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Entangling a pair of far-distant qubits in many-body systems has been a challenging task in quantum
computing. A robust entanglement was predicted in the rainbow states and generating nonlocal Bell pairs
protected by a mirror symmetry was recently proposed. We investigate a way to create entangled Majorana
fermions in the spin- 1

2 Kitaev chain with open boundary conditions. The spin- 1
2 Kitaev chain, a one-dimensional

version of the honeycomb lattice with bond-dependent Ising interactions, has a macroscopic degeneracy related
to the zero modes containing nonlocal spin strings. We show that applying a pair pulse sequence on the central
unit cell of the chain promotes long-distance spin correlations and maximal bipartite entanglement entropy. We
extend this method to the generalized bond-dependent spin- 1

2 chain by introducing another set of Majorana
fermions and make a comparison to the entangled Bell pairs. The time to reach maximal bipartite entanglement
entropy is shorter in the Kitaev chain as the zero modes do not participate in the entangled pairs. An application
of our results to a recently proposed twisted Kitaev chain, CoNb2O6, is presented and future directions are also
discussed.

DOI: 10.1103/PhysRevB.107.134435

I. INTRODUCTION

The notion of entanglement, inherent nonlocality of quan-
tum information, has become the heart of modern quantum
technology, as generating long-range entangled states is a
fundamental ingredient of quantum computing and quantum
networks [1–20]. One of the most well-known entangled
states is the Bell pair state, which is a nondirect product
state of two qubits [21]. However, decoherence of entangled
pairs of two distant qubits can be caused by interactions in
many-body systems [22–25]. In order to overcome the deco-
herence problem, the rainbow state [26–38], a direct product
of two-site entangled states, has been suggested. An N-site
rainbow state requires measurement of N/2 sites to disentan-
gle it, which implies the state has a high persistency, defined
by the minimal number of local measurements to completely
disentangle the state [36]. Although the decoherence with
the environment may still be an issue in the rainbow state
unlike topological states [39], the rainbow state following the
volume law [26,31] contains end-to-end deterministic quan-
tum entanglement, which makes it suitable for entanglement
distribution networks [4]. There have been intensive studies to
generate the rainbow state. Methods of generating the rainbow
state include optimizing the coupling strength of the system
[26–28,34,36], quenching the selective interactions [29,30],
and using the dissipation between the system and a reservoir
[31,32,35].

Recently, Dutta and Cooper [32] and Dutta et al. [33]
proposed a variant of the rainbow state which is protected by
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a mirror symmetry of the system. Their results have not only
reflected the significant role of symmetry in quantum comput-
ing problems [40] but also provided more insights and clues
toward how to manipulate target systems. Dutta et al. [33] fur-
ther proposed a protocol based on the symmetry of generating
the rainbow-like state by applying a sequence of simultaneous
π pulses on half of the spin- 1

2 XX chain, which can be done in
today’s cold-atom experiments. In this paper, we investigate
the possibility of creating rainbow-like states in solid-state
materials. We propose that CoNb2O6 is a promising candidate
for realizing the rainbow state. Recent studies suggest that
CoNb2O6, previously thought to be an Ising chain, is better
described by a twisted Kitaev chain model [41]. While the Ki-
taev spin- 1

2 chain contains alternating nearest-neighbor Ising
interactions between the bonds (such as SxSx and SySy), the
twisted Kitaev model modifies this by replacing the x̂ and ŷ
spin directions with the n̂1 and n̂2 directions, which are not
necessarily perpendicular to each other.

To understand the dynamics of the twisted Kitaev chain,
we begin by examining the spin- 1

2 Kitaev spin chain, which
is a 1D limit of the Kitaev honeycomb model [42,43], also
known as the quantum compass chain [44–49]. The quantum
compass chain can be expressed in free fermion form using
the Jordan-Wigner transformation. Nevertheless, due to the
nonlocal N/2 SU(2) symmetries of the model where N is a
number of sites [50], there are 2N/2 macroscopic degenera-
cies resulting in novel physics such as Majorana zero modes
[44–49,51], hidden string order parameters [43], and diver-
gence of the structure factor [49]. Thus a protocol to create
the rainbow state in this model may differ from the previously
studied spin- 1

2 XX chain [31–35]. We will show below that
entangled Majorana fermions between the mirror-symmetric
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FIG. 1. The description of Kitaev chain in terms of Majorana
fermion aiμ. The red and blue bonds represent J1x and J2y inter-
actions, respectively. The Hamiltonian of the Kitaev chain can be
expressed with nearest-neighbor hopping of aiμ; see Eq. (3). The arcs
show the entangled Majorana pairs in the rainbow-like state.

sites can be created by a sequence of the pair pulses. We also
study the time to reach the far-distant (size of the system)
entangled pairs in the Kitaev chain and compare that to the
generalized XY spin- 1

2 chain. We find that the Kitaev chain
takes a shorter time to reach the maximal bipartite entangle-
ment than that of the generalized XY chain, most likely due to
the fact that the zero modes in the Kitaev chain are inactive.
We show how to transform the entangled Majorana fermions
to the entangled Bell pair in spin language. We apply our
results to CoNb2O6 [41,49] and show that qualitatively similar
results hold for the twisted system.

The rest of this paper is organized as follows. In Sec. II
we introduce the Kitaev model and describe it in terms of
the Majorana fermions. With a quick review of nonlocality
of the model, we identify a conserved quantity, and develop
a process of generating the long-range pairs of Majorana
fermions. Numerical results of the time dependence of spin
correlation and bipartite entanglement entropy are also pre-
sented. In Sec. III, we extend our method to the generalized XY
spin chain, where another set of Majorana fermions is needed
to describe the full Hamiltonian. In Sec. IV we show the
connection between the entangled Majorana pairs and the Bell
pairs. In Sec. V we discuss an alternative process of generating
a fraction of the maximum entanglement by applying the π

pulse, i.e., flipping spins of half of the chain. In Sec. VI
we apply our method to the twisted Kitaev chain and show
that maximal entanglement entropy can be reached despite its
deviation from the ideal Kitaev chain. In Sec. VII we present
the effects of various perturbations on the entanglement en-
tropy of the rainbow state. In Sec. VIII we summarize our
results and discuss the limitation and extension of our theory
to related systems.

II. KITAEV CHAIN

We consider the spin- 1
2 bond-dependent Kitaev chain with

an odd-integer (2l + 1) number of unit cells, i.e., N = 2(2l +
1) total sites, as shown in Fig. 1. The Hamiltonian is given by

H =
(−J1x

4

) l∑
j=−l

σ x
jAσ x

jB +
(−J2y

4

) l−1∑
j=−l

σ
y
jBσ

y
j+1,A, (1)

where σ jμ is the Pauli matrix on the μ sublattice (μ, ν =
A, B) of the jth unit cell. To represent H in terms of Majo-
rana fermions, we introduce a complex fermion, f jμ, defined
by f jA = σ−

jA

∏
n< j σ

z
nAσ z

nB, f jB = σ−
jBσ z

jA

∏
n< j σ

z
nAσ z

nB, with

σ±
jμ = (σ x

jμ ± iσ y
jμ)/2. For each pair of fermionic operators,

we define two Majorana fermion operators as follows,

a jA = i( f †
jA − f jA), a jB = f jB + f †

jB,

b jA = f jA + f †
jA, b jB = i( f †

jB − f jB). (2)

These Majorana fermions satisfy {ajμ, anν} = 2δ jnδμν1,
{b jμ, bnν} = 2δ jnδμν1, and all other anticommutation rela-
tions are zero. This Majorana description of the Kitaev chain
is plotted in Fig. 1. Then, H can be represented by nearest-
neighbor hopping of Majorana fermions:

H = iJ1x

4

l∑
j=−l

a jBa jA + iJ2y

4

l−1∑
j=−l

a jBa j+1,A. (3)

To generate entangled Majorana pairs, we first identify a
conserved quantity associated with Majorana pairs between
the mirror ( jA,− jB) or ( jB,− jA) sites. It can be proven
using the dynamic equations in the Appendix that [Cα,H] =
0, where the Cα is defined by

Cα = i

2
a0Ba0A︸ ︷︷ ︸
Cα,0

+
l∑

j=1

(
i

2
a− jBa jA + i

2
a jBa− jA

)
, (4)

which characterizes the pairing of the Majorana fermions
between left-right symmetric sites such as ( jB,− jA) of the
Kitaev chain.

Before we discuss how to generate the entangled Majorana
pairs, let us understand the physical meaning and eigenvalues
of the conserved quantity, the Cα operator. For this purpose, it
is more intuitive to introduce the complex fermions using the
Majorana fermions defined at the mirror-symmetric sites:

α0 = a0B + ia0A

2
, α j = a jB + ia− jA

2
, α′

j = a− jB + ia jA

2
,

β0 = b0A + ib0B

2
, β j = b− jA + ib jB

2
, β ′

j = b jA + ib− jB

2
,

(5)

where α j and β j are from ( jB,− jA), and α′
j and β ′

j are
from ( jA,− jB). The nonzero anticommutation relations of
those complex fermion operators are {α j, α

†
j } = {α′

j, α
′†
j } =

1, {β j, β
†
j } = {β ′

j, β
′†
j } = 1.

The conserved quantity Eq. (4) can be written as

Cα = α
†
0α0 − 1

2
+

l∑
j=1

(α′†
j α′

j + α
†
j α j − 1)

≡ Nα,0 − 1

2
+

l∑
j=1

(N ′
α, j + Nα, j − 1), (6)

where Nα, j = α
†
j α j and N ′

α, j = α
′†
j α′

j are the occupation num-
bers of the complex fermions α j and α′

j . The complex
fermions are made of the pairing of Majorana fermions be-
tween two distant sites. Note that the b jμ operators and the
corresponding complex fermion operators β j and β ′

j are miss-
ing from the Hamiltonian Eq. (3). So ib jμbnν are conserved
quantities of the spin- 1

2 Kitaev chain. One way to characterize
these degrees of freedom is by identifying N/2 quantities

134435-2



CREATING LONG-RANGE ENTANGLED MAJORANA PAIRS: … PHYSICAL REVIEW B 107, 134435 (2023)

ib jAb jB, each containing two levels. Hence there are 2N/2

degenerate states for the ground state of the Kitaev chain
because of the biμ set of Majorana fermions. This is known
as the Majorana zero modes in the Kitaev spin chain. The bjμ

Majorana fermion sets will get involved in the Hamiltonian as
we move to the generalized XY chain in Sec. III, resulting in
no degeneracy in the ground state of the generalized XY chain.

Following the complex fermion representation, Eq. (6), the
conserved quantity Cα can take the eigenvalue from −l − 1

2
to l + 1

2 . The maximum and minimum values correspond to
the maximum pairing of Majorana fermions between left-right
mirror symmetric sites. Cα can be increased by consecu-
tively pairing the two Majorana fermions on the 0th unit cell,
which increases the expectation value 〈Cα,0〉 = 〈 i

2 a0Ba0A〉,
hence increasing 〈Cα〉. An ideal “pairing pulse” to generate
the maximum bipartite entanglement is to apply the operator
(a0B − ia0A)/2 = α

†
0 on the central bond, which results in

〈α†
0α0〉 → 1. The pairing pulse is represented as 1

2 (σ x
0Bσ z

0A +
iσ y

0A)(
∏

j<0 σ z
jAσ z

jB) in the spin language, which involves sites
on the left of 0B.

Here we demonstrate a process of generating long-range
Majorana pairs. We start from the paramagnetic ordered state
along the z direction |ψi〉 = ∏N

j=1 |↓〉. The state has 〈Cα〉 = 0,
which means it has no pairing of the Majorana fermions
for the left and right symmetric sites. We then apply the
pairing pulse (a0B − ia0A)/2 on the state, this gives 1

2 (a0B −
ia0A)|ψi〉 = 1

2 (σ x
0Bσ z

0A + iσ y
0A) (

∏
j<0 σ z

jAσ z
jB)|↓↓〉0A,0B ⊗∏

j 	=0 |↓↓〉 jA, jB = 1
2 (−|↓↑〉 + |↑↓〉)0A,0B ⊗ ∏

j 	=0 |↓↓〉 jA, jB.

Note that the state 1
2 (a0B − ia0A)|ψi〉 has 〈Cα〉 = 0.5. Hence

applying the pairing pulse (a0B − ia0A)/2 changes 〈Cα,0〉 to
0.5, making the Majorana fermions at the central sites pair
together. For the next step we wait for the time evolution.
The time evolution governed by the Kitaev Hamiltonian then
creates an entangled state involving one more site each on the
left and the right of the chain.

One can monitor the time evolution by monitoring 〈Cα,0〉 =
− 1

2 〈σ x
0Aσ x

0B〉. This value drops as the system evolves, while
other contributions of 〈Cα〉 increase, indicating an entangled
state between sites. We then monitor 〈Cα,0〉 until it drops by
a tiny value, for example 0.001. This choice is arbitrary and
can take the range from 10−6 to 0.5; we choose the value
as 0.001 because it applies to a wide range of parameters
for the generalized XY chain (see Sec. III). Furthermore, in
a real experiment one does not need to conduct measurement
to know when to apply the pairing pulse. The state reaches the
rainbow state after N/2 pairing pulses are applied. The time
interval between pulses should be finite, because the entangle-
ment needs to be spread to further-distance sites related to the
mirror symmetry. For the case of δ〈Cα,0〉 ∼ 10−6, the pulses
are applied at t = 0.06, 0.23, 0.65, 1.3h̄/J . We obtained nu-
merically that the lower limit of time interval between the
pulses is 0.04 h̄/J . However, the precise value of the lower
limit may depend on the size of the system, which is beyond
the current study.

In the example shown in Fig. 2, we apply the pairing pulse
(a0B − ia0A)/2 one more time after 〈Cα,0〉 changes by the
value of 0.001. The pairing pulse again brings the state of the
central unit cell to 1

2 (−|↓↑〉 + |↑↓〉)0A,0B, with 〈Cα,0〉 = 0.5.
And because the state is a many-body state that mixes the

FIG. 2. Generating Majorana pairs by applying a pairing pulse
(a0B − ia0A )/2 on the central unit cell in the 10-site isotropic Kitaev
chain. (a) The time dependence of 〈Cα,0〉 = − 1

2 〈σ x
0Aσ x

0B〉. Complex
fermion pulse α†

0 is applied at Jt/h̄ = 0.09, 0.66, 1.63, 2.86, when
〈Cα,0〉 drops by 0.001. The value goes back to 0.5 after applying a
pulse. (b) The time dependence of conserved quantities 〈Cα〉 and the
bipartite entanglement entropy between the left and the right of the
Kitaev chain 〈S〉 in the unit of log 2. 〈Cα〉 increase by 0.5 when the
pulse is applied at the 0th unit cell, which is due to a new Majorana
pair being created. The stars on the t axis mark the time when the
correlation function of the state is shown in Fig. 3.

sites, 〈Cα − Cα,0〉 also changes. In total 〈Cα〉 has a change of
0.5. A new Majorana pair is generated between the site 1A
and −1B. We then repeat the process of the time evolution
and applying the pairing pulse until 〈Cα〉 reaches its maximum
value of l + 1

2 . The final state contains the maximum number
of Majorana pairs between the left and right symmetric sites.
The final state is protected by the mirror symmetry; hence the
further time evolution does not destroy the state.

To illustrate how the entangled pairs evolve in time, ex-
act diagonalization (ED) is performed for a 10-site isotropic
Kitaev chain. Figure 2(a) shows the time dependence of
〈Cα,0〉 = − 1

2 〈σ x
0Aσ x

0B〉. The pairing pulse (a0B − ia0A)/2 is
applied when 〈Cα,0〉 drops by 0.001. Figure 2(b) shows the
time dependence of conserved quantities 〈Cα〉 and the bipartite
entanglement entropy S = −Trρ log ρ, where ρ is the reduced
density matrix of the left or the right half of the chain. 〈Cα〉
increases by 0.5 when the pairing pulse is applied, charac-
terizing that one more Majorana pair is created in the chain.
When 〈Cα〉 reaches the maximum, the left and the right sites
of the chain are maximally paired to a direct product state of
Majorana pairs, with the state |ψ f 〉 = (|↑↓〉 − |↓↑〉)0A,0B ⊗∏l

j=1(|↑↓〉 − |↓↑〉) jA,− jB ⊗ (|↑↓〉 − |↓↑〉)− jA, jB, which has
i
2 〈a− jBa jA〉 = i

2 〈a jBa− jA〉 = 1
2 . The entanglement entropy

also has a leap when the pairing pulse is applied, since the
pairing pulse creates a new entangled Majorana pair. When
the final state is reached, the entanglement entropy between
the left and the right also reaches its maximum, determined
by the size of the system.
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FIG. 3. The correlation functions of spins 〈σ x
iμσ x

jν〉 and the Majorana fermions 〈 i
2 aiμajν〉 of states under the time evolution of the isotropic

Kitaev Hamiltonian at Jt/h̄ = 0.01, 0.5, 1.0, 2.0, 4.0, also labeled as stars on the t axis in Fig. 2. The time is chosen as a short time after
applying each pulse.

We then inspect how the correlations of the state evolve in
time. Figure 3 shows the spin and Majorana correlations of
the many-body states at Jt/h̄ = 0.01, 0.5, 1.0, 2.0, 4.0, which
are a short time after applying each pulse and are denoted by
different colors of stars in the x axis of Fig. 2. The columns
represent different times, and the rows respectively repre-
sent 〈σ x

iμσ x
jν〉c and 〈aiμa jν〉, where 〈σ x

iμσ x
jν〉c = 〈σ x

iμσ x
jν〉 −

〈σ x
iμ〉〈σ x

jν〉. The color on the diagonal entities shows the cor-
relation functions with the sites themselves. The antidiagonal
entities are between left-right symmetric sites of the chain.
The Jt/h̄ = 0.01 state does not differ much from the corre-
lation functions after applying the first pulse at t = 0. After
each pulse, we can see there is one more pair of Majorana
fermions entangled, represented by the additional nonzero
block on the antidiagonal direction of the correlation matrix.
After that the system evolves to mix one more site each on
the left and the right, making the central unit cell entangled
with the two further symmetric sites. Applying the pulse on
the central unit cell again also changes the state of the en-
tangled distant unit cells, i.e., generating the Majorana pairs
at these two cells. After a sequence of pulses, the state is
fully entangled between the symmetric sites, as the 〈σ x

iμσ x
jν〉

and the 〈ajμanν〉 matrix only has nonzero antidiagonal
elements.

The time taken to stand by for the next pulse to be applied
takes the characteristic time of propagation. The time between
the first pulse and second pulse approximately takes ∼h̄/J2y,
the characteristic time for the state to evolve to a nondirect
product state between the central unit cell and (1A,−1B). In
general, the time holding for evolution to entangle sites on the
symmetric sites takes ∼h̄(Ny/J2y + Nx/J1x ), where Ny and Nx

are the number of Y bonds and X bonds between one of the
newly entangled sites and the central unit cell.

III. GENERALIZED XY CHAIN

In this section we apply our approach of generating Majo-
rana pairs to the generalized XY spin chain. The generalized

bond-dependent XY chain Hamiltonian can be written as

H =
(−J1x

4

) l∑
j=−l

σ x
jAσ x

jB +
(−J2y

4

) l−1∑
j=−l

σ
y
jBσ

y
j+1,A

+
(−J1y

4

) l∑
j=−l

σ
y
jAσ

y
jB +

(−J2x

4

) l−1∑
j=−l

σ x
jBσ x

j+1,A,

(7)
where the second line added to the Kitaev chain is the J1y

and the J2x interactions. Note that for the Kitaev Hamiltonian,
Eq. (1) one only needs one Majorana fermion aiμ on each site.
In fact, the hopping of the other sets of Majorana fermions,
b jA and b jB, contributes to the (J1y, J2x ) interaction. The gen-
eralized XY chain Hamiltonian, Eq. (7), can be written as

H = iJ1x

4

l∑
j=−l

a jBa jA + iJ2y

4

l−1∑
j=−l

a jBa j+1,A

+ iJ1y

4

∑
j=−l

b jAb jB + iJ2x

4

l−1∑
j=−l

b j+1,Ab jB. (8)

This Majorana description of the generalized XY chain is plot-
ted in Fig. 4. Compared with the Hamiltonian of the Kitaev

FIG. 4. The description of the bond-dependent generalized XY
chain in terms of the two independent Kitaev models, which can be
represented as hopping of Majorana fermions a′

iμs and b′
iμs. Com-

pared with the Kitaev chain (Fig. 1), another Kitaev chain made of biμ

nearest-neighbor hopping is added to the Hamiltonian; see Eq. (7).
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chain in Eq. (1) and Fig. 1, another Kitaev chain but with biμ

hopping is added to the original Kitaev chain.
Similar to the Cα conserved quantity defined in

Eq. (4), there also exists a conserved quantity [Cβ,H] = 0
that connects biμ Majorana fermions between left and
right,

Cβ = i

2
b0Ab0B +

l∑
j=1

(
i

2
b jAb− jB + i

2
b− jAb jB

)

= β
†
0β0 − 1

2
+

l∑
j=1

(β ′†
j β ′

j + β
†
j β j )

≡ Nβ,0 − 1

2
+

l∑
j=1

(N ′
β, j + Nβ, j − 1), (9)

which measures the pairing of the bjμ Majorana fermions
between the left and the right. Note that {bnμ, a jν} = 0 for
all n, j, μ, ν, so b jμ and a jμ are considered as two indepen-
dent Majorana fermion sets in the generalized XY chain. As
the generalized XY interaction Eq. (8) does not have terms
that mix ajμ and b jν Majorana fermions, the two sets of the
Majorana fermions behave independently. As a result, the
Majorana pairs of biμ can also be generated by the same
processes as in Sec. II but with the pairing pulse switched to
β

†
0 = (b0A − ib0B)/2. Note that Cβ varies synchronously as Cα

in our process because our initial state is a nondirect product
state in the Cα and Cβ basis. It turns out that the Majorana pair-
ing of the aiμ state we generated in Sec. II also corresponds
to Majorana pairs of biμ. We will discuss the relation of the
a, b Majorana pairs with the spin representation of Bell pairs
in Sec. IV.

We parametrize J1x = J sin θ cos φ, J1y = J sin θ sin φ,
J2x = J cos θ sin φ, and J2y = J cos θ cos φ, where 0 < θ <

π/2 quantifies the ratio of the interaction between the 1 bond
and the 2 bond, and 0 � φ � π/2 defines the ratio between
the two Kitaev chains. Our process of generating Majorana
pairs does not work for θ = 0 or π/2, as it corresponds to
the two-site problem for each Kitaev chain, but our approach
works for the pure Kitaev limit, φ = 0 or π/2. Using ED on
a 10-site generalized XY chain, we show that the Majorana
pairs are generated from an initial state of paramagnetic or-
der for various ratios of (J1x, J1y, J2x, J2y ). Figure 5(a) shows
the time dependence of 〈Cα,0〉 = − 1

2 〈σ x
0Aσ x

0B〉 with (θ, φ) =
(π/4, π/4) as an example. The pairing pulse (a0B − ia0A)/2
is applied when 〈Cα,0〉 drops by 0.001. Figure 5(b) shows
the time dependence of conserved quantities 〈Cα〉 and 〈Cβ〉
in different parameter sets (θ, φ). Finally when 〈Cα〉 and
〈Cβ〉 reach the maximum, long-range Majorana pairs are
created. The final state is then |ψ f 〉 = (|↑↓〉 − |↓↑〉)0A,0B ⊗∏l

i=1(|↑↓〉 − |↓↑〉)iA,−iB ⊗ (|↑↓〉 − |↓↑〉)−iA,iB, which has
the maximum value for both 〈Cα〉 and 〈Cβ〉. It takes the
total time of ∼(N/2)h̄(1/J1x + 1/J2y) to reach the maxi-
mally entangled rainbow-like state. For different parame-
ters, φ, the Kitaev limit (φ = 0, π/2) takes the minimum
time.

FIG. 5. Generating Majorana pairs by applying a pairing pulse
for different parameter sets in 10-site generalized XY chains.
θ and φ determine the parameters in the Hamiltonian by
J1x = J sin θ cos φ, J1y = J sin θ sin φ, J2x = J cos θ sin φ, and J2y =
J cos θ cos φ. (a) The time dependence of 〈Cα,0〉 = − 1

2 〈σ x
0Aσ x

0B〉 for
θ = π/4, φ = π/4. Pairing pulse at the central unit cell is applied at
Jt/h̄ = 0.09, 0.66, 1.63, 2.86. (b) The time dependence of conserved
quantities 〈Cα〉 and 〈Cβ〉 for different (θ, φ). 〈Cα〉 and 〈Cβ〉 are equal
and increase by 0.5 when the pulse is applied at the 0th unit cell.

IV. KITAEV TO XY CHAIN AND CONNECTION
TO ENTANGLED BELL PAIRS

The conventional XY chain corresponds to J1x = J2x =
J1y = J2y, which was studied by Dutta et al. [33]. It was shown
that the entangled Bell pairs can be generated using a π pulse.
On the other hand, in the Kitaev chain, we showed that the
entangled Majorana pairs are created using the pairing pulse
on the central bond. As discussed above, the XY chain can
be considered as two independent Kitaev chains made of two
sets of Majorana fermions. In this section, we describe the
relation between the Bell and Majorana pairs and show the
time taken to reach the maximum entanglement for a large
parameter space of φ and θ .

The entangled Majorana pairs are related to the Bell pairs,
through the complex fermion number described by α

†
j α j and

β
†
j β j that we introduced earlier. For each two sites there are

two occupation number operators; hence there are 2(2×N/2) =
2N states, which correspond to the 2N spin states. An intuitive
way to find the relation between the fermion occupation num-
ber and the spin states is to check a two-site problem.

Consider only two sites (0A, 0B). The four eigenstates of
|Nα,0, Nβ,0〉 correspond to four entangled states in the spin,
i.e., three triplets and one singlet, as shown in Fig. 6. For
the process of generating pairs, we start from a paramag-
netic state, which is a superposition of two complex fermion
number eigenstates, |↓↓〉 = 1

2 (|0, 1〉 − |1, 0〉), as shown in the
center of Fig. 6. Applying the pairing pulse, α

†
0 (the red solid
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FIG. 6. The eigenstates of Nα,0 and Nβ,0 and their representation
in the σ z spin basis for a (0A, 0B) two-site problem. The red and
blue solid lines correspond to applying α†

0 and β†
0 , respectively, while

the red and blue dashed lines correspond to applying α0 and β0,
respectively.

line), generates a |1, 1〉 state, which is a spin singlet Bell pair.
Similarly applying a pairing pulse, β

†
0 (the blue solid line),

also generates a |1, 1〉 state. However, the Kitaev chain with
only J1x and J2y does not involve β fermions. The states that
are not connected by the blue lines are responsible for the zero
mode, and do not participate in the entangled Majorana pairs.
On the other hand, in the conventional XY chain, either α

†
0 or

β
†
0 creates the entangled Bell pair.

For all the different ratios of {0 < θ < π/2, 0 � φ �
π/2}, the state can reach a direct product state of Bell pairs
with 〈Cα〉 = 〈Cβ〉 = l + 1

2 , with different times for different
sets of parameters. As the two Majorana fermions play equiv-
alent roles in the system, one can come up with a similar
process of generating Majorana pairs but with a β

†
0 pairing

pulse. As φ controls the magnitude between the two Kitaev
models, 0 < φ < π/4 has a larger value of the aiμ hopping
term (J1x, J2y ), while π/4 < φ < π/2 has a larger value of the
biμ hopping term (J2x, J1y ). Since for φ/4 < φ < π/2, it will
take a shorter time for the time evolution of the biμ hopping,
it will take shorter time to reach the maximally entangled Bell
pair state if one uses the pulse for φ/4 < φ < π/2 instead.

Figure 7 shows the time taken to reach the maximally
entangled Bell pairs for various (θ, φ). The α

†
0 pairing pulse

is applied to generate aiμ Majorana pairs for 0 < φ � π/4,
while the β

†
0 pairing pulse is applied to generate biμ Majorana

pairs for π/4 � φ � π/2. For a fixed θ which measures the
ratio of the 1 bond and 2 bond, it takes the shortest time when
φ reaches 0 or π/2, which is the corresponding Kitaev limit
of the type of pulse applied. For a fixed φ, it takes the shortest
time when θ = π/4, i.e., J1μ = J2μ with μ = x, y, which is
the isotropic spin- 1

2 Kitaev chain.

V. APPLYING A SPIN-FLIP PULSE TO GENERATE
ENTANGLEMENT

In the previous sections we successfully generated the
maximally entangled state using a pairing pulse on the cen-
tral unit cell. The pairing pulse α

†
0 we applied is a linear

combination of two spin-flip pulses. Thus a linear combi-
nation of α0 and α

†
0 can be a spin flip pulse. For example,

the operator α0 + α
†
0 = σ x

0Bσ z
0A

∏
j<0 σ z

jAσ z
jB can also increase

the conserved quantity 〈Cα〉 when 〈Cα,0〉 < 0. This spin-flip

FIG. 7. The time taken to reach the maximum sector of 〈Cα〉 for
different θ and φ, with the parameter range (θ = ( 1

4 ± 0.22)π , 0 �
φ � π

2 ).

operator corresponds to applying simultaneous π pulses on
half the qubits, which is feasible in cold-atom experiments
nowadays [33]. In fact, one can show that the pulse, α

†
0 + α0,

changes 〈Cα,0〉 to −〈Cα,0〉, while it does not change other
occupation numbers. As a result, one can wait for 〈Cα,0〉 to
be negative and the spin-flip pulse can then increase the value
of 〈Cα〉. In this section we investigate the possible maximum
〈Cα〉 the system can reach by applying the spin-flip pulse.

We start with a direct product of σ x
jμ eigenstates, |ψi〉 =∏N

j=1(|↑〉 + |↓〉). The occupation number form of |ψi〉 in the
(0A, 0B) sub-Hilbert space is |ψi〉 ∼ |0, 0〉 + |0, 1〉, which

FIG. 8. (a) The time evolution of 〈Cα,0〉 for various φ with θ =
π/4. The spin-flip pulse is applied when 〈Cα,0〉 reaches a negative
minimum. (b) The time evolution of 〈Cα〉/〈Cα〉max, ∼0.5 of 〈Cα〉max,
can be reached by applying the spin-flip pulse.
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FIG. 9. The interaction plane of the twisted Kitaev chain; n̂1 and
n̂2 are two directions of the spin interaction on the 1 and 2 bond.
When θt = 0 the model maps to Ising chain, and θt = π/4 accounts
for the Kitaev chain.

has 〈Cα〉 = −0.5. Applying the spin-flip pulse, (α†
0 + α0),

sends the state to |1, 0〉 + |1, 1〉, which has 〈Cα〉 = 0.5. To
maximally increase 〈Cα〉, a pulse is applied when 〈Cα,0〉
reaches its negative minimum, i.e., 〈Cα,0〉 < 0 and ∂t 〈Cα,0〉 =
0. After several pulses, 〈Cα,0〉 oscillates within a positive inter-
val; hence applying the spin-flip pulse results in the decrease
of 〈Cα,0〉. The system reaches the possibly maximally entan-
gled state, when the spin-flip pulse cannot further increase
〈Cα,0〉.

Numerical simulation is performed for a 10-site general-
ized XY chain, with θ = π/4 for various φ. Figure 8(a) shows
the evolution of 〈Cα,0〉. For different parameters one can reach
a maximum of ∼0.5(l + 1

2 ). The φ = 0 line is the Kitaev

limit, while φ = π/4 is the isotropic XY chain. The spin-flip
pulse does not yield the maximum entanglement in the XX
chain, which is consistent with the results in Ref. [33]. Note
that 〈Cα〉 measures the number of Majorana pairs, so part of
the system can be described approximately by Majorana pairs.
The Kitaev limit gives the largest maximal 〈Cα〉, because our
spin-flip pulse α

†
0 + α0 promotes the a jμ Majorana fermions

pairing on the central unit cell, while for other parameter set-
tings the Hamiltonian involves dynamics of the bjμ Majorana
fermions.

VI. APPLICATION TO TWISTED KITAEV CHAIN

We apply our theory to the recently proposed twisted Ki-
taev chain, CoNb2O6, described by the following Hamiltonian
[41,49],

Ht = −K

4

∑
j

(
σ

n̂1
jAσ

n̂1
jB + σ

n̂2
jBσ

n̂2
j+1,A

)
, (10)

where σ n̂
jμ = n̂ · �σ jμ. n̂1 and n̂2 are the two directions of in-

teraction for bonds 1 and 2. The two directions n̂1 and n̂2 are
fully described by introducing the angle 2θt between these two
directions in the plane they determine. The relation between θt

and the two directions is plotted in Fig. 9. θt is experimentally
measured as 17◦ for the cobaltate chain, CoNb2O6 [41]. The
Hamiltonian can be written as follows using the basis in Fig. 9,

H = −K

4

∑
j

[
cos2

(π

4
+ θt

)
σ x

jAσ x
jB + sin2

(π

4
+ θt

)
σ

y
jAσ

y
jB + cos 2θt

2

(
σ x

jAσ
y
jB + σ

y
jAσ x

jB

)]

+
(

−K

4

) ∑
j

[
cos2

(π

4
− θt

)
σ x

jBσ x
j+1,A + sin2

(π

4
− θt

)
σ

y
jBσ

y
j+1,A + cos 2θt

2

(
σ x

jBσ
y
j+1,A + σ

y
jBσ x

j+1,A

)]
, (11)

where the first and the third lines are the generalized XY
model. The second and fourth lines are cross terms of σ x and
σ y, which accommodate non-Kitaev interactions that cannot
be fully canceled out by a change of basis. At θt = π/4 the
Hamiltonian goes to the Kitaev spin chain, with the cross
terms becoming zero. Starting from the state

∏
j |↓↓〉, one

can apply β
†
0 when 〈Cβ,0〉 is less than 0.499. This gives exactly

the same result as the Kitaev chain in Sec. II. With the cross
terms turned on, although Cα and Cβ are not conserved under
the whole Hamiltonian, we perform the same approach as
for θt = π/4. The results are shown in Fig. 10. For the non-
Kitaev limit θt = 30◦ and θt = 17◦, after applying the pulse
〈Cβ〉 jumps to non-half-integer values. The time evolution
afterward does not preserve 〈Cβ〉. But after l pulses the state
still reaches the rainbow-like state of Majorana pairs, which
is the only state in the eigensector with the highest 〈Cβ〉 and
〈Cα〉 eigenvalue, even with the non-Kitaev interaction of the
material comparable to the Kitaev interaction. The rainbow
state is still protected by the mirror symmetry of the 1D chain
in the twisted Kitaev chain, despite the fact that Cβ is no longer
conserved. The final state also has 〈Cα〉 = 〈Cβ〉 = l + 1

2 , and

the wave function is the same as the state generated in the
untwisted Kiteav chain.

VII. EFFECTS OF VARIOUS PERTURBATIONS
ON ENTANGLEMENT ENTROPY

As shown above, the twisted Kitaev chain contains not only
the original Kitaev interaction (alternating SxSx and SySy) but
also the cross terms such as SxSy. We showed that our protocol
to create the rainbow state is valid despite the presence of
other interactions. In this section, we consider other types
of perturbations that may be present in solid-state materials.
For example, a mirror-symmetry breaking perturbation like
nonuniform interaction strength may affect the process of
creating long-range entangled Majorana pairs. Other perturba-
tions, such as (Jz/4)

∑N−1
j σ z

j σ
z
j+1, i.e., SzSz (ZZ) interactions,

may also affect the structure of Majorana fermions.
To investigate the effects of perturbations on the entangle-

ment entropy, we consider four different perturbations which
are added to the isotropic Kitaev chain (J/4)

∑
j (σ

x
j σ

x
j+1 +

σ
y
j σ

y
j+1): (a) nonuniform bond interaction

∑
j

1
4 J p

j, j+1σ
x
j σ

x
j+1,

where J p
j, j+1 = p jJ with interaction strength varying by dis-
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FIG. 10. Creating Majorana pairs in the twisted Kitaev chain.
The solid and dashed lines are the time evolution of 〈Cβ〉 and bipartite
entanglement entropy 〈S〉 in the unit of log 2 for various twisted
angles θt , respectively.

tance j with a parameter p; (b) longer-range interaction∑
j (J

L
i j/4)(σ x

i σ x
j + σ

y
i σ

y
j ), where JL

i j = J/|i − j|γ ; (c) exter-
nal magnetic field

∑
j hσ z

j /2; and (d) ZZ spin interaction

(Jz/4)
∑N−1

j σ z
j σ

z
j+1. The results of maximum 〈Cα〉 are shown

in Fig. 11.
As noted, a state with finite 〈Cα〉 contains entangled Majo-

rana pairs. For nonuniform interactions, maximum 〈Cα〉 ∼ 1.5
for p = 0.1, which means approximately 3 pairs are created
in a 10-site chain for the largest J p

j, j+1 ∼ 0.9J . For long-range
interactions, the limit when γ → ∞ recaps our previous re-
sults of creating N/2 Majorana pairs in the N-site system.
On the other hand, the limit γ = 0 means long-range inter-
actions have the same magnitude of the nearest-neighbour
spin interactions. In the γ = 0 limit, we find 〈Cα〉 ∼ 1.0,
indicating approximately 2 pairs are generated in the 10-site
chain. A homogeneous magnetic field along the z direc-
tion, transpose to the Ising interaction direction, does not
affect maximum entanglement at all. This is because the final
state, i.e., the rainbow state, is a simultaneous eigenstate of
Htotal = (Kitaev + z-direction magnetic field) and Cα opera-
tor, even though these two operators do not commute. In
other words, 〈Cα〉 = 〈rainbow state|Cα|rainbow state〉 remain
unchanged with time after the system reaches the rainbow

FIG. 11. 〈Cα〉max of 10-site Kitaev chain under (a) nonuniform bond interactions, (b) power law decay long-range interactions, (c) external
magnetic field, (d) nearest-neighbor ZZ interactions. When 〈Cα〉max is 1, the corresponding entropy is 2 log 2, implying that two pairs are
created.
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state. In fact, the observation of the constant 〈Cα〉 = 2.5 under
the z-direction magnetic field confirms that we have reached
the rainbow state independently of the field strength.

Finally, we find that under the ZZ spin interaction of up to
Jz/J = 1.0, we still observe a finite 〈Cα〉, which approaches
1, implying two pairs similar to the longer-range interaction
γ → 0 case. Overall, our protocol demonstrates robustness
under a wide range of perturbations albeit the entanglement
is smaller in some limits.

VIII. SUMMARY AND DISCUSSION

To realize distributed quantum networks, creating long-
range entangled pairs in many-body systems is desirable.
However, entangled pairs of two distant qubits are difficult
to generate due to interactions in many body systems. The
rainbow state that maximally entangles the left and right part
of a 1D chain was proposed [26,27,34]. Recently a symmetry-
protected Bell pair entanglement such as the left-right mirror
symmetry of the 1D XX spin chain using a π pulse was
suggested [33].

We investigated a way to generate long-range Majorana
pairs in the spin- 1

2 Kitaev chain, the 1D version of the honey-
comb Kitaev model. We found that the maximally entangled
rainbow-like Majorana pairing state can be reached, with a
sequence of pairing pulses applied on the central unit cell of
the system. The conserved quantity 〈Cα〉 associated with the
mirror symmetry jumps by a half integer after a pulse, and
reaches the maximum possible value in the Kitaev chain. We
further generalized our method of creating long-range Majo-
rana pairs into a generalized XY chain with bond-dependent
interactions, which is described by two independent Kitaev
chains. The results in the generalized XY chain are compared
with those of the Kitaev chain. The Kitaev chain has the
minimal time to reach the maximum entanglement entropy.
This is because the process only involves one set of Majorana
fermions, while the dynamics of the other set of Majorana
fermions remains irrelevant to the process of generating Ma-
jorana pairs. We also studied the entangled states generated
by a π pulse. This spin-flip pulse would not generate the
designated rainbow-like state, but can reach a fraction of 〈Cα〉
achieved by using the pair pulse and a significant bipartite
entanglement entropy.

Our theory can be applied to a twisted Kitaev chain,
CoNb2O6, with an effective moment of Jeff = 1

2 . This quasi-
one-dimensional chain has been known as one of the best
examples of Ising ferromagnets. However recently it was
suggested that that the bond-dependent Ising interaction, i.e.,
the Kitaev interaction with a tilted quantization axis, dubbed
a twisted Kitaev chain model, describes its dynamics better
[41]. We applied our theory to the twisted Kitaev chain and
found that the entangled Majorana pairs with finite entangle-
ment entropy can also be generated by the pairing pulse. A
challenge is applying the nonunitary pulse, which often re-
quires a postselection process and takes a considerably longer
time than applying a unitary pulse. Thus how to implement
the nonunitary pulse [52,53] in a real experiment needs to
be explored in the future. For CoNb2O6, one can use the
unitary pulse, which also results in the entangled state, even
though it is not maximally entangled. The emergence of spin-

spin correlations in this case under the spin-flip pulse signals
the entangled Majorana pairs. Another direction that one
could investigate in the future includes a higher-spin S Kitaev
[50,54–56] and generalized XY chains.
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APPENDIX: DYNAMICS OF CORRELATION FUNCTIONS

Here we list the results of the dynamics of the Majorana
fermion correlation functions between the left-right symmet-
ric sites in the Kitaev spin chain in Fig. 1. It can be verified
that

∂t

〈
i

2
a− jBa jA

〉
= i

4h̄
〈J1xa− jAa jA + J2ya− j+1,Aa jA

+ J2ya− jBa j−1,B + J1xa− jBa jB〉, (A1)

∂t

〈
i

2
a− jAa jB

〉
= i

4h̄
〈J2ya jBa− j−1,B + J1xa jBa− jB

+ J1xa− jAa jA + J2ya j+1,Aa jB〉. (A2)

The evolution of the Majorana correlation function between
(0A, 0B) follows

∂t

〈
i

2
a0Aa0B

〉
= i

4h̄
〈J2ya0Ba−1B + J2ya0Aa1A〉, (A3)

the second derivative follows

∂2
t

〈
i

2
a0Aa0B

〉
= −iJ2y

8h̄2 〈2J2ya0Ba0A + 2J2ya1Aa−1B

+ J1xa0Ba−1A + J1xa0Aa−1B + J1xa1Aa0B

+ J1xa1Ba0A〉. (A4)

It turns out that the right-hand sides of Eq. (A1), Eq. (A2),
and Eq. (A3) cancel out when the left-hand sides add up to Cα .
Hence ∂t 〈Cα〉 = i

h̄ 〈[H, Cα]〉 = 0. This commutation relation is
independent of ratios between J1x and J2y. The commutation
relation is also independent of the sign of J1x and J2x, i.e.,
ferromagnetic or antiferromagnetic interactions. The conser-
vation of Cα also allows different value for the J1x or J2y bond,
but the left-right symmetry must exist. For example, the J2y

between 0B and 1A sites can be different from the J2y between
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1B and 2A sites, but must be the same as the J2y between
−1B and 1A. Similarly, one can derive the conservation of Cβ .

From Eq. (A4) one can verify the dynamic properties shown
in Figs. 2 and 5.
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