y√

2
, y = −x+y√

2
. When in need of specifying

both sectors we will append the subscript A or B to r, u0, u1,
u2, γ0, and γ1. The second-order term coefficients r, r0 are as-
sumed to be proportional to the temperature T , changing sign
at the mean-field transition temperature r ∝ T − TPDW, r0 ∝
T − TSC.

The interaction of the two sectors SA−B occurs in fourth-
order terms and only involves the A1g and Eu representation
of both sectors. Throughout the text, we will only explicitly
assume a stable A sector, meaning that Eq. (2) only sup-
ports local minima of momenta along the axis, for which
SB and SA−B drop out. However, we will reinsert the B
sector when the result is directly generalizable. Discussion
regarding the inclusion of both the A and B sectors is
found in Appendix E. As mentioned above, we have left
out terms consisting of bilinears that transform nontriv-
ially under U (1): �2

0, (�Q1�−Q1 ± �Q2�−Q2 ), (�Q1
�−Q1
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± �Q2
�−Q2

). These secondary order parameters refer to so-
called 4e superconducting order [66], which we neglect in
subsequent analysis.

III. EFFECTIVE ANISOTROPIC SUPERCONDUCTOR

Now we will discuss the fate of the supercon-
ducting order in the presence of PDW vestigial or-
der without any specific assumptions about the under-
lying instability or parameter regime. (Exploration of
the ME-PDW vestigial phases is left for Sec. IV.)
In the absence of long-range PDW order, 〈�Q〉 = 0,
it is straightforward to integrate the PDW fields out, leaving
an action only dependent on the vestigial order parameters and
SC �0.

We begin by promoting the secondary order parame-
ters to independent fields, which we do by decoupling the
fourth-order terms in Eqs. (4) using the Hubbard-Stratonovich

transformation,

e− ∫�x �∗ M
2 � =

∫
D� e

∫
�x �∗ M−1

2 �−�∗·�. (5)

Here � is a vector of the bilinears listed in Table I and �

the corresponding vector of the auxiliary field to decouple
that bilinear. The matrix M is inferred from Eqs. (4) and
contains the coupling constants. We will assume only a stable
A sector, yielding a diagonal M. We denote the auxiliary fields
with ψ, Nx2−y2 , �l , dropping the index A, corresponding to the
bilinear they decouple (see Table I). Using this transformation,
we express the partition function as

Z =
∫

D{�Q}D�0D{ψ, Nx2−y2 , �l} e−Seff , (6)

with the effective action given by

Seff({�Q},�0, ψ, Nx2−y2 , �l )

=
∫

�k
χ−1

0 (k)|�0|2 + u

2
|�0|4 + χ−1

x (�k)
(|�Q1 |2 + |�−Q1 |2

)+ χ−1
y (�k)

(|�Q2 |2 + |�−Q2 |2
)

+
∫

�x
(ψ + γ0|�0|2)

(|�Q1 |2 + |�−Q1 |2 + |�Q2 |2 + |�−Q2 |2
)+ lx

(|�Q1 |2 − |�−Q1 |2
)+ ly

(|�Q2 |2 − |�−Q2 |2
)

+
∫

�x

(
Nx2−y2 + γ1(|Dx�0|2 − |Dy�0|2)

)(|�Q1 |2 + |�−Q1 |2 − |�Q2 |2 − |�−Q2 |2
)−

(
ψ2

2u0
+

N2
x2−y2

2u1
+ �l2

2u2

)
, (7)

where χ−1
0 = r0 + κ (k2

x + k2
y ) and χ−1

x,y = r + κ1(k2
x + k2

y ) ±
κ2(k2

x − k2
y ). We have left out the gauge field �A (absorbing it

in the phase gradient), considering an extreme type-II super-
conductor, for which the electromagnetic field energy can be
ignored. We will treat ψ, Nx2−y2 , �l on a mean-field level and
only keep the uniform component (i.e., ψ (�q) = ψ (2π )dδ(�q),
etc.). The composite field ψ will always have a nonzero and
positive expectation value since it describes the fluctuations of
the PDW state,

ψ

u0
=
∫

�x
〈|�Q1 |2 + |�−Q1 |2 + |�Q2 |2 + |�−Q2 |2〉, (8)

and is, therefore, not an order parameter. Similarly, developing
a nonzero expectation value on any of the vestigial-order
parameters implies

Nx2−y2

u1
=
∫

�x
〈|�Q1 |2 + |�−Q1 |2 − |�Q2 |2 − |�−Q2 |2〉,

lx
u2

=
∫

�x
〈|�Q1 |2 − |�−Q1 |2〉,

ly
u2

=
∫

�x
〈|�Q2 |2 − |�−Q2 |2〉, (9)

respectively. Even in absence of PDW order we find nonequiv-
alent uniform static susceptibilities once the vestigial order

parameters Nx2−y2 , �l are finite:

χQ1 (0) = 1

r′ + Nx2−y2 + lx
, χ−Q1 (0) = 1

r′ + Nx2−y2 − lx
,

χQ2 (0) = 1

r′ − Nx2−y2 + ly
, χ−Q2 (0) = 1

r′ − Nx2−y2 − ly
,

(10)

where r′ = r + γ0|�0|2 + ψ [see Eqs. (24) for the full static
susceptibilities]. Without vestigial ordering, the transition
temperature would be given by r′ = 0. Thus we see a splitting
of the transition into the ordered PDW state and that the
preemptive transition enhances the transition temperature.

A. Superconducting action

The effective action (7) can be written in the form

Seff({�Q},�0, ψ, Nx2−y2 , �l )

= −V

(
ψ2

2u0
+

N2
x2−y2

2u1
+ �l2

2u2

)
+
∫

k
χ−1

0 (k)|�0|2

+
∫

r

u

2
|�0|4 +

∫
k
[�Q1�−Q1�Q2�−Q2 ]∗i

× G−1
i [�Q1�−Q1�Q2�−Q2 ]i, (11)

where V is the volume, and we have moved to momentum
representation.
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The kernel G is given by

G−1
1 (k) = χ−1

x (k) + ψ + Nx2−y2 + lx + �x,

G−1
2 (k) = χ−1

x (k) + ψ + Nx2−y2 − lx + �x,

G−1
3 (k) = χ−1

y (k) + ψ − Nx2−y2 + ly + �y,

G−1
4 (k) = χ−1

y (k) + ψ − Nx2−y2 − ly + �y. (12)

Integrating over the PDW fields in Eq. (7) we arrive at the
effective action for the vestigial and homogeneous supercon-
ducting fields alone:

e−Seff (�0,ψ,Nx2−y2 ,�l ) =
∫

D{�Q}e−Seff ({�Q},�0,ψ,Nx2−y2 ,�l ). (13)

The new action takes the form

Seff(�0, ψ, Nx2−y2 , �l )

= −V

(
ψ2

2u0
+

N2
x2−y2

2u1
+ �l2

2u2

)

+
∫

�k
χ−1

0 (�k)|�0|2 +
∫

�x

u

2
|�0|4

+ V
∫

�k
ln
[(

(χ−1
x (�k) + ψ + Nx2−y2 + �x )2 − l2

x

)
× (

(χ−1
y (�k) + ψ − Nx2−y2 + �y)2 − l2

y

)]
, (14)

where

�x,y = γ0

V

∫
�k
|�0(�k)|2 ± γ1

V

∫
�k

(
k2

x − k2
y

)|�0(�k)|2 (15)

are functionals of the superconducting field. We expand the
action in ψ , Nx2−y2 , �l , and �0 around their mean-field values
[see Eqs. (23)],

Seff(�0, ψ, Nx2−y2 , �l ) ≈ S0 + SSC(�0), (16)

where S0 = Seff|MF is the action at the mean-field solution, and
SSC the effective superconducting action. Above the supercon-
ducting transition temperature (〈�0〉 = 0) we find

S0/V = −
(

ψ2

2u0
+

N2
x2−y2

2u1
+ �l2

2u2

)

+
∫

�k
ln
[(

(χ−1
x (�k) + ψ + Nx2−y2 )2 − l2

x

)
× (

(χ−1
y (�k) + ψ − Nx2−y2 )2 − l2

y

)]
. (17)

In real space the effective superconducting action takes the
form

SSC(�0) =
∫

�x
r′

0|�0(�x)|2 +
(

1

2mp

)
i j

(Di�0(�x))(Dj�0(�x))∗,

(
1

2mp

)
i j

= δi j

2mp,0
+ Si j, S =

[
γ1,A

u1,A
Nx2−y2

γ1,B

u1,B
Nxy

γ1,B

u1,B
Nxy − γ1,A

u1,A
Nx2−y2

]
.

(18)

Here we have reintroduced both the A and B sectors and used
the mean-field equations (23) to identify the order parameters.
(The mean-field equations for the two primary nematic orders

remain unaltered even in the presence of both A and B sectors;
see Appendix E.)

The superconducting effective action (18) is expressed in
terms of an anisotropic pair mass [with κ = (2mp,0)−1], in-
duced by the nematic order parameters through the trace-less
symmetric matrix S. (Here we have only explicitly included
the primary nematic fields, that are linear in the PDW fluctu-
ations |�Q|2.) This anisotropic pair mass is equivalent to an
anisotropic stiffness, that may be observed, for example, as an
anisotropy of the in-plane penetration depth in the supercon-
ducting state, or through an anisotropy of the near-Tc normal
state conductivity due to superconducting fluctuations [58].

The coupling r′
0 = r0 + γ0,A

u0,A
ψA + γ0,A

u0,B
ψB is the renor-

malized inverse static susceptibility. Since �0 is single
component, and its amplitude is rotationally symmetric, it
cannot couple directly to the nematic order, as seen from
the fact that only the symmetric PDW fluctuations ψA/B con-
tribute. As discussed in Sec. II A 2, expression (18) is expected
to hold even in the presence of LC order, although the super-
conductor would acquire a small finite momentum.

B. Enhancement of anisotropic superconducting fluctuations
near PDW instability

In Eqs. (18) we have found an effective superconducting
action, renormalized by the PDW fluctuations and the possible
vestigial nematic order parameters Nxy and Nx2−y2 . Note that
the superconductor is anisotropic in its dynamics, and, at this
level, the static order parameter is still isotropic. However, in
the ordered SC state, the nematic order will affect the order
parameter. In assuming d-wave superconductivity, there is
a coupling �d�

∗
s Nx2−y2 + H.c. (not considered here), which

will induce a subleading s-wave component, effectively shift-
ing the gap nodes. Nevertheless, as we argue below, for a
superconductor with low phase stiffness, the effect of even a
weak nematic field on the fluctuations may be dramatic, even
though the effect on the static gap may be small.

As a digression, we note that this scenario of the effect of
vestigial nematic order from superconducting fluctuations on
the superconductor is similar in spirit but also different from
electron-doped Bi2Se3. The latter has a multicomponent SC
order parameter, which may itself form a vestigial nematic
phase, which in turn would also affect the dynamics in the
normal state [67]. In our case, instead, it is the finite momen-
tum (PDW) superconducting components that give rise to the
vestigial nematic order.

One way to probe the anisotropic stiffness of the super-
conductor is to study the contribution to the conductivity
from superconducting fluctuations above Tc, the paraconduc-
tivity. At Tc, this contribution will diverge, reflecting the
lifetime of Cooper pairs, and we expect to see a strong sig-
nature of the nematic order near Tc. As derived in [58], the
Aslamazov-Larkin expression for the in-plane paraconductiv-
ity of a layered superconductor (interlayer distance d) with
anisotropic stiffness is given by

σ p = e2

16h̄d

1

(T/Tc) − 1

√
det(mp)m−1

p

=
princ.

e2

16h̄d

1

(T/Tc) − 1

[√
mp,b/mp,a 0

0
√

mp,a/mp,b

]
, (19)
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where a, b refer to the principal axes of the conductivity, such
that the last expression holds in the principal frame. Given
a nematic distortion, in the form of Eqs. (18), the pair-mass
quotient is given by

mp,b

mp,a
=

1/2mp,0 +
√

S2
xx + S2

xy

1/2mp,0 −
√

S2
xx + S2

xy

, (20)

where the angle of the a axis (corresponding to the axis of
highest conductivity) to the crystal x axis is given by

θ = arctan

√
S2

xx + S2
xy − Sxx

Sxy
. (21)

Thus, in the presence of both Nxy (i.e., Sxy �= 0) and Nx2−y2

(i.e., Sxx �= 0) the principal axes of conductivity will not be
aligned with the symmetry axes of the crystal, and will rotate
if the relative amplitude of the two fields changes with tem-
perature.

There is, in fact, evidence for highly anisotropic super-
conducting fluctuations in transport measurements done on
thin films of underdoped LSCO [58,61,68], consistent with
a high pair-mass ratio mp,b/mp,a. This ratio increases as the
underdoped critical point is approached, while the quotient of
normal masses mb/ma remains near 1 [58]. The crystals show
very weak signs of lattice distortion, remaining effectively
tetragonal, which is in line with the development of electronic
nematicity coupling directly to the superconductor, and not
through strain [61,68], consistent with the anisotropic super-
conductor described in Eqs. (18). In addition, the principal
axes of the paraconductivity (seen close to Tc) and the normal
conductivity are in general not aligned with each other, or with
the crystal axes, which is consistent with the presence of both
B1g and B2b nematic order.

Nevertheless, the analysis leading up to Eqs. (18) does not
by itself explain why the superconducting stiffness anisotropy
would be enhanced compared to other observables that cou-
ple to nematicity, such as the normal electron conductivity,
orthorhombic lattice distortions, and the superconducting gap
(as discussed above). However, a natural explanation for this
is evident in the expression for the pair-mass ratio (20): if
the isotropic pair mass mp,0 is sufficiently large (i.e., stiffness
small), the quotient mp,b/mp,a will become large even for
a small nematic tensor S. Without an explicit microscopic
model of how the nematic order couples to normal and paired
electrons this is only a qualitative statement, but that the
phase stiffness is small in the underdoped cuprates is well
established [59].

In fact, proximity to a PDW instability provides a unified
conceptual framework in which both the low stiffness and
the more recently observed nematic distortion thereof can be
understood. As discussed in Sec. II, and more detailed in [56],
such an instability is expected to influence also the uniform
component by deforming the spectrum of superconducting
fluctuations giving a large effective pair mass. In other words,
the availability of low-energy finite momentum pair excita-
tions suppresses the stiffness to real-space deformations. Also,
as we will further elucidate in the next section, the fluctuations
of a (metastable) PDW state can generate vestigial nematic

(a)
Cu

O

(b)

Q1

Q2Q2 Q1

−Q2

FIG. 3. (a) A loop-current state with microscopic circulating cur-
rents suggested to account for the observed time-reversal symmetry
seen in cuprates (the so-called �2 state) [28,35]. The LC order is
shown as a blue arrow. (b) The corresponding xy ME-PDW state.
Black arrows correspond to stable axial PDW components, referred
to as the A sector, while red arrows show an alternative configuration
for stable diagonal PDW components (B sector).

order that acts to deform the stiffness. Thus, approaching
the finite momentum instability provides a mechanism for
generating highly anisotropic superconducting fluctuations,
both through creating a low phase stiffness, yielding a high
susceptibility towards an anisotropic distortion, as well as pro-
viding the distortion itself. This scenario is depicted in Fig. 1,
where the pseudogap is made up of vestigial phases set up
by an underlying PDW state (possibly ME-PDW, as discussed
in the following sections), with anisotropic superconducting
fluctuations.

IV. INTERTWINED NEMATIC AND LOOP-CURRENT
ORDERS IN THE VESTIGIAL ME-PDW PHASE

In this section we will investigate the various possible
vestigial phases from an action of the form (4). Specifically
we are interested in the nature of generation of the nematic
order coupling to the dynamic response of the homogeneous
superconductor through the action (18).

The ME-PDW state argued to be consistent with
polarized angle-resolved photoemission spectroscopy
measurements [28] has xy LC order corresponding to
(�Q1 ,�−Q1 ,�Q2 ,�−Q2 ) = (�, 0,�, 0), which we will refer
to as xy ME-PDW. In Fig. 3(a) the PDW momenta for the
xy ME-PDW state is shown alongside its circulating current
analog [35]. As a speculative scenario for the cuprates, we
will consider ME-PDW as a mean-field ground state for the
pseudogap phase. The overall stability of action (4) requires
u0 > 0. When u1 > 0, u2 > 0, no point-group symmetry is
broken. For u1 < 0 we have the possibility for nematic order
without LC order, while u2 < 0 is necessary for LC order. The
mean-field solutions of SA in Eq. (4) and the corresponding
stable vestigial phase for u2 < 0, u1 > 0 are presented in
Table II. Here and subsequently, we use the notation

α = u0

|u2| , β = u1

|u2| , (22)

which parametrize the relative repulsion strength of fluctua-
tion and primary nematic field. [The stability of action (4)
requires α > 0.5 for β > 0.5 and α > 1 − β for β < 0.5.]
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TABLE II. ME-PDW mean-field ground and first excited states for SA in Eq. (4) alongside the possible vestigial phases and the correspond-
ing transition order. Here r < 0, α = u0

|u2 | , and β = u1
|u2 | . States are expressed in the form (�Q1 ,�−Q1 ,�Q2 , �−Q2 ) together with their subleading

nematic order. (�, 0,�, 0) corresponds to the xy ME-PDW state. [An equivalent table holds for sector B for (�Q1
, �−Q1

, �Q2
, �−Q2

) and
xy ↔ x2 − y2.] The stability of the vestigial phases assumes a sufficiently low temperature (R) (see Fig. 4). The transition order refers to the
vestigial-to-normal phase transition. For 0.5 < β < 1, β < α, the transition order between the low- and high-temperature phases is first order.

PDW ground state PDW first excited state
Nematic order Nematic order Transition order

Parameter regime (subleading) (subleading) Stable vestigial phase from normal state

0 < β < 0.25,

1 − β < α

(�, 0, 0, 0)
x2 − y2

(�, 0, �, 0)
xy

x2−y2 LC first

0.25 < β < 0.5,

1−β < α <
β

4β−1

(�, 0, 0, 0)
x2 − y2

(�, 0, �, 0)
xy

x2−y2 LC first

0.25 < β < 0.5,
β

4β−1 < α

(�, 0, �′,�′)
x2 − y2

(�, 0, 0, 0)
x2 − y2 x2−y2 LC

β

4β−1 < α <
2+β

4β−1 first
2+β

4β−1 < α second
0.5 < β < 1,

0.5 < α < β

(�, 0, �, 0)
xy

(�, 0, �′, �′)
x2 − y2 xy LC first

0.5 < β < 1,

β < α

(�, 0, �, 0)
xy

(�, 0, �′, �′)
x2 − y2

(
Low temperature, xy LC

High temperature, x2 − y2LC

)
β < α <

2+β

4β−1 first
2+β

4β−1 < α second
1 < β,

0.5 < α

(�, 0, �, 0)
xy

(�, 0, �′, �′)
x2 − y2 xy LC

0.5 < α < 1 first
1 < α second

The mean-field state breaks both continuous U (1) gauge
symmetry and the discrete point-group symmetry simulta-
neously. In the vestigial phase, the point-group symmetry
breaking preempts the continuous symmetry breaking. Given
that fluctuations act to restore the continuous symmetry, we
expect that the vestigial phase breaks the same point-group
symmetry as the mean-field solution. From this line of rea-
soning we expect to find a vestigial xy LC phase [�l = (l, l )
without long-range PDW order] above the transition to the xy
ME-PDW. Surprisingly, for 0.5 < β < 1, β < α, we find that
the xy LC phase can become unstable to an x2−y2 LC phase
[�l = (l, 0)] at higher temperature (see Fig. 4). Thus, the mean-
field ground state is preempted by a low-temperature vestigial
phase, sharing the same xy symmetry, and a high-temperature
vestigial phase, with a different symmetry (x2 − y2). This pos-
sibility can be understood as a result of a fluctuation-induced
transition between the mean-field ground and first excited
states, which are both listed in Table II. Near this transition
we find a state with soft nematic order, which is discussed in
Secs. IV C and V.

In the continuation of this section we derive the content of
Table II and study the phase diagram for 0.5 < β < 1, β < α,
presented in Fig. 4. Some details are left for Appendixes A, B,
and C.

A. Note on primary and subleading nematic orders

Again, for simplicity, we assume that only sector A is
stable for the following development. However, it is important
to note that the A and B sectors support different primary
nematic fields, Nx2−y2 and Nxy, respectively, while both support
the subleading nematic order l2

x − l2
y and lxly. A finite LC

order implies subleading nematic order l2
x − l2

y , lxly trans-
forming as B1g and B2g, respectively. The subleading nematic
orders are to fourth order in PDW fields, while the primary
nematic fields Nx2−y2 , Nxy (listed in Table I) are to second order

in the PDW fields. Specifically, sector A only supports the
primary nematic order Nx2−y2 , but not Nxy. Thus, an xy LC
order, �l = (l, l ), implies subleading B2g nematic order, lxly,
but no primary, Nxy. In contrast, an x2−y2 LC order implies
both secondary and primary B1g order, l2

x − l2
y , Nx2−y2 . (The

reverse is true for the B sector.)

B. Vestigial mean-field solutions

We will explore the possibility of vestigial ordering by
considering the mean-field solutions for ψ, Nx2−y2 , �l , of the
effective action (17), given by the solutions to the mean-field
equations ∂Seff

∂�
= 0 ⇒ δSeff

δψ
= 0, δSeff

δNx2−y2
= 0, δSeff

δlx,y
= 0:

ψ = u0

∫
�k
χQ1 (�k) + χ−Q1 (�k) + χQ2 (�k) + χ−Q2 (�k),

Nx2−y2 = u1

∫
�k
χQ1 (�k) + χ−Q1 (�k) − χQ2 (�k) − χ−Q2 (�k),

lx = u2

∫
�k
χQ1 (�k) − χ−Q1 (�k),

ly = u2

∫
�k
χQ2 (�k) − χ−Q2 (�k), (23)

where

χ±Q1 (�k) = 1

χ ′
x(�k)−1 + Nx2−y2 ± lx

,

χ±Q2 (�k) = 1

χ ′
y(�k)−1 − Nx2−y2 ± ly

, (24)

are the static susceptibilities with χ ′
x,y(�k)−1 = r′ + κ1(k2

x +
k2

y ) ± κ2(k2
x − k2

y ), r′ = r + ψ + γ0|�0|2.
The most extreme example of a preemptive transition into

a vestigial phase happens in two dimensions, where the in-
tegral for ψ is infrared divergent. This divergence leads to
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FIG. 4. Two solved systems for β = 0.75 with three metastable phases: Normal phase with no order (black lines), xy LC phase lx = ly (blue)
and x2 − y2 LC phase lx > 0, ly = 0 (red). (a) Phase diagram as a function of α and R (R = 0 is an arbitrary starting point). (b) Developing of
order for α = 0.7. Thick lines corresponds to the global stable phase [in (a)] while thin lines corresponds to local extrema of the action. Here
xy LC is the only stable ordered phase, reached through a first order transition. The xy and x2−y2 LC have two branches which develop as R is
lowered (b1), one stable (large l) and one unstable, as can be seen from the energy relation (b2). The saddle-point solution (green) represents
an unstable branch lx �= ly > 0 that extrapolates between the xy and x2−y2 LC phase. (b1) Solid (dashed) green represents lx (ly) connecting the
lx = ly solution with lx > 0, ly = 0. [(b3), (b4)] The development of the B1g nematic order, Nx2−y2 , and the renormalized static susceptibility
r′. (c) Developing of order for α = 1.1. Here, both xy and x2−y2 LC are possible stable phases. At R = 1.02 the system goes through (c1) a
first-order transition to a state with finite l , as well as (c3) finite nematic order. At R = 0.36 (c2) the xy and x2−y2 LC becomes degenerate and
(c1) another first-order transition to the xy LC phase occurs, where (c3) the primary B1g nematic order is lost. (c2) The saddle-point solution
again extrapolates between the x2−y2 and xy LC states and near transition R = 0.36 all three states are near degenerate. (c4) The renormalized
static susceptibility r′.

finite PDW susceptibilities (24), implying no long-range PDW
order. This is just a restatement of the Mermin-Wagner theo-
rem: Continuous symmetries will not form long-range order at
finite temperature in two dimensions. The vestigial order pa-
rameters, however, being discrete Ising-like orders can break
the point-group symmetries. Continuing with the 2D case, we
find the mean-field equations of (17) as

r′ = rR − u0

4πκ
ln
[
(r′ + Nx2−y2 )2 − l2

x

]
× [(r′ − Nx2−y2 )2 − l2

y

]
, (25a)

Nx2−y2 = − u1

4πκ
ln

(r′ + Nx2−y2 )2 − l2
x

(r′ − Nx2−y2 )2 − l2
y

, (25b)

lx = − u2

4πκ
ln

r′ + Nx2−y2 + lx
r′ + Nx2−y2 − lx

, (25c)

ly = − u2

4πκ
ln

r′ − Nx2−y2 + ly
r′ − Nx2−y2 − ly

, (25d)

where we introduced rR = r + u0
πκ

ln(κ�2), κ =
√

|κ2
1 − κ2

2 |,
and � as the momentum cutoff. Instead of using ψ we have
expressed the mean-field equations in terms of r′ = r + ψ ,

where we assume �0 = 0. This is natural since ψ describes
Gaussian fluctuations of the PDW fields, which renormalizes
the bare static susceptibility r−1.

Care must be taken when considering solutions to
Eqs. (25). First, in the absence of long-range PDW order, only
solutions fulfilling r′ + Nx2−y2 ± lx, r′ − Nx2−y2 ± ly > 0 can be
considered physical. Second, solutions to Eqs. (25) are gen-
erally singular, meaning that solutions with finite order do
not generally coincide with solutions without order in the
limiting cases. Therefore, we will have to consider all possible
combinations of ordering independently. In addition to the
trivial normal state without any ordering we find the following
solutions.

(i) xy LC state: LC ordered state with xy nematic order,
lx = ly �= 0 [69]. Solutions are presented in Appendix A.

(ii) LC saddle-point solution: Unstable LC ordered state
with both x2 − y2 and xy nematic order, lx �= ly �= 0. Solutions
are presented in Appendix A.

(iii) x2 − y2 LC state: LC ordered state with with x2 − y2

nematic order, lx,y �= 0, ly,x = 0, and Nx2−y2 �= 0. Solutions are
presented in Appendix B.

Solutions with only nematic order and no LC order are
of secondary interest and presented in Appendix D, for com-
pleteness.
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FIG. 5. Energy with respect to the ground state for arbitrary �l from Eq. (C2) after solving for Eqs. (25a) and (25b) with β = 0.75, α = 1.1,
and R = 0.10, 0.36, 0.55. [(a), (d), (g)] Equipotential contours of energy in gray, with dark shading indicating low energy. Solutions to
Eqs. (A2a) and (A2b) in black and green, respectively (lx = ly solutions are removed from the latter). [(b), (c), (e), (f), (h), (i)] Energy along the
valley (solid red line) and the radial direction (dashed red line). [(a)–(c)] R = 0.10, below the transition between the xy and x2−y2 LC phase
in Fig. 4. The green line does not cross the black line, thus there exists no intermediate extreme along the valley. x2−y2, xy LC are unstable
and stable respectively [see (b)]. (c) Energy in the radial direction. [(d)–(f)] Same as in (a)–(c) for R = 0.36 near the transition. (d) Intersection
between the green and black curves, corresponding to intermediate extrema along the valley direction. (e) Both xy and x2−y2 LC correspond
to local minima. (f) Energy in the radial direction. [(g)–(i)] Same as in (d)–(f) for R = 0.55 above the transition where xy LC is stable and
x2−y2 LC unstable, as can be seen in (h).

In finding the vestigial mean-field solutions it is conve-
nient to rescale the order parameters to unitless quantities,
l̃x = 2πκlx/|u2|, and equivalently for other variables. (See
Appendixes A and B for details.) However, for notational
clarity we will suppress the tilde even when the parameters
should be interpreted as unitless. The susceptibility gains an
additional shift

R = r̃R − 2α ln

( |u2|
2πκ

)
. (26)

Here R is assumed to be tunable with temperature through its
dependence on the bare susceptibility r.

The mean-field solutions only guarantee local stability, and
we must compare the absolute energy of the different phases
in order to find the ground state. The energy is presented in
Appendix C. The energy expression (C2) was used to find
the stable vestigial phases listed in Table II. For 0 < β < 0.5
(1 < β), the x2 − y2 (xy) LC state is the stable state, regardless
of α (and for low enough R). In contrast, for 0.5 < β < 1,
there is a transition between the x2−y2 and xy LC states for
β < α, as R (∝ T ) is lowered, while the xy LC state is the
only possible ordered state for α < β. Thus, after including
fluctuations, there is an induced transition between the would-
be mean-field ground and first excited states (see Table II),
resulting in a high-temperature x2−y2 LC phase and low-
temperature xy LC phase, separated by a first-order transition.

C. Phase diagram and the x2−y2 and xy LC transition

As a representative case of 0.5 < β < 1, β < α, the phase
diagram and the evolution of the order parameters are pre-
sented in Fig. 4 for β = 0.75, α = 0.7, and α = 1.1. (For
α = 0.75 the normal, the xy and x2−y2 LC phases all coexist.
It is possible to show that this holds in general for α = β.)

The saddle-point solution (lx �= ly > 0) only has support
for a finite range of R ∈ (Rmin, Rmax), as indicated by the green
regions in Figs. 4(c1)–4(c4), and forms closed paths in the
(lx, ly) plane [see also Fig. 7(a) in Appendix A]. As R is tuned
from Rmax to Rmin, by lowering the temperature, �l twists from
lx = ly with Nx2−y2 = 0 to lx > 0, ly = 0 with Nx2−y2 > 0.

To explore this transition further we consider the absolute
energy in terms of �l [70]. The energy is presented in Fig. 5
for α = 1.1, β = 0.75, just below (R = 0.10) and above (R =
0.55) the support for the saddle-point solution, as well as near
the transition R = 0.36.

The xy and x2−y2 LC solutions lie on a semicircular
shaped valley in the energy landscape. Because of periodicity,
the number of maxima equals the number of minima. Thus,
in order for the xy and x2 − y2 LC to be simultaneously
stable, two intermediate maxima have to be introduced along
the valley (in each quadrant). These are the lx �= ly solutions,
and their energy can be seen as the height of the barrier be-
tween the two (meta)stable solutions. Nevertheless, these are
saddle-point solutions in the full energy landscape. As is seen

134504-10



NEMATIC SINGLE-COMPONENT SUPERCONDUCTIVITY … PHYSICAL REVIEW B 107, 134504 (2023)

both from Figs. 4(c2) and 5(b2), this barrier height is small
compared to the energy scale in the radial direction. Thus, the
solutions are easily excited along the valley direction.

The relative smallness of the stiffness in the valley direc-
tion should be understood as a result of the valley direction
being a compact dimension whose length is tunable to zero.
Alternatively, it follows from expanding around a rotational
invariant point �l = 0. This effect is perhaps most easily
seen from comparing Figs. 5(a)–5(c) and 5(g)–5(i) with
Figs. 5(d)–5(f). In the former, the dispersion is only about
twice as soft in the valley direction, while in the latter, the
inclusion of three additional stationary points forces the dis-
persion to become even flatter in the valley direction. In the
limit �l → 0, this feature is expected to become more pro-
nounced. To confirm, we expand Eqs. (A2a) and (A2b) for
small �l , and find

6(1 − R)

α − 1
= l2

x + l2
y + O(l4),

30(1 − β )

β
= l2

x + l2
y + O(l4), (27)

describing two concentric circles. This implies that at R =
5−4β

β
+ 5(β−1)

β
α all points around the valley will be arbitrarily

close to a local maximum; thus the valley direction will be
essentially flat. This expansion becomes exact for β → 1−,
and according to Table II, there will be a second-order phase
transition for α > β, where the xy and x2 − y2 LC states are
degenerate. Thus, the first-order transition gets turned into
a second-order transition. As a corollary, we expect a small
stiffness in the valley direction whenever there is only a small
region of support for the x2 − y2 solutions.

V. SOFT NEMATIC STATE

We have seen how the vicinity of the first-order transition
between xy and x2−y2 LC gives rise to an arbitrarily flat
energy landscape, associated with a rotation of the LC order.
Thus, a small field would be able to pin the LC order in any
direction, promoting a state with, in general, both B1g and B2g

nematic order. For concreteness, we can consider a correction
to the superconducting mass, like the one found in Eqs. (18),
due to the LC order

S =
[

g1
(
l2
x − l2

y

)/
2 g2lxly

g2lxly −g1
(
l2
x − l2

y

)/
2

]
. (28)

The principal direction of S will in general not be aligned with
the crystallographic axis, as well as being easily pinned in any
direction. We will refer to this as a “soft” nematic state. (Note
that S does not constitute an XY nematic order parameter
unless g1 = g2.)

There is some evidence for such a soft nematic state for
the cuprates. A detachment of the nematic director from the
lattice is seen in transport measurements on LSCO films [61],
a signature which is strongest near optimum doping. This state
is also expected to be sensitive to quenched disorder, which
might explain the decreasing nematic domain size in bismuth
strontium calcium copper oxide (BSCCO) [8], approaching
optimum doping. This would suggest that the underlying ne-
matic state seen in both LSCO and BSCCO is of the same

origin, an underlying xy ME-PDW preempted by an xy and/or
x2−y2 LC state in turn setting up a soft nematic state, of the
type described here; in LSCO the nematicity may be aligned
by an external symmetry breaking field, while in BSCCO
it is pinned to impurities. We include this scenario in the
inset of Fig. 1, where the vestigial nematic phase is divided
into a high- and low-temperature phases with x2 − y2 and xy
nematic order, respectively, with a soft nematic state at the
boundary of the two phases.

Emergent overdamped Goldstone mode

The approximate rotational symmetry for the LC order
near the first-order transition implies the existence of low-
lying collective excitations. In the limit of an exact rotational
symmetry this would correspond to a Goldstone mode. To ex-
plore the signatures of the soft nematic state near the transition
we here consider the the spectral function of this “emergent”
Goldstone mode.

The collective modes of the xy and x2−y2 LC states
involve not only the LC order but couple all fields in
the complete ψ, Nx2−y2 , �l space; as �l change, Nx2−y2 and ψ

change accordingly. Thus, in general, a collective mode is
associated with variations in the combined space of � =
[ψ, Nx2−y2 , lx, ly]. In Eq. (7), we neglected the time dependence
of the (bosonic) fields, corresponding to a high-temperature
(classical) limit, where only the first bosonic Matsubara
frequency is kept. Now we reintroduce the Matsubara fre-
quencies to find the excitation spectra by analytic continuation
to real frequencies.

The PDW part of the effective action (7) (for the A sector)
can be written as

Seff({�Q}, ψ, Nx2−y2 , �l )

= − 1

T

∫
μ

|ψμ|2
2u0

+ |Nx2−y2,μ|2
2u1

+ |�lμ|2
2u2

+
∫

μ,μ′
��†

μG
−1
μ;μ′ ��μ′,

(29)

where we included an integral T
∫ 1/T

0 dτ and fields in

the Matsubara representation f (iωn) = ∫ 1/T
0 dτ e−iωnτ f (τ ),

with the bosonic Matsubara frequencies ωn = 2πnT . We
introduced the short-hand notation μ = iω, �k and �� =
[�Q1�−Q1�Q2�−Q2 ],

∫
τ

= ∫ 1/T
0 dτ and

∫
μ

= T
∑
iωn

∫
�q. We

find the kernel G as

G−1
11,μ;μ′ = (−iω + T χ−1

x (�k))δμ,μ′

+ ψμ−μ′ + Nx2−y2,μ−μ′ + lx,μ−μ′,

G−1
22,μ;μ′ = (−iω + T χ−1

x (�k))δμ,μ′

+ ψμ−μ′ + Nx2−y2,μ−μ′ − lx,μ−μ′,

G−1
33,μ;μ′ = (−iω + T χ−1

y (�k))δμ,μ′

+ ψμ−μ′ − Nx2−y2,μ−μ′ + ly,μ−μ′,

G−1
44,μ;μ′ = (−iω + T χ−1

y (�k))δμ,μ′

+ ψμ−μ′ − Nx2−y2,μ−μ′ − ly,μ−μ′, (30)

where χ−1
x,y = r + κ1(k2

x + k2
y ) ± κ2(k2

x − k2
y ), and δμ,μ′ =

δ(�k − �k′)δiω,iω′/T . We assume that the PDW fields are
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coherently propagating, and not damped. (This would be the
case if PDW arose from a strong-coupled BEC scenario [56].)
The effective action is found in terms of � by integrating over
the PDW fields. We proceed by expanding around the uniform
mean-field solution δSeff

δ�
= 0, given by �0,

�(iνn, �q) = �0δn,0δ(�q) + δ�(iνn, �q). (31)

Expanding the action to second order in δ�

Seff(ψ, Nx2−y2 , �l ) ≈ S(0)
eff (ψ0, Nx2−y2,0, �l0) + S(2)

eff (ψ, Nx2−y2 , �l ).
(32)

In the high-temperature limit, keeping only the first Matsubara
term n = 0, S(0)

eff (ψ, Nx2−y2 , �l ) is given by Eq. (14) (with �0

reinserted). The correction can be written

S(2)
eff =

∫
μ

1

2
δ�i(μ)L−1

i j (μ)δ� j (μ),

L−1
i j (iνn, �q) = −δi j

Tui
− �i j (iνn, �q). (33)

Here L is the propagator of fluctuations of �, with ui =
[u0, u1, u2, u2]. The self-energy term is given by

� =

⎛
⎜⎜⎝

�1+�2+�3+�4 �1+�2−�3−�4 �1−�2 �3−�4

�1+�2−�3−�4 �1+�2+�3+�4 �1−�2 �4−�3

�1−�2 �1−�2 �1+�2 0
�3−�4 �4−�3 0 �3+�4

⎞
⎟⎟⎠,

(34)

where

�i(iνn, �q) =
∫

iω,�k
Gi(iω + iν, �k + �q)Gi(iω, �k), (35)

and G−1
i (iω, �k) = −iω + T χ−1

Q(i)(�k) where Q(i) =
[Q1,−Q1, Q2,−Q2]. The propagator Li j (iνn, �q) is in
general off-diagonal. However, when approaching the
x2 − y2 to xy LC transition from the x2−y2 LC state, with
lx = l0, ly = 0 and Nx2−y2 �= 0, �i j (iνn, �q) is block diagonal,
�i j = �ab ⊕ �44, a, b = 1, 2, 3. In this case the valley
direction lies solely along ly, with all other fields stationary.

The static, zero-frequency part of the propagator L−1
i j (0, 0)

is associated with the stiffness to uniform deformation. Here
L−1

44 (0, 0) can be related with the stiffness along the val-
ley direction, which we set to zero and identify it with the
transverse propagator for a nematic director along the x axis,
L−1

44 = L−1
⊥,x. After analytic continuation of

�44(iνn, �q) = 2
∫

iω,�k
G4(iωn + iνn, �k + �q)G4(iωn, �k), (36)

we can obtain the retarded transverse propagator. In the high-
temperature limit, after expanding in �q and ν/q (assuming
r � Nx2−y2 , �l , i.e., far from the PDW transition) we find

L−1
⊥,x (ν, �q) = ηq̃2 − iη′s + O(sq̃) + O(s3), (37)

where s = ν/q̃, η = 1
12πT κ

1
r2 , η′ = 1

8T 2κ
1

r3/2 , and q̃ =
q
√

κ1 − κ2 cos(2ϕ), where ϕ is the angle of �q to the x
axis. In Fig. 6, the spectral density Im(L⊥) is shown, and we
see an overdamped bosonic mode, with ν ∝ iq3.

These results are reminiscent of the results for a nematic
Fermi fluid [71], where an overdamped Goldstone mode is

FIG. 6. Spectral density of the Goldstone mode at the enhanced
symmetry point Im(L⊥(ν, �q)). The black line shows the peak of the
spectral density at fixed �q. The inset shows the frequency dependence
of the spectral density along the gray line.

found within the broken symmetry phase. (The reason has to
do with the noncommuting property of the broken symmetry
and translation [72].) In a fermionic system, an overdamped
bosonic mode coupling to the fermions usually leads to the
destruction of the Fermi liquid. This is of special interest in
cuprates as a possible origin of the strange metal phase [6,73].

A Goldstone mode associated with spatial rotation is not
expected in a crystalline system since there is no rotational
symmetry. However, as seen in this work, a competition be-
tween a vestigial xy and an x2−y2 LC phase leads to a very
small gap and an emerging symmetry. It is intriguing to note
that this phenomenology again points towards an emergent ro-
tational symmetry near the overdoped critical point (possibly
a soft nematic state), over which the strange metal phase is
located. Indeed, at this level, these results are only speculative.
First of all, in the model considered here, the bosonic mode
does not couple directly to fermions, but to PDW fluctuations.
The fate of the PDW fields and the underlying fermions is left
for future work.

VI. SUMMARY AND OUTLOOK

In this paper, we study vestigial orders of a PDW state
with pair momenta that are aligned with the high-symmetry
directions of a tetragonal crystal, focusing on phases that only
break the point-group symmetry. Of particular interest is the
influence of vestigial nematic order on a homogenous single-
component superconductor, giving rise to an anisotropic
superfluid stiffness. We stress that if the nematicity arises
from a PDW state, i.e., from finite momentum fluctuations
of the superconducting field itself, the superconductor can
become highly susceptible to this nematic distortion due to the
natural proximity of a Lifshitz point with vanishing superfluid
stiffness. Crucially, even a nominally weak nematic field, as
observed through anisotropy of the normal electron response
or the superconducting gap, may give a large relative renor-
malization of a small stiffness. We argue that this may explain
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why the observed anisotropy in transport measurements on
LSCO [61] can be ascribed to highly anisotropic supercon-
ducting fluctuations coexisting with an essentially isotropic
normal conductivity [58]. Probing vortex dynamics, also ex-
pected to be sensitive to stiffness anisotropy, near Tc, could be
a fruitful pursuit to investigate this unusual manifestation of
nematicity further.

In the later part of the paper we focus on vestigial orders of
a magnetoelectric (ME) PDW, containing both nematic order
and loop-current-type order. We have shown that a preemptive
transition into a vestigial phase of an ME-PDW with B1g (x2 −
y2) nematic order can split into high- and low-temperature
phases, that correspond to distinct B1g and B2g (xy) phases.
This feature is not specific to PDW, but is expected for any
other field transforming in the A1g ⊕ B1g ⊕ Eu (or A1g ⊕ B2g ⊕
Eu) representation. Near the transition between the high- and
low-temperature phases, the nematic order will be soft and
easy to pin in either direction, yielding an approximate rota-
tional symmetry, with possible relevance to observations of
nematic order in LSCO and BSCCO. Also, as a start for fur-
ther investigation, the emergence of an overdamped Goldstone
mode due to this approximate rotational symmetry may have
interesting implications for the single-particle properties of
electrons coupling to this mode.

In conclusion, the results lend support and warrant further
investigation into the proposal of pair-density wave order as
the underlying source of the abundance of broken symmetries
and exotic phenomenology seen in the cuprate superconduc-
tors.

Note added. Recently, an experimental study of overdoped
Bi2Sr2CaCu2O8+x using scanning Josephson tunneling mi-
croscopy has presented evidence for a nematic state with
short-range PDW order, interpreted as a disorder-pinned re-
alization of a state with vestigial nematic PDW order [74].
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APPENDIX A: xy LC STATE AND SADDLE-POINT
SOLUTION, lx, ly �= 0

Let us start by assuming that both lx and ly are nonzero. All
Eqs. (25) respect the symmetry lx,y → −lx,y, and thus we can
focus on lx,y > 0. Nontrivial lx, ly > 0 solutions of Eqs. (25c)
and (25d) take the form

r′ ± Nx2−y2 = −lx,y coth

(
2πκ

u2
lx,y

)
, (A1)

from which we see the need for u2 < 0 to ensure r′ ± Nx2−y2 −
lx,y > 0. The existence of primary B1g nematic order, Nx2−y2 �=
0, is equivalent to lx �= ly as seen from Eq. (25b) which ensures
Nx2−y2 �= 0 if lx �= ly, while Eqs. (25c) and (25d) imply Nx2−y2 =
0 if lx = ly, unless lx = ly = 0. Only considering the A sector
we do not find any primary (Nxy) B2g nematic order for the
lx = ly solution. However, if both the A and B sectors were
stable, the subleading (lxly) B2g nematic order would induce
a finite primary B2g nematic order Nxy (supported by sector
B) through the coupling set by v1 in Eq. (4). In Appendix E

FIG. 7. (a) Solutions of Eqs. (A2) in the lx, ly plane. The black
curves are solutions to Eq. (A2a), α = 0.7 for R = 1.2, 1.26, 1.3,
1.33 (peak R). The blue line corresponds to the xy LC lx = ly so-
lutions to Eq. (A2b) for β = 0.75, while the saddle-point solution,
lx �= ly, is shown in green. Simultaneous solutions to Eqs. (A2) are
given by the intersection of the blue (or green) line with the black
line. (b) Right-hand side of Eq. (A2a) for α = 0.45, 0.7, 1.2 along
the �l diagonal lx = ly, for which Eq. (A2b) is trivially fulfilled. For
α < 0.5 unstable solutions exist for R > 1. For α > 1 there are stable
solutions for R < 1. When 0.5 < α < 1 solutions occur for a finite
l , corresponding to a first-order transition. (c) Right-hand side of
Eq. (A2b) for β = 0.45, 0.75, 1.2 plotted along the axial direction,
lx > 0, ly = 0, as the condition is trivially zero for lx = ly. The blue
dot indicates the intersection with the trivial zero solutions [blue lines
in (a)], while the green dot indicates lx �= ly solutions [green lines in
(a)]. lx �= ly solutions only exist for 0.5 < β < 1.

we discuss the inclusion of both sectors, but for the present
discussion this will be implicit.

Back to solving Eqs. (25): Using Eq. (A1) to simplify
Eqs. (25a) and (25b) we receive two new (reduced) mean-field
equations,

R = l̃x coth(l̃x ) + l̃y coth(l̃y)

2
+ α ln

(
l̃x l̃y

sinh
(
l̃x
)

sinh
(
l̃y
)
)

,

(A2a)

0 = l̃x coth(l̃x ) − l̃y coth(l̃y)

2
+ β ln

(
l̃x sinh

(
l̃y
)

l̃y sinh
(
l̃x
)
)

, (A2b)

where we introduced the normalization l̃x,y = 2πκlx,y
|u2| , and

R = r̃R − 2α ln( |u2|
2πκ

). Note that Eq. (A1) is not valid in the
limit lx,y → 0, since it implies r′ ± Nx2−y2 = − u2

2πκ
, whereas

Eqs. (25c) and (25d) do not put any constraints on r′ ± Nx2−y2 .
Thus lx,y = 0 must be considered independently.

We find lx and ly by simultaneously solving Eqs. (A2a)
and (A2b), which we can interpret graphically as in Fig. 7.
Equation (A2b) is always solved for lx = ly, Nx2−y2 = 0, cor-

134504-13



JONATAN WÅRDH AND MATS GRANATH PHYSICAL REVIEW B 107, 134504 (2023)

responding to (meta)stable xy solutions. Equation (A2a)
determines the evolution of �l , as R is changed. For α > 1
there is an onset of stable solutions at R = 1 and �l = 0, corre-
sponding to a second-order phase transition. For 0.5 < α < 1
a locally stable solution occurs at a finite �l for some R > 1,
implying a first-order phase transition.

Equation (A2b) also admits solutions with lx �= ly, Nx2−y2 �=
0 for 0.5 < β < 1, as can be seen from Fig. 7. These solutions,
only supported for a finite range in R, will evolve along a
curved path in the lx, ly plane, with a corresponding change
in Nx2−y2 as R changes. These solutions are unstable; however,
as will be clarified, their existence indicates that an xy and an
x2 − y2 LC state are simultaneously stable. We will refer to
this solution as the saddle-point solution since it constitutes
a saddle point in the energy landscape. Indeed, in Sec. IV C
we will see how 0.5 < β < 1 admits a first-order transition
between the xy and x2−y2 LC states, with the possibility of a
superheated and supercooled phase.

APPENDIX B: x2−y2 LC STATE, lx,y �= 0, ly,x = 0

Now we assume the stability of the x2−y2 LC solutions
with only one finite LC order component, say, lx > 0. Equa-
tion (25d) puts no constraint on r′ − Nx2−y2 , while Eq. (25c)
still implies r′ + Nx2−y2 = −lx coth( 2πκ

u2
lx ). For physical solu-

tions we must require u2 < 0 as well as r′ − Nx2−y2 > 0. In this
case, we can directly solve for r′ and Nx2−y2 using Eqs. (25a)
and (25b):

R = 2α ln

(
l̃x

sinh(l̃x )

)
+ l̃x coth(l̃x ) + (α/β − 1)Ñx2−y2 ,

(B1a)

Ñx2−y2 = l̃x
2

coth
(
l̃x
)− βW

⎛
⎝ l̃x

2β

exp
[ l̃x

2β
coth(l̃x )

]
sinh

(
l̃x
)

⎞
⎠,

(B1b)

where W (x) denotes the product logarithm. (For ly �= 0, lx =
0, take lx → ly and Nx2−y2 → −Nx2−y2 .) With R ∝ T , nontrivial
solutions evolve as R is lowered and Eq. (B1a) starts admitting
solutions. For β > 0.5 and α >

2+β

4β−1 there is an onset of solu-
tions at R = 1, lx = 0, corresponding to a second-order phase
transition. For 0.5 < α <

2+β

4β−1 , solutions occur at a finite lx,
corresponding to a first-order phase transition. With similar
arguments for β < 0.5, we find the transitions included in
Table II.

APPENDIX C: VESTIGIAL MEAN-FIELD ENERGY

The mean-field solutions only guarantee local stability,
and we must compare the absolute energy of the different
phases in order to find the ground state. Therefore, we need
the normal-state solutions Nx2−y2 = 0, lx,y = 0, as well, which
are always admitted by Eqs. (25b), (25c), and (25d). Equa-
tion (25a) is readily solved by

r̃′ = 2αW

(
e

R
2α

2α

)
, (C1)

requiring r′ > 0.

The energy (17) has an explicit dependence on the cutoff
�, which also renormalizes r. In the limit � → ∞ the cutoff
dependency can be absorbed in a constant energy term, given
that the mean-field solution (25a) fulfills

S̃ =
�̃l2

2
− l̃x

2
ln

r̃′ + Ñx2−y2 + l̃x

r̃′ + Ñx2−y2 − l̃x
− l̃y

2
ln

r̃′ − Ñx2−y2 + l̃y

r̃′ − Ñx2−y2 − l̃y

− α

8
ln2
(
(r̃′ + Ñx2−y2 )2 − l̃2

x

)(
(r̃′ − Ñx2−y2 )2 − l̃2

y

)+ 2r̃′

− r̃′

2
ln
(
(r̃′ + Ñx2−y2 )2 − l̃2

x

)(
(r̃′ − Ñx2−y2 )2 − l̃2

y

)

−
Ñ2

x2−y2

2β
− Ñx2−y2

2
ln

(
(r̃′ + Ñx2−y2 )2 − l̃2

x

(r̃′ − Ñx2−y2 )2 − l̃2
y

)
+ const,

(C2)

where S̃ = S0
A

4π2κ2

|u2| . This energy was used to find the stable
vestigial phases listed in Table II.

It is important to note that the energy in Eq. (C2) only
holds if Eq. (25a) is fulfilled. In order to present the en-
ergy as a function solely on �l , as in Fig. 5, we numerically
solve Eqs. (25a) and (25b) given an arbitrary �l by rewriting
Eqs. (25a) and (25b) as first-order differential equations. As
boundary conditions, Eq. (C1) and Nx2−y2 = 0 were used at
�l = 0. The absolute energy in terms of �l was then found by
inserting the solutions into Eq. (C2).

APPENDIX D: ADDITIONAL SOLUTIONS TO THE
VESTIGIAL MEAN-FIELD EQUATIONS

One set of solutions that was not considered in the main
development is that of only primary nematic order without
LC order Nx2−y2 �= 0, lx,y = 0, the pure nematic phase. Equa-
tions (25c) and (25d) always admit the lx,y = 0 solution, and
put no constraint on Nx2−y2 and r′. Nontrivial Nx2−y2 �= 0 solu-
tions to Eq. (25b) take the form

r′ = −Nx2−y2 coth

(
πκ

u1
Nx2−y2

)
, (D1)

from which we find the expected requirement that we need
u1 < 0, in order for r′ ± Nx2−y2 > 0. Assuming u1 < we can
rewrite Eq. (D1) as

r̂′ = N̂x2−y2 coth(N̂x2−y2 ), (D2)

which inserted into Eq. (25a) yields

R̂ = N̂x2−y2 coth(N̂x2−y2 ) + α

|β| ln

(
N̂x2−y2

sinh(N̂x2−y2 )

)
, (D3)

where N̂x2−y2 = πκNx2−y2

|u1| = Ñx2−y2

2|β| and R̂ = R
2|β| − α

|β| ln(2|β|).
Equation (D3) admits similar solutions as the xy LC case
(A2a) (see Fig. 8), where we introduced δ = α

|β| = u0
|u1| . For

δ < 1 there is one unstable branch for R̂ > 1 and none for
R̂ < 1. For 1 < δ < 2 there is an unstable branch for small
N̂x2−y2 and a stable one for bigger N̂x2−y2 , which leads to a
first-order transition. For δ > 2 there is one stable branch for
R̂ < 1 and N̂x2−y2 evolves continuously from zero, yielding a
second-order transition.
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FIG. 8. Evolution of the pure nematic phase for a range of δ =
α/|β|. The local stability of the pure nematic phase is only dependent
on the parameter δ while the absolute value of β renormalizes the
effective values of R, Nx2−y2 , and S, thus affecting the relative stability
compared to other phases. Here we used β = −0.5 for which R̂ = R,
N̂x2−y2 = Ñx2−y2 . (a) Equation (D3) plotted for a range of δ. For δ < 1
there is no stable solution while for δ > 2 stable solutions occur for
R < 1 and the transition is second order. For 1 < δ < 2 there is one
stable and one unstable branch and the transition will be first order.

So far u2 has not entered the analysis and the Nx2−y2 �= 0,
lx,y = 0 solution is locally stable as long as u1 < 0, regardless
of u2. For u2 > 0 the pure nematic phase is the only locally
stable solution. For u2 < 0, the xy and x2−y2 LC phases are
in general stable as well and we have to compare the absolute
energy (C2) of the different phases. Taking into account the
general stability of Eq. (4), α > 1 − β for β < 0.5, we find
that the pure nematic phase is stable for β < −0.5 and the xy
LC phase is stable for −0.5 < β < 0.

APPENDIX E: COUPLING BETWEEN A AND B SECTORS

Bilinears of our model transform in two distinct sectors,
which we denote A and B. The stabilities of these two sectors,
determined by the local minima of the dispersion (2), are
independent, and we can consider situations where either one
or both of the sectors are present.

The structures of both sectors are identical, and the above
analysis holds equally for both sectors if we take into account
that the states refer to the principal axes of the A and B sector

frames, respectively, which are rotated 45◦ to each other. For
concreteness, the x2 − y2 LC and xy LC phase of the A sector
map to the x2 − y2 = xy LC and xy = x2 − y2 LC phase of the
B sector.

If both sectors are present they will couple through fourth-
order terms, tuned by v0,1 in Eq. (4). We will study this
situation by including a weak interaction between the two
sectors. Including nonzero couplings v0,1 in Eq. (4) means that
the matrix M in the Hubbard-Stratonovich transformation (5)
will no longer be diagonal. Instead it will take the form

M =
[

MA MAB

MT
AB MB

]
, MAB =

⎡
⎢⎢⎢⎣

v0 0 0 0
0 0 0 0
0 0 v1√

2
− v1√

2
0 0 v1√

2
v1√

2

⎤
⎥⎥⎥⎦,

(E1)
and the auxiliary field vector � =
[ψA, Nx2−y2 , lA,x, lA,y, ψ,Nxy, lB,x, lB,y]. Here lB,x, lB,y =
lB,x+lB,y√

2
,

lB,y−lB,x√
2

are the B components along the (xy) diagonals.
After integrating out the PDW field the effective action is
given by (neglecting the superconducting field, which can be
analogously introduced as before)

Seff(ψA, Nx2−y2 , �lA, ψB, Nxy, �lB)

= Seff,Ã(ψA, Nx2−y2 , �lA) + Seff,B̃(ψB, Nxy, �lB)

−
(

ψAψB

ṽ0
+ �lA · �lB

ṽ1

)
. (E2)

The third term represents interaction between the A and B
sectors, and the first two terms refer to the action of the A
and B sectors, respectively [Eq. (17)]. Due to the inversion
of the off-diagonal matrix, M, the couplings become renor-
malized [indicated by the tilde in (E2)]: ũ0,(AB) = u0,(AB) −

v2
0

u0,(AB)
, ũ2,(AB) = u2,(AB) − v2

1
u2,(AB)

, ṽ0 = v0 − u0,Au0,B

v0
, and ṽ1 =

v1 − u2,Au2,B

v1
. The two sectors do not couple directly through

the primary nematic order parameters Nx2−y2 , Nxy. The bilin-
ear term in the LC orders of the two sectors implies mutual
induction: A finite LC order in one sector will induce LC order
in the other sector. This is evident from the (new) mean-field
equations

ψA = ψB
v0

u0,B
+ ũ0,A

πκA
ln
(
κA�2

A

)
− ũ0,A

4πκA
ln
[
(r′

A + Nx2−y2 )2 − l2
Ax

]
× [(r′

A − Nx2−y2 )2 − l2
Ay

]
, (E3a)

Nx2−y2 = − u1,A

4πκA
ln

(r′
A + Nx2−y2 )2 − l2

Ax

(r′
A − Nx2−y2 )2 − l2

Ay

, (E3b)

lA,(x,y) = lx,B ∓ ly,B√
2

v2

u2,A
(E3c)

− ũ2,A

4πκA
ln

r′
A ± Nx2−y2 + lA,(x,y)

r′
A ± Nx2−y − lA,(x,y)

(E3d)

(analogously for the B sector). Assuming a weak mixing
v0 � u0,(AB), v1 � u2,(AB), we can expand in orders of v0,1.
To first order in v0,1 we can solve the system by asserting
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l = l (0) + l (1), ψ = ψ (0) + ψ (1), where l (0), ψ (0) are solutions
to the uncoupled case v0,1 = 0. To first order

ψ
(1)
A

(
1 + u0,A

4πκA
χA,�Q

)

= ψ
(0)
B

v0

u0,B
− u0,A

4πκA

[
χA,Q1 (0)

(
N (1)

x2−y2 + l (1)
A,x

)
+χA,−Q1 (0)

(
N (1)

x2−y2 − l (1)
A,x

)
−χA,Q2 (0)

(
N (1)

x2−y2 − l (1)
A,y

)− χA,−Q2 (0)
(
N (1)

x2−y2 + l (1)
A,y

)]
,

(E4a)

N (1)
x2−y2

(
1 + u1,A

4πκA
χA,�Q

)

= − u1,A

4πκA

[
χA,Q1 (0)

(
ψ

(1)
A + l (1)

A,x

)
+χA,−Q1 (0)

(
ψ

(1)
A − l (1)

A,x

)− χA,Q2 (0)
(
ψ

(1)
A + l (1)

A,y

)
−χA,−Q2 (0)

(
ψ

(1)
A − l (1)

A,y

)]
,

(E4b)

l (1)
Ax (1 + u2,A

4πκA
χA,�Q1 )

= l (0)
Bx − l (0)

By√
2

v2

u2,A

− u2,A

4πκA
(χA,Q1 (0) − χA,−Q1 (0))

(
ψ

(1)
A + N (1)

x2−y2

)
,

(E4c)

l (1)
Ay

(
1 + u2,A

4πκA
χA,�Q2

)

= l (0)
Bx + l (0)

By√
2

v2

u2,A

− u2,A

4πκA

(
χA,Q2 (0) − χA,−Q2 (0)

)(
ψ

(1)
A − N (1)

x2−y2

)
,

(E4d)

and similar for the B sector. Here we used the static
susceptibilities of the unperturbed state (24) and
introduced χA,�Q = χA,Q1 (0) + χA,−Q1 (0) + χA,Q2 (0) +
χA,−Q2 (0)χA,�Q1,2 = χA,Q1,2 (0) + χA,−Q1,2 (0). The correction
to the vestigial mean-field solutions because of finite coupling
between the sectors is illustrated in Fig. 9, where black

FIG. 9. Effect of couplings between the A and B sectors. Solid
black (red) arrows correspond to the unperturbed state in the A (B)
sector v1 = 0, whereas the shaded arrows correspond to induced
components (first-order in v1). [(a)–(e)] No additional primary ne-
matic order. [(f)–(h)] Additional primary nematic order is induced.

(red) arrows indicate the LC order in the A (B) sector. In
Fig. 9(a) the A sector is ordered in its x2 − y2 LC state
(lA,x > 0, lA,y = 0), while the B sector is not ordered to zero
order in v1. By turning on the coupling, an LC order in the
B sector is induced, lB,x = lB,y = O(v1). This state, being
symmetric for reflections in the x axis, already has a finite
expectation value for the primary nematic field, Nx2−y2 , in the
unperturbed case [analogous case for the B sector is shown in
Fig. 9(b)]. Similar cases are shown in Figs. 9(c)–9(e), where
no additional primary nematic order is induced, since it is
present already for v1 = 0.

In contrast, for the case noted above, an xy LC phase in the
A sector, which only has subleading xy nematic order, lA,xlA,y,
the coupling will induce a primary xy nematic Nxy (stemming
from the B sector). This is depicted in Fig. 9(f) [and similarly
in Figs. 9(g) and 9(h)].
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