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The wetting transition in the transverse-field spin- 1
2 XY model with opposite boundary fields hx

Lhx
R < 0 is

studied analytically and numerically. We find that the phase diagram is complex and that the wetting transition is
of three types: first, second, and fourth order. The energy gap is obtained analytically, and the magnetization
profile, correlation functions, and wetting layer thickness are obtained numerically. For |hx

L|, |hx
R| < hw , a

first-order phase transition occurs at hx
L = −hx

R, where hw is the continuous wetting transition point. For |hx
R|

larger than hw , the continuous wetting transition occurs at hx
L = hw , and vice versa. For g �= 1 − γ 2, the wetting

transition is second order, and commensurate and incommensurate phases occur for g < 1 − γ 2 and g > 1 − γ 2,
respectively. For g = 1 − γ 2, the wetting transition is fourth order. For this fourth-order phase transition, the
third derivative of the surface magnetization oscillates and diverges near the transition point. The correlation
length exponent is ν = 2, and the dynamic exponent is z = 2. Thus, this fourth-order transition belongs to a new
universality class. The wetting behavior is induced by asymmetric boundary fields hx

L = −hx
R and its finite-size

scaling is discussed.

DOI: 10.1103/PhysRevB.107.134433

I. INTRODUCTION

Zero-temperature quantum phase transitions are phenom-
ena of considerable interest [1–3]. These transitions arise
in many-body systems with competing ground states con-
trolled by nonthermal parameters. They are continuous when
the ground state of the system changes continuously at the
transition point and correlation functions develop a divergent
length scale. They are instead of first-order when ground-state
properties are discontinuous across the transition point.

The one-dimensional XY model is a good testing ground
for the quantum phase transition. In 1961 Lieb [4] solved
exactly the XY model in the absence of a magnetic field,
and Katsura [5] computed the spectrum of the XY model
with magnetic field in 1962. The two-dimensional XY model
was subsequently investigated using a variety of techniques
[6]: the renormalization group [7,8], Monte Carlo simu-
lations [9,10], perturbation theory [11], exact finite-lattice
calculations [12,13], variational methods [14], and spin-wave
theory [15,16]. The quantum dynamics [17] and entanglement
[18–20] of the spin- 1

2 XY chain in a transverse field have been
extensively studied by scholars.

We studied the wetting transition in the transverse-field
XY model with boundary fields and found many interesting
phase transitions remain to be uncovered. The classical wet-
ting transition has a long history and has attracted enormous
theoretical and experimental interest [21,22]. The first quanti-
tative scientific study on the wetting phenomenon was carried
out in 1805 by T. Young, who introduced the concept of the
contact angle and formulated the Young equation. Moldover
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and Cahn performed experiments in 1980 demonstrating the
existence of the wetting phase transition; that is, binary liq-
uid mixtures below a consolute point Tc exhibit two-phase
coexistence. When the temperature is lowered, one phase is
adsorbed on the wall of the container and also completely
infiltrates the gas-liquid interface. When the temperature is
reduced to a finite temperature Tw, the phase forms droplets
at the gas-liquid interface. In addition, due to the correspon-
dence between Ising ferromagnets and lattice-gas models of
gas-fluid systems [23], the wetting transition can be studied
using Ising models with boundary fields. Over 40 years ago,
Abraham obtained an exact solution to the wetting transi-
tion in the two-dimensional Ising model with boundary fields
[24,25]. The quantum version of the Abraham model, the
one-dimensional transverse Ising model with boundary fields,
was recently studied [26–28].

In this paper, we study the quantum wetting transition in
the transverse-field XY model with opposite boundary fields.
Consider that the system is in the ordered phase. Due to the
opposite boundary fields, there is an interface between the up-
spins and down-spins.

Tuning one of the boundary fields causes the interface to
unbind from the boundary at which the interface is localized.
The unbinding of the interface is called the wetting transition.
We solve the model analytically and numerically. The energy
gap, boundary magnetization and susceptibility, and the corre-
lation function and length are calculated. The corresponding
critical exponents are obtained. The phase diagram is found
to be similar to that for the one-dimensional transverse-field
Ising model; i.e., the wetting transition can be both discon-
tinuous and continuous. In addition, there is a continuous
fourth-order wetting transition. For this fourth-order wetting
transition, the third derivative of the boundary magnetization
oscillates and diverges at the transition point. The oscillating
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scaling function is obtained numerically for different lattice
sizes. This result is rather interesting because oscillating di-
vergence is rare. The correlation length exponent is ν = 2,
and the dynamic exponent is z = 2. This transition belongs
to a new universality class.

Thirty years ago, Parry and Evans pointed out that the
wetting behavior induced by asymmetric wall fields has a
profound effect on all aspects of the phase equilibria of the
confined fluid [29]. We also discuss the quantum wetting
transition with asymmetric boundary fields and its finite-size
scaling. In the model we study, this effect occurs around
the end point of the first-order phase transition, i.e., hx

L= −
hx

R=hw.
This paper is organized as follows. In Sec. II, we define the

transverse-field spin- 1
2 XY model with boundary fields and

introduce our procedure to solve the model. In Sec. III, we
discuss the phase diagram in detail qualitatively. In Secs. IV,
V, and VI, the first-, second-, and fourth-order wetting tran-
sitions are presented, respectively. In Sec. VII, we study the
finite-size effect on the end point of the first-order phase
transition. Section VIII is a summary.

II. THE SPIN- 1
2 XY MODEL WITH BOUNDARY FIELDS

AND THE SOLVING METHOD

The Hamiltonian of the one-dimensional transverse-field
anisotropic spin- 1

2 XY chain with boundary fields is given by

H = H0 + Hb, (1)

where

H0 = −
N−1∑
i=1

1

2

(
Jx

i σ x
i σ x

i+1 + Jy
i σ

y
i σ

y
i+1

) − g

2

N∑
i=1

σ z
i (2)

is the usual transverse-field XY model and

Jx
i = Ji

2
(1 + γi ),

Jy
i = Ji

2
(1 − γi ), (3)

where σα
i (α = x, y, z) are Pauli matrices, Ji are couplings,

and γi are the anisotropy measures. The Hamiltonian H0 indi-
cates there is an isotropic XY chain where Jx

i = Jy
i for γi = 0

and an transverse Ising chain for γi = ±1. The boundary field
term Hb can be generally written as

Hb = − 1
2

(∣∣hx
L

∣∣σ x
1 − ∣∣hx

R

∣∣σ x
N+1

)
, (4)

where hx
L, hx

R are the left and right boundary longitudinal
fields, respectively. As there is no particular significance for
one boundary field being in the x direction and the other being
in the y direction, this case will not be discussed. Here, the
two boundary fields of the Hamiltonian only lie along the x
direction for γ0 = γN = 1.

Following well-known theories [26,30–32], we extend the
chain by adding two additional spins at the 0 and N + 1 sites.
The corresponding effective Hamiltonian He1 is given by

He1 = H0 − 1
2

(∣∣hx
L

∣∣σ x
0 σ x

1 + ∣∣hx
R

∣∣σ x
Nσ x

N+1

)
. (5)

As σ x
0 and σ x

N+1 are free from the transverse field, they
commute with the effective Hamiltonian He1 and can be

diagonalized simultaneously. The Hilbert space can be di-
vided into four sectors labeled (1, 1), (1,−1), (−1, 1), and
(−1,−1), where (sx

0, sx
N+1) are eigenvalues of σ x

0 and σ x
N+1.

The restriction of He to the four sectors gives rise to the Hamil-
tonian H with four cases of different signs of hx

L, hx
R. Here,

we investigate the case hx
L > 0, hx

R < 0 and the sector (1,−1).
The case hx

L < 0, hx
R > 0 can be obtained by symmetry.

Then we perform the Jordan-Wigner transformation and
define the fermionic operators

c†
i = (−1)i

i−1∏
j=0

σ z
j σ

+
i , (6)

where σ± = (σ x ± iσ y)/2 (i is the imaginary unit). The effec-
tive Hamiltonian becomes

He = gN

2
+

N+1∑
i, j=0

[
c†

i Ai jc j + 1

2
c†

i Bi jc
†
j − 1

2
ciBi jc j

]
, (7)

where A and B are symmetric and antisymmetric matrices,
respectively. Generally, the physical quantities Ji and γi can
be arbitrary. However, in this study, we only consider uniform
quantities: the couplings Ji = J = 1 and the anisotropy γi =
γ , where i = 1, 2, . . . , N − 1. Only hx

L, hx
R need to be assigned

individually.
For clarity, we explicitly write the matrix elements for N =

4 as follows:

A = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −|hx
L| 0 0 0 0

−|hx
L| −2g −J 0 0 0

0 −J −2g −J 0 0
0 0 −J −2g −J 0
0 0 0 −J −2g −|hx

R|
0 0 0 0 −|hx

R| 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

B = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −|hx
L| 0 0 0 0

|hx
L| 0 −Jγ 0 0 0

0 Jγ 0 −Jγ 0 0
0 0 Jγ 0 −Jγ 0
0 0 0 Jγ 0 −|hx

R|
0 0 0 0 |hx

R| 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We perform a Bogoliubov transformation by introducing
new canonical fermionic variables:

ηk =
N+1∑
i=0

(gk,ici + hk,ic
†
i ). (8)

These variables can be used to diagonalize the Hamiltonian.
The coefficients gk,i and hk,i satisfy the following equations:

gk,i = ψk,i + φk,i

2
, hk,i = φk,i − ψk,i

2
, (9)

where ψk,i is the eigenvector of the matrix D:

D ≡ (A + B)(A − B), Dψk = ε2
kψk, (10)

and

φk = (A − B)ψk/εk . (11)
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In the equation presented above, εk �= 0. Then, we explicitly write the elements of the matrix D for N = 4:

D = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
∣∣hx

L

∣∣2
4g

∣∣hx
L

∣∣ 2
∣∣hx

L

∣∣(1 − γ ) 0 0 0

4g
∣∣hx

L

∣∣ 4g2 + (1 + γ )2 4g 1 − γ 2 0 0

2
∣∣hx

L

∣∣(1 − γ ) 4g 4g2 + 2(1 + γ 2) 4g 1 − γ 2 0

0 1 − γ 2 4g 4g2 + 2(1 + γ 2) 4g 0

0 0 1 − γ 2 4g 4g2 + (1 − γ )2 + 4
∣∣hx

R

∣∣2
0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

To study the wetting phase transition [27,28], we set the
boundary fields hx

L > 0, hx
R < 0 in the opposite direction. For

the Hamiltonian H with hx
L > 0, hx

R < 0, the ground state and
the first excited state of H are the first and second excited
states of the effective Hamiltonian He1, respectively. These
states belong to the sector (1,−1) and are given by

|
1〉 = η
†
1|
0〉, |
2〉 = η

†
2|
0〉. (13)

The energy gap is given by the difference between the energies
of these two states: � = ε2 − ε1.

There is clearly a zero eigenvalue ε0 = 0 for the matrix D
in Eq. (12). The zero mode is not related to the spectrum of the
Hamilton H , and only the nonzero modes are relevant. There
are N + 1 nonzero modes that we label by k = 1, 2, . . . , N +
1. Here, 0 = ε0 < ε1 < ε2 . . . εN+1.

To calculate the correlation function Cx
i, j , we define two

new operators [4]:

Ai = c†
i + ci, Bi = c†

i − ci. (14)

We obtain the correlation function [4] for the ground state
|
1〉 of the Hamiltonian H with hx

L > 0, hx
R < 0:

〈
1|σ x
i σ x

j |
1〉
= 〈
1|BiAi+1Bi+1 . . . Aj−1Bj−1Aj |
1〉

=

∣∣∣∣∣∣∣∣
Gi,i+1 Gi,i+2 . . . Gi, j

Gi+1,i+1 Gi+1,i+2 . . . Gi+1, j

. . . . . .

Gj−1,i+1 Gj−1,i+2 . . . Gj−1, j

∣∣∣∣∣∣∣∣
, (15)

where j > i, and we define the contractions of pairs from
Eqs. (13) and (14):

Gi, j = 〈
1|BiAj |
1〉 = −〈
1|AjBi|
1〉

= ψ1,iφ1, j −
N+1∑
k=2

ψk,iφk, j .
(16)

As σ x
0 commutes with He1, the magnetization of the ith spin

is related to the correlation function given by

mx
i = 〈
1|σ x

i |
1〉 = 1

sx
0

〈
1|σ x
0 σ x

i |
1〉. (17)

Due to σ x
0 σ x

1 = B0A1, the boundary magnetization of σ x
1 is

given by [28]

mx
1 = 1

sx
0

[
ψ1,0φ1,1 −

N+1∑
k=2

ψk,0φk,1

]
. (18)

Therefore, we can calculate the magnetization and the corre-
lation function for all cases of hx

L, hx
R with different signs.

III. PHASE DIAGRAM

The state we study is ordered; i.e., the spontaneous sym-
metry breaking occurs. Specifically it is given that 0 < g < 1.

The phase diagram is quite complex since there four pa-
rameters: hx

L, hx
R, g, and γ . In order to give readers a clear

picture, we discuss it qualitatively here.
For given g and γ , the phase diagram is sketched in Fig. 1.

The point O (hx
L = 0, hx

R = 0) is the original point. The param-
eter plane is divided into four parts. The boundaries of the four
parts are represented by the red and blue solid lines. The situ-
ation in the second quadrant is symmetric to that in the fourth
quadrant (see Fig. 1(b) in Ref. [27]).

The red solid line is given by hx
L = −hx

R for |hx
L|, |hx

R| <

hw, where hw depends on the parameter g and γ and is the
continuous wetting transition point. The blue solid lines in the
fourth quadrant are given by hx

L = hw for hx
R < −hw and hx

R =
−hw for hx

L > hw.
The situation in the first quadrant can be understood easily.

Since hx
L, hx

R > 0, the ground state should have mx
i > 0 for all

spins. Therefore we call that phase “positive.” Similarly the
ground state in the third quadrant, where hx

L, hx
R < 0, has mx

i <

0 for all spins. So we call it the “negative” phase.
The situations in the second and fourth quadrant are subtle.

Since the boundary fields are opposite, the magnetization

FIG. 1. The phase diagram for given g and γ .
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should be positive (negative) at the left side of the spin
chain and negative (positive) at the right. There should be
an interface between the spins with positive and negative
magnetization in the spin chain. Without calculation we can
be sure that the interface is just at the middle of the spin chain
for hx

L = −hx
R based on the symmetry.

At the nonwet region, whose boundaries are the negative hx
R

axis, the coexistence line (the red solid line), and the vertical
critical wetting transition line (the vertical blue solid line), the
interface is pinned at the left end of the spin chain. The num-
ber of spins with positive magnetization is finite. The number
of the spins with positive magnetization can be called the
positive layer thickness. At the vertical wetting transition line,
the positive layer thickness diverges. This phase transition is
continuous. It is the quantum version of the wetting transition
on the two-dimensional Ising model or Abraham’s model [25].
At the nonwet region, whose boundaries are the positive hx

L
axis, the coexistence line, and the horizontal critical wetting
transition line, the interface is pinned at the right end of the
spin chain. The number of spins with negative magnetization
is finite. We call the number of the spins with negative mag-
netization the negative layer thickness. At the vertical wetting
transition line, the negative layer thickness diverges. We study
this kind of phase transition in Secs. V, VI, and VII.

As the boundary fields vary from the point N to P close to
the coexistence line, the interface change discontinuously. The
phase transition is the first order. Considering that the points
N and P are very close, say their coordinates (hx

L, hx
R) are

given by (h1 + δ,−h1) and (h1,−h1 − δ), respectively, where
0 < δ � 1 and 0 < h1 < hw. The two points are very close,
but the two phases are very different. Their magnetization
profiles are totally different [see Figs. 3(b), 18(a)]. At point
N , the interface is pinned at the left end of the spin chain,
since the absolute value of hx

L is larger than that of hx
R and the

left boundary field dominates. On the contrary, at the point
P, the interface is pinned at the right end of the spin chain
since the absolute value of hx

R is larger than that of hx
L and the

right boundary field dominates. In the terminology of classical
wetting transition, the two states of N and P can be called dry
and wet phases.

As the boundary fields vary from the point N to P, the
interface jumps from the left end to the right end of the bound-
ary. In the thermodynamic limit, the change in the interface
position is infinitely large, so the phase transition is the first
order. We study this phase transition in Sec. IV.

Why is the red line called the coexistence line? Take the
points N to P as a example. Suppose that we set hx

L = −hx
R on

a real spin chain experimentally. Practically there is always
an environmental noise. Assuming the noise intensity on the
boundary fields is δ, then the boundary fields can be N or P,
which correspond two very different phases. Therefore under
the surface fields hx

L = −hx
R, both phases can exist.

As a comparison, we see the points N ′ to P′ close to the red
dashed line, which is the extended one of the red line. Because
the two points are in the wetting region, the interface is far
away from both boundaries. In fact, close to the red dashed
line, the interface is just at the middle of the spin chain. Minor
deviation from the red dashed line can induce minor shift of
the interface, so points N ′ to P′ correspond to the same phase.
In this case only one phase exists.

FIG. 2. The 3-dimensional sketch map of phase diagram for a
given γ .

The point Q is the end point of the first-order phase transi-
tion, and also the transition point from the coexistence of two
phases, in which the interface is pinned at the right end or the
left end of the spin chain, to one phase, in which the interface
is located at the middle of the spin chain. Parry and Evans
pointed out that the wetting behavior induced by asymmetric
wall fields has a profound effect on all aspects of the phase
equilibria of the confined fluid 30 years ago [29]. Similar
effects in the quantum wetting model should occur near by
the point Q. We study them in Sec. VII.

The 3-dimensional phase diagram for a given γ is sketched
in Fig. 2. The green solid curve is given by hx

L = −hx
R =

hw(g, γ ). The two leaves of gray curved surfaces are com-
posed of wetting transition lines shown with solid blue lines
in Fig. 1. The orange surface is composed of the coexistence
line shown with the solid red line in Fig. 1. The red solid line
and the blue solid lines are in the same plane given by g = g1.
Figure 1 is just such a plane.

The ordered state in the XY model without boundary fields
has been obtained by Lieb et al. [4,5]. There are two types:
the commensurate phase for g > 1 − γ 2 and incommensu-
rate phase [33] for g < 1 − γ 2. It is found that the wetting
transition for the two phases belongs to the same universality
although there are differences in terms of detail. However for
g = 1 − γ 2, we find that the wetting transition is fourth order.
This is a very interesting result.

IV. FIRST-ORDER PHASE TRANSITION
ACROSS THE COEXISTENCE LINE

In this section, we study the first-order phase transition
across the red solid line in Fig. 1.

There are two types of eigenvectors for the matrix D in
Eq. (10): extended and localized states. For hx

L, |hx
R| < hw, two

localized states exist at the two boundaries; the competition
between these localized states induces the first-order phase
transition. In the limit of N → ∞, these eigenvectors for the
state localized at the left end are given by

ψL,0 = 1 + γ

2
∣∣hx

L

∣∣ (
c1x2

1 + c2x2
2

)
,

ψL,i = (−1)i
(
c1x2−i

1 + c2x2−i
2

)
, 1 � i. (19)
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FIG. 3. (a) First-order phase transition across the border with
g = 0.84. (b) Magnetization profiles around the first-order phase
transition at hx

L = |hx
R| with hx

R = −0.3, g = 0.84, and N = 100.

The eigenvectors for the state localized at the right end are
given by

ψR,N+1 = −1 + γ

2
∣∣hx

R

∣∣ (
d1x2

1 + d2x2
2

)
,

ψR,N−i = (−1)N−i
(
d1x1−i

1 + d2x1−i
2

)
, 0 � i, (20)

where c1, c2, d1, and d2 are normalization constants, and the
eigenvalues of the localized states are given by

ε =
√√√√1

4

[
(1 − γ 2)

(
x + 1

x

)2

− 4g

(
x + 1

x

)
+ 4(g2 + γ 2)

]
.

(21)

x1 and x2 satisfy ε2(x1) = ε2(x2) in Eq. (21), where x1, x2 can
be complex numbers and |x1|, |x2| > 1 guarantee the state to
be localized.

The eigenvalues of the localized eigenstates at both ends
are given by (see the Appendix)

εL,R =
√

g2 + γ 2 − 2gβL,R√
αL,R(1 − γ 2)

+ β2
L,R

αL,R
, (22)

where

αL,R = (1 + γ )2 − 4hx
L,R

2
, βL,R = 1 + γ − 2hx

L,R
2
. (23)

Equation (22) shows that the difference in the eigenval-
ues of the localized states at both ends only depends on
the difference between the boundary fields hx

L, hx
R, and ε2

L =
ε2

R for |hx
L| = |hx

R|. These two eigenvectors are just the first
and second excited states defined in Eq. (13). The corre-
sponding eigenvalues are given by ε1 = min(εL, εR) and ε2 =
max(εL, εR). As we change hx

L from hx
L < −hx

R to hx
L > −hx

R,
the two levels cross, then the first-order phase transition oc-
curs. The energy gap closes at the transition point hx

L = −hx
R

in the thermodynamic limit.
In addition, some physical quantities such as the boundary

magnetization mx
1 show discontinuity. The discontinuity can

be shown rigorously in the exact solution. However it can
be shown approximately in a large-size system, which can be
solved numerically. For a system with size N = 100, we solve
the matrix D numerically, and calculate the magnetization. We
show the results in Fig. 3.

The discontinuity in boundary magnetization mx
1 is shown

in Fig. 3(a). It exhibits a jump at hx
L = |hx

R| as we fix

TABLE I. Fitting coefficients for different lattice sizes.

Lattice size δ �0 �m1

N = 20 7.536 × 10−4 9.230 × 10−4 0.308
N = 30 2.817 × 10−5 3.447 × 10−5 0.308
N = 40 1.035 × 10−6 1.281 × 10−6 0.308
N = 60 1.396 × 10−9 1.735 × 10−9 0.308
N = 70 5.079 × 10−11 6.308 × 10−11 0.308

hx
R = 0,−0.3 and change hx

L. The discontinuous phase tran-
sition is exhibited clearly.

We also calculate the magnetization profile mx
i , 1 � i � N

with N = 100, which is shown in Fig. 3(b). The magnetization
profiles show a dramatic change as we change hx

L in the very
immediate vicinity of hx

L = 0.3.
As shown in Fig. 3(b), the magnetization profiles for hx

L =
0.3 + 1.0 × 10−10 and hx

L = 0.3 − 1.0 × 10−10 are totally dif-
ferent. For hx

L = 0.3 + 1.0 × 10−10, of which absolute value
is bigger than that of the right boundary field hx

R = −0.3, the
magnetization is positive for the majority of the spins and
the interface is pinned at the right end of the spin chain. We
call this state the “positive” phase. On the contrary, for hx

L =
0.3 − 1.0 × 10−10, of which the absolute value is less than
that of the right boundary field hx

R = −0.3, the magnetization
is negative for the majority of the spins and the interface is
pinned at the left end of the spin chain. We call this state the
“negative” phase. In addition, we show the magnetization pro-
file for hx

L = 0.3 − 1.0 × 10−16, where two boundary fields
can be regarded as asymmetric rigorously since 1016 is the
machine precision. Only in this case the interface is located at
the center of the spin chain.

As one can see, the system transits from the positive phase
to negative phase in the interval of hx

L less than 2.0 × 10−10. In
fact, since there is always an environmental noise, we cannot
set the absolute values of the two boundary fields to be equal
exactly. Hence the system can be in the positive phase or
negative phase. Therefore, we call the red line in Fig. 2 the
coexistence line. It is well known that in the first-order phase
transition between liquid and solid or liquid and gas, there
is always a coexistence of two phases. Here in the quantum
phase transition between positive and negative, there is a
coexistence of two phases.

Based on the numerical results the finite-size scaling of the
first-order phase transition is investigated. We calculate the
eigenvalue of matrix D and the surface magnetization mx

1 for
size N = 20, 30, 40, 60, 70 with g = 0.84, γ = 0.4, and hx

R =
−0.3. We change the left boundary field hx

L from 0.29 to 0.31.
The energy gap and surface magnetization mx

1 are shown in
Fig. 4.

Figures 4(a) and 4(b) show the numerical results for the
energy gap � = ε2 − ε1 and the boundary magnetization mx

1
for g = 0.84 and hx

R = −0.3, respectively; panels (c) and (d)
show their rescaled images.

The value of �0 = �(hx
L )|hx

L=−hx
R

is given in Table I and
decreases as the lattice size increases. Through numerical
calculation and data fitting, we verify that the energy gap �
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FIG. 4. (a) Numerical results for the energy gap � for different
lattice sizes with hx

R = −0.3. (b) Numerical results for the bound-
ary magnetization mx

1 for different lattice sizes with hx
R = −0.3.

(c) Rescaled energy gaps approach the scaling relation. (d) The
rescaled singular parts of the boundary magnetization m1s approach
the scaling relation.

satisfies the scaling relation

� = �0

√
1 + κ2, (24)

where κ = hx
L−|hx

R|
δ

is the scaling variable. This scaling ansatz
is proposed by Compostrini et al. [34] and verified in the
transverse-field Ising model with surface fields [27]. The data
collapse on the above scaling relation is shown in Fig. 4(c).
Then, δ can be obtained by data fitting. This is shown in
Table I. In fact, we can call δ the width of the phase transition,
beyond which the two phases can be distinguished clearly.
We simply fit the relation between δ and N , and we get
δ ∼ e−0.342N . This means the width of the phase transition
decreases exponentially with the system size N .

To further study the boundary magnetization jump, we
define the singular boundary magnetization as

m1s = mx
1 − mx

10, (25)

where mx
10 is the boundary magnetization at the transition

point hx
L = hx

R. In addition mx
1s satisfies the scaling relation

[27]

m1s = �m1
κ√

1 + κ2
, (26)

where �m1 is the amplitude of the boundary magnetization
jump. For different sizes, the fitted values of �m1 are given in
Table I. Figure 4(d) shows the data collapse to the aforemen-
tioned scaling relation.

V. SECOND-ORDER PHASE TRANSITION: THE WETTING
TRANSITION FOR g �= 1 − γ2

In this section, we study the continuous wetting transition
across the blue solid lines in Fig. 1. As discussed in last
section, there exist localized states. However the existence of

FIG. 5. The trend in the wetting phase transition point hw as
a function of g and γ : different colors represent the values of the
wetting transition point hw for different g and γ , where hw is the
boundary between the “wetting” and “nonwetting” phases. The arc
representing g = 1 − γ 2 is the boundary between the “commensu-
rate” and “incommensurate” phases.

localized states is conditional. They exist only for |hx
L|, |hx

R| <

hw. We solve hw by letting |x1| = |x2| = 1 in Eq. (19), where
the localization length diverges. The detail of the solution on
hw is given in the Appendix. It is given by

(a) g > 1 − γ 2, hω1 =
√

1 − g + γ −
√

g(g − 1 + γ 2)

2
,

(b) g = 1 − γ 2, hω2 =
√

γ (γ + 1)

2
,

(c) g < 1 − γ 2, hω2 =
√

γ (γ + 1)

2
.

(27)

In Eq. (27), hw at the wetting phase transition point is equal to
hω1 for g > 1 − γ 2 and hω2 for g � 1 − γ 2.

We present a color map for the relation between hw and the
parameters g, γ in Fig. 5. The arc represents g = 1 − γ 2 and
separates the “commensurate” and “incommensurate” phases
[33].

For |hx
L| > hw (|hx

R| > hw), the localized state at the left
(right) side of the system vanishes. The continuous wetting
transition occurs at this point. In the parameter space we
consider, the maximum of |hw| is 1 (see the above equa-
tion on hw). In order to study the wetting at the left side,
we fix hx

R = −1 to exclude the wetting at the right side. We
set hx

L > 0 and change it around hw. It is found that there
exists a second-order phase transition for g �= 1 − γ 2 but a
fourth-order phase transition for g = 1 − γ 2. For hx

L < hw, a
localized state at the left side of the system exists, and the
interface is near the left boundary. This phase is called the
nonwet phase. Conversely, for hx

L > hw, the interface jumps to
the middle of the spin chain. This phase is called the wetting
phase [see Fig. 8(a)].
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For 0 < hx
L < hw and hx

R = −1, only one localized state (at
the left side) exists. The ground state is given by this localized
state. The ε1 defined in Eq. (13) is the eigenvalue of this
state. The excited states are extended states, for which the
eigenvalues satisfy

εn =
√

cos2 kn + γ 2 sin2 kn − 2gcos kn + g2. (28)

The ε2 defined in Eq. (13) is given by the minimum in the
above equation.

In light of Eqs. (27) and (28), we obtain the lowest energy
of the extended state cos k1 = g

1−γ 2 for g < 1 − γ 2. Since the
wave vector k1 is not zero, this phase is called incommen-
surate. For g � 1 − γ 2, the lowest energy extended state has
cos k1=1. This phase is called commensurate.

We can simply show that the energy gap is zero at hx
L = hw.

For g > 1 − γ 2, the lowest energy ε2 of the extended state
is given by Eq. (28) with cos k1 = 1; it equals 1 − g. The
localized state energy ε1 at hw is given by Eq. (21) with
x = 1, which means an infinitely large localization length. It
also equals 1 − g. Therefore the energy gap closes at hx

L = hw

for g > 1 − γ 2. For g < 1 − γ 2, the lowest energy of the
extend state is given by Eq. (28) with cos k1 = g

1−γ 2 . The

localized state energy is given by Eq. (21) with x = a+i
√−b
c

[see Eq. (A5)]. At hx
L = hw, it can be shown that β = 1 − γ 2,

so it has a
c = g

1−γ 2 . With these results, one can show the
energy gap is zero at hx

L = hw.
For hx

L > hw, all the eigenvectors are extended states, so the
energy gap � = ε2 − ε1 → 0 as the lattice size N approaches
infinity. The system is gapless for hx

L > hw, and gapped for
hx

L < hw.
Now we study the scaling of the energy gap for hx

L < hw

analytically. The ground state is localized at the left boundary
with the energy ε1 given by Eq. (21). The first excited state is
the extended state with the energy ε2 given by Eq. (28), with
kn = 0 for g > 1 − γ 2 and kn = g/(1 − γ 2) for g < 1 − γ 2.
The ground state ε1 is given by (see the Appendix)

g > 1 − γ 2, ε1 =
√

4hx
L

2
(
hx

L
2 − γ

)(
β2

L − g2αL
)

−β2
LαL

,

g � 1 − γ 2, ε1 =
√

g2 + γ 2 − 2gβL√
αL(1 − γ 2)

+ β2
L

αL
, (29)

where αL and βL are given by Eq. (23).
Considering the critical regime hw − hx

L � 1, different re-
lationships between g and 1 − γ 2 lead to different values of
hw, as shown in Eq. (27).

The gap can be described as follows:

g > 1 − γ 2, � = ζ1
(
hω1 − hx

L

)2 − O
(
hω1 − hx

L

)3
,

g < 1 − γ 2, � = ζ2
(
hω2 − hx

L

)2 + O
(
hω2 − hx

L

)3
, (30)

where the coefficients1 ζ1, ζ2 only depend on the values of g
and γ .

1ζ1 = −4g2−(γ+1)(γ−1)2+g(1−γ )(5+3γ )+[4g−(1−γ )(3+γ )]
√

g(−1+g+γ 2 )

(1−g)(γ−1)4(1+γ )2

× 16(1 − g − γ 2 ) and ζ2 = 4γ (1−g−γ 2 )
(1−g)(1−γ 2 )(γ−1)

.

FIG. 6. Finite-size scaling of the energy gap for γ = 0.5 and 0.35.

Therefore, the gap � versus the scaling field hw − hx
L

satisfies � ∼ (hw − hx
L )zν for g �= 1 − γ 2, and the critical ex-

ponent for the energy gap is given by [2]

zν = 2, (31)

where ν is the correlation length exponent and z is the dynam-
ical critical exponent that determines the relative rescaling
factors of space and time. Later we will show that ν = 1.

Figure 6 shows the log-log plots of the finite-size scaling of
the gap � versus the scaling field hw − hx

L, where the critical
exponent for the energy gap is 2 for g �= 1 − γ 2. It is the same
as that for the transverse-field Ising model with boundary
fields [27].

We show the boundary magnetization in Fig. 7 for γ =
0.5, g = 0.84 where g > 1 − γ 2, and γ = 0.35, g = 0.84
where g < 1 − γ 2. And the wetting phase transition occurs
at hw = 0.438773 . . . and 0.486056 . . . , respectively, which
are obtained from Eq. (27). As we can see, the boundary
magnetization is continuous at the transition point hw. We also
show that the boundary susceptibility χ x

1 is defined by

χ x
1 = ∂mx

1

∂hx
L

. (32)

FIG. 7. The boundary (a) magnetization and (c) susceptibility
for different lattice sizes with g = 0.84, γ = 0.5. The boundary
(b) magnetization and (d) susceptibility for different lattice sizes with
g = 0.84, γ = 0.35.
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FIG. 8. (a) and (c) Magnetization profiles with different hx
L for

γ = 0.5 and 0.35, respectively. (b) and (d) The wetting layer thick-
ness with different lattices sizes for γ = 0.5 and 0.35, respectively.
In all cases, the transverse field is set to be g = 0.84.

It has a jump at the transition point, so the transition is second
order. These features are the same as the wetting transition in
the transverse-field Ising model [27].

We calculate the magnetization at any site using Eq. (17).
Figures 8(a) and 8(c) show the magnetization profile for this
XY model with N = 200, g = 0.84, γ = 0.5 and 0.35, re-
spectively. As the boundary fields hx

L > 0 and hx
R < 0 have

opposite signs, the magnetization profile has an interface at
which the magnetization changes sign. The interface is delo-
calized as hx

L approaches the wetting transition point hw.
We see that all the curves are smooth for g > 1 − γ 2,

which is similar to the result obtained for the one-dimensional
transverse-field Ising model [27]. However for g < 1 − γ 2,
where the system is in the incommensurate phase, the curves
for mi versus i oscillate regularly in Fig. 8(c). This is a
reminiscence of cos k = g/(1 − γ 2) which minimizes εn in
Eq. (28) for g < 1 − γ 2.

We also study the wetting layer thickness x∗ which is the
number of spins with positive magnetization. It is finite for
hx

L < hw and diverges as hx
L approaches hw. If mx

i > 0 and
mx

i+1 < 0, the magnetization changes sign between the ith
spin and i + 1th spin. Therefore the wetting layer thickness
is just the position of the interface (where the magnetization
is zero). Generally the wetting layer thickness x∗ diverges near
the wetting transition point as

x∗ ∼ (
hw − hx

L

)−βs
. (33)

Figures 8(b) and 8(d) show the divergences of the thickness
x∗ and their finite-size scaling for g �= 1 − γ 2,

βs = 1. (34)

However, the curves ln x∗ versus ln(hw − hx
L ) exhibit some

fluctuations due to the oscillation of the magnetization profile
for g < 1 − γ 2.

FIG. 9. (a) and (c) Magnetization profile away from the transition
point for γ = 0.5 and 0.35. (b) and (d) Magnetization profile at the
transition point for γ = 0.5 and 0.35.

At the transition point hx
L = hw for g > 1 − γ 2 and g <

1 − γ 2, the curves for m versus i/N collapse for different
lattice sizes in Figs. 9(b) and 9(d); however the curves for m
versus i/N do not collapse for hx

L �= hw, as shown in Figs. 9(a)
and 9(c). And the magnetization at any site fluctuates for
g < 1 − γ 2, which is typical for the incommensurate phase.
These results show the scale invariance at the phase transition
point.

We calculate the correlation function using Eq. (15).
Figures 10(a) and 10(c) show the semilog plot for the cor-
relation function Cx

1,i versus i for different left boundary fields
hx

L with N = 400. For hx
L > hw, where the system is in the

FIG. 10. (a) and (c) Correlation function near the left end with
different hx

L for γ = 0.5 and 0.35, respectively. (b) and (d) Correla-
tion length near the wetting transition point with different size lattices
for γ = 0.5 and 0.35, respectively.
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wetting phase, the correlation of the other spin with the first
left boundary field decays rapidly. For hx

L < hw, the system
is in the nonwetting phase, and the correlation decays expo-
nentially with the distance from the first spin Cx

1,i ∼ e−(i−1)/ξ .
Figure 10(c) shows that, especially for g < 1 − γ 2, the cor-
relation decays exponentially with distance from the first
spin and also oscillates with the trigonometric function for
hx

L < hw.
Next, we choose spins at sites i1 and i2, and calculate the

correlation length ξ :

ξ = i2 − i1
ln

(
Cx

1,i1
/Cx

1,i2

) . (35)

In the numerical calculation, we set i1 = 50 and i2 = 100
in Eq. (35). The correlation length diverges near the wetting
transition point as follows:

ξ ∼ (
hw − hx

L

)−ν
. (36)

Figures 10(b) and 10(d) show that for g �= 1 − γ 2, the
critical exponent is

ν = 1. (37)

According to Eq. (31), it should have

z = 2. (38)

These exponents z, ν, βs are the same as that in the Ising
model [27] with boundary fields. They belong to the same
universality.

VI. FOURTH-ORDER PHASE TRANSITION: THE
WETTING TRANSITION FOR g = 1 − γ2

In this section, we study the phase transition for g = 1 −
γ 2. In the numerical calculation, we set g = 0.84 and γ = 0.4
where g = 1 − γ 2 is satisfied. The wetting phase transition
occurs at hw = 0.52915 . . . followed from Eq. (27) (b).

For g = 1 − γ 2, there is a localized state ε1 given by
Eq. (29) and the lowest energy of the extended state ε2 =
1 − g for hx

R < −hw and hx
L → hw. We expand the energy gap

� in series of hw2 − hx
L. The coefficients of the first, second,

and third order are all zero. The coefficient of (hw2 − hx
L )4 is

nonzero. The energy gap is given by

� = 8

(γ − 1)3(γ + 1)

(
hω2 − hx

L

)4 + O
(
hω2 − hx

L

)5
. (39)

As shown in Fig. 11, the energy gap diverges at the wetting
transition point as � ∼ (hw − hx

L )4, and the critical exponent
is [2]

zν = 4. (40)

This critical exponent differs from that for g �= 1 − γ 2 in
Eq. (31).

The fourth-order phase transition can be seen from the
boundary magnetization, i.e., the order parameter. Figure 12
shows that the boundary magnetization mx

1 and boundary sus-
ceptibility χ x

1 are both continuous at the transition point hx
L =

hw = 0.52915 . . . for g = 0.84 and γ = 0.4. Figures 12(c)
and 12(d) show that the first and second derivatives of the
boundary susceptibility χ1, respectively, exhibit regular and

FIG. 11. Finite-size scaling of the energy gap for γ = 0.4.

specific oscillations. The jump in ∂2χ x
1

∂hx
L

2 at hx
L = 0.52915 . . .

increases with the system size N , which is a sign for a fourth-
order phase transition.

From Fig. 12(d), one can see that the curve of ∂2χ x
1

∂hx
L

2 has a

smooth part and an oscillating part. The oscillating parts for
different sizes are similar; we conjecture that

∂2χ x
1

∂hx
L

2 − f
(
hx

L

) = log10 N × �(Nτh), (41)

where τh = (hx
L − hw )/hw, �(Nτh) is the universal scaling

function, and f (hx
L ) = limN→∞

∂2χ x
1

∂hx
L

2 for τh < 0, which rep-

resents the smooth part of ∂2χ x
1

∂hx
L

2 for N → ∞. The rescaled

FIG. 12. The boundary magnetization and the boundary suscep-
tibility and its first, second derivatives for different size lattices with
g = 0.84 and γ = 0.4.
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FIG. 13. The data collapse of the rescaled second derivatives of

the boundary susceptibility
∂2χx

1
∂hx

L
2 .

data for different lattice sizes collapse as shown in Fig. 13.
In the limit of N → ∞, the oscillating part is compressed to a
range with zero width. This means that the fourth derivative of
the energy with respect to the left boundary field is singular.
Therefore we call it a fourth-order phase transition.

Figure 14 shows the magnetization profile and wetting
layer thickness x∗ for g = 1 − γ 2, where the interface is
constantly moving as the boundary field approaches hw. In
Fig. 14(b), the finite-size scaling of wetting layer thickness
x∗ is shown. Obviously it has x∗ ∼ (hw − hx

L )−βs as N → ∞.
We get

βs = 1, (42)

which is the same as the critical exponent βs for g �= 1 − γ 2

in Fig. 8.
Figure 15 shows the magnetization profile away from the

transition point and at the critical point for g = 1 − γ 2. At
the critical point, all the relative magnetization profiles for
different size N coincide. This means that the system is scale
free at the critical point. This is another character of critical
phenomena.

The correlation functions for g = 1 − γ 2 shown in
Fig. 16(a) are similar to those for g < 1 − γ 2 shown in

FIG. 14. (a) Magnetization profiles with different hx
L for g = 0.84

and γ = 0.4. (b) The wetting layer thickness for lattices with differ-
ent sizes for g = 0.84 and γ = 0.4.

FIG. 15. Magnetization profile for g = 1 − γ 2: (a) away from the
transition point and (b) at the transition point.

Fig. 10(c). However, the correlation functions for g = 1 − γ 2

fluctuate less frequently as hx
L approaches hw. This can be

understood considering that for g > 1 − γ 2, the incommen-
surability of the oscillation disappears.

From Fig. 16(b), we get the critical exponent of the corre-
lation length ξ for g = 1 − γ 2. It is given by

ν = 2. (43)

This critical exponent is different from that for g �= 1 − γ 2.
According to Eq. (40), it should have

z = 2. (44)

The dynamic exponent is the same for the second- and the
fourth-order phase transitions.

To further analyze the properties of the correlation function
for g = 1 − γ 2 and g < 1 − γ 2, we calculate the correlation
function Cx

i, j by removing the inflection points in the fluctu-
ation curve for hx

L < hw in Fig. 17, where i is the position of
the first inflection point and j is the position of the second,
third, . . . inflection point. The resulting correlation function
is smooth and no longer fluctuates. Figure 17(a) shows that
the number of inflection points decreases and the distance
between two adjacent points increases as hx

L approaches hw

for g = 1 − γ 2 with a lattice size N = 800. For g < 1 − γ 2,
the position of the jth inflection point is almost the same for
different hx

L in Fig. 17(b).
In this section, we find that the wetting phase transition

for g = 1 − γ 2 is a fourth-order phase transition. The critical
exponent for the energy gap is zν = 4 and the correlation
length exponent is ν = 2.

FIG. 16. (a) Correlation function near the left end with different
hx

L for g = 0.84 and γ = 0.4. (b) Correlation length near the wetting
transition point for lattices of different sizes N = 200, 300, 400, 600,
and 800 for g = 0.84 and γ = 0.4.
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FIG. 17. (a) and (b) Correlation function near the left end ob-
tained by removing the inflection points in the fluctuation curve
with different hx

L for γ = 0.4, N = 800 and γ = 0.35, N = 400,
respectively.

For the reader’s convenience, we have listed the critical
exponents of the transverse-field Ising model and the XY
model with different values of g and γ in Table II; the case
g �= 1 − γ 2 was described in Sec. V. In Table II, hw1 and hw1

are given by Eq. (27), and we can see that the wetting phase
transition for g = 1 − γ 2 belongs to a new universality class.

VII. THE FINITE-SIZE EFFECT ON THE END POINT OF
THE FIRST-ORDER PHASE TRANSITION

In this section, we study the finite-size effect at the end
point Q of the first-order phase transition in the phase dia-
gram Fig. 1. As discussed in Sec. IV, the first-order phase
transition occurs at hL = −hR and |hL| = |hR| < hw, where
hw is obtained in Sec. V. The end point Q is at hL = −hR

and |hL| = |hR| = hw. However, this position is valid in the
thermodynamic limit, i.e., the system size N approaching to
infinity. For a finite-size system, it is shifted.

In Ref. [29], Parry and Evans discussed a fluid or an
Ising magnet confined between two parallel walls that exert
different (competitive) boundary fields. Consider a two-
dimensional (classical) Ising model with a finite horizontal
size N and an infinite vertical size, and applying opposing
fields, say hL, hR, on the left and right boundary (wall), re-
spectively. As we know, in the limit of N → ∞, the system is
ordered for T < Tcb, where Tcb is the standard order-disorder
critical temperature first found by Onsager [35].

Due to the opposing boundary fields (one favors up-spins
and another one favors down-spins), there exists an interface
between the opposite magnetization. In this ordered phase,
another critical phase transition, the wetting transition, oc-
curs at a temperature Tw < Tcb for the fixed boundaries fields
hL, hR, where Tw depends on the smaller one of the absolute

values of the boundary fields |hL|, |hR| [24,25,36]. Assuming
|hL| < |hR|, the wetting transition occurs at the left boundary.
For T < Tw, the interface is localized at the left boundary.
For T > Tw, it is free-energetically favorable for the interface
localized in the middle of the system and far away from both
boundaries.

For the asymmetric boundary fields, i.e., |hL| = |hR|, which
were just discussed in Ref. [29], the situation is subtle. For
T < Tw the interface can be localized at the left boundary or
the right boundary. Both are equally free-energetically favor-
able. Therefore two phases (one with interface localized at the
left boundary and one with interface at the right boundary)
coexist. For T > Tw, there is only one phase even if hL = −hR

since the interface is localized at the middle of the system and
far away from both boundaries.

The authors in Ref. [29] studied the finite-size effect on the
coexistence of two phases within a mean-field analysis. They
found that if the fields are such that the fluid wets one wall
and dries the other (above a certain critical wetting transition
temperature Tw), coexistence of two phases, completely wet
and completely dry (corresponding to the interface localized
at one boundary or another boundary, respectively, in the
above discussion on the Ising model), can only occur, for
finite wall separation N , when T < Tc,N , where the critical
temperature Tc,N lies below Tw. The scaling ansatz suggests
Tw − Tc,N ∼ N−βs , where βs is the exponent that describes the
growth of the wetting layer.

As we know, the fluid or Ising magnet studied in [29] is
classical. However, there is a map from the classical liquid-
gas phase transition, which belongs to the Ising universality,
to the quantum model, the transverse-field Ising model. The
quantum phase transition, which is different from the classical
phase transition that results from temperature fluctuations,
occurs at zero temperature and stems from the quantum fluctu-
ation from the transverse-field term. Therefore the parameter
g plays the role of the temperature T . In the quantum wetting
transition we study, there is a similar finite-size effect, which
occurs near the point Q in Fig. 1.

In Ref. [29], the boundary fields on the two parallel walls
are set to be asymmetric, i.e., hx

L = −hx
R, corresponding to the

blue line in Fig. 1, where the first-order phase transition oc-
curs. These two opposite boundary fields produce an interface
between the up-spins and down-spins, as the surface fields are
competitive. This can be understood as hL favoring a liquid
(spin-up) and hR favoring a gas (spin-down) in Ref. [29].
They found that for T < Tc,N , there are two stable mean-field
solutions. These solutions are symmetry-breaking since the
interface is localized at the left boundary in one solution and at

TABLE II. A summary of the wetting phase transitions and the critical exponents of the transverse-field Ising model and XY model for
different values of γ and g.

The value Order of the The critical exponent of

Model of hw wetting transition Energy gap � Correlation length ξ Thickness x∗ Dynamic

Ising model [27]
√

1 − g Second order zν = 2 ν = 1 βs = 1 z = 2

g �= 1 − γ 2 g > 1 − γ 2 hw1 Second order zν = 2 ν = 1 βs = 1 z = 2
g < 1 − γ 2 hw2 Second order zν = 2 ν = 1 βs = 1 z = 2

g = 1 − γ 2 hw2 Fourth order zν = 4 ν = 2 βs = 1 z = 2
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FIG. 18. In all panels, γ = 1 is set. (a) The magnetization pro-
files for different g with two types of boundary fields. (b) The
variation of interface position x∗ with g under B type boundary
condition with different size N . (c) The collapse of rescaled x∗ and g
for different g under B type boundary fields. (d) The dependence of
gc,N on the size N with different δ.

the right boundary in another solution (see Fig. 2 in Ref. [29]).
For T > Tc,N , there is only one mean-field solution, which is
symmetric and the interface is localized just at the middle of
the system.

In Fig. 18(a), we show the similar picture in the quantum
model. Four groups of magnetization profiles for different
g with N = 400 and γ = 1, which is the Ising case, are
calculated. In each group, two types of boundary fields are
considered:

A type: hx
L = hw + δ, hx

R = −hw,

B type: hx
L = hw, hx

R = −hw − δ, (45)

where δ is very small in order to approach the limit of asym-
metric boundary fields hx

L = −hx
R. Practically there is always

an environmental noise. Assuming the noise intensity on the
boundary fields is δ, then the boundary fields can be A type or
B type.

For γ = 1 the point Q in Fig. 1 is given by hx
L = −hx

R =
hw = √

1 − g from Eq. (27). In Fig. 18(a), it is set hw = 0.4
and δ = 10−5. The corresponding g at the point Q in Fig. 1
is given by g = 1 − h2

w = 0.84. This gives gw ≡ gc,∞ = 0.84,
where the quantity gc,∞ is defined later. The critical point gc

in the quantum phase transition corresponds to the critical
temperature Tc in Ref. [29]. As one can see, for g = 0.835 >

gc,400 (= 0.8277043 in the following), although hx
L, |hx

R| �√
1 − g, the profiles for A and B types almost coincide.

This corresponds to the region T > Tc,N in Ref. [29], where
only one phase can exist. For g = 0.825, 0.82< gc,400, and
hx

L, |hx
R| <

√
1 − g, as shown in Sec. IV, there exists a pos-

itive or negative phase, depending on which boundary field
dominates; the profiles for the A and B types are split. These
cases correspond to the region T < Tc,N in Ref. [29], where
two phases can coexist. The split of A and B type profiles
corresponds to the two stable mean-field solutions. However,
different from the mean-field calculation in Ref. [29], where

the boundary fields are exactly asymmetric hx
L = −hx

R, the
boundary fields in A and B types are almost asymmetric rather
than exactly asymmetric. If the boundary fields are set to be
exactly asymmetric, i.e., δ = 0, we cannot get the split profiles
because of the interference of two degenerated ground states.

This difference between the exact asymmetric boundary
fields in Ref. [29] and the almost asymmetric ones in our
work can be understood in the following way. Recall the
two-dimensional model, where it is disordered for T > Tc and
ordered for T < Tc. However, if the magnetic field is absent
the magnetization is zero in the exact solution because of sym-
metry. On one hand, only if an infinitesimal magnetic field is
introduced, the spontaneous magnetization can be calculated
exactly in Yang’s seminal work in 1952 [37]. To break the
symmetry, an infinitesimal magnetic field is needed in the
exact solution. On the other hand, a mean-field solution on
this problem can lead to a nonzero spontaneous magnetiza-
tion below critical temperature without a magnetic field. To
beak the symmetry, the magnetic field is not needed in the
mean-field solution. In Ref. [29], the analysis is mean field,
so two stable symmetry-breaking solutions are obtained even
with the exactly asymmetric boundary fields. Our solution is
(numerically) exact, so the boundary fields can not be exactly
asymmetric in the symmetry-breaking solutions.

The A and B profiles are asymmetric. To study their split-
ting with g, we calculate the interface position x∗, where the
magnetization is zero for B type boundary fields. The results
for N = 300, 400, 500, 700 are shown in Fig. 18(b). The in-
terface position x∗ decreases with g. At higher g side, it has
x∗ ≈ N/2, where A and B type profiles almost coincide. They
are not split. At lower g side, it has x∗ � N/2, where A and B
type profiles are split radically.

We let

x∗(gc,N ) = N/4 (46)

be the transition point from the coinciding profiles to splitting
profiles. For example, we get gc,300 = 0.8231883, gc,400 =
0.8277043, gc,500 = 0.830375 from the data in Fig. 18(b). We
find that gc,N approaches closer to gw for N → ∞; this point
corresponds to Tc,N in Ref. [29]. At first, the minimum of x∗
for B type profiles is zero and the maximum of it is N/2, so it
is natural to let x∗ equal half of its maximum at the transition
point. More important, this definition induces the following
well defined scaling relations.

It is found that the variations of x∗ vs g for different size N
can be rescaled with

x∗

N/2
= X

(
g − gc,N

gw − gc,N

)
, (47)

where X is a universal function and gw is the wetting transition
point following from Eq. (27) with γ = 1:

gw ≡ gc,∞ = 1 − h2
w. (48)

From the aforementioned discussion, we know that
gc,∞ = 0.84 for hw = 0.4. The data collapse for N =
200, 300, 400, 500, 600, 700, 800 are shown in Fig. 18(c).
The original data for N = 300, 400, 500, 700 are shown in
Fig. 18(b).
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Moreover, it is found that

gw − gc,N ∼ N−1/βs , (49)

where βs the exponent to describe the divergence of wetting
layer thickness. From Eq. (34), we know βs = 1. So we have
gw − gc,N ∼ N−1. The above scaling relation is consistent
with the scaling relation Tw − Tc,N ∼ N−1/βs in Ref. [29]. The
evidence of this scaling relation is shown in Fig. 18(d). In
Fig. 18(d), three cases of δ = 10−5, 10−6, 10−7 are calculated.
Although gc,N depends on the value of δ, the dependence
of ln(gw − gc,N ) on ln N for the same δ is linear obviously.
The slopes are −1.093(3),−1.062(3),−1.047(3) for δ =
10−5, 10−6, 10−7, respectively.

We have not studied this effect for the XY model, espe-
cially for the fourth-order phase transition with g = 1 − γ 2.
This is waiting for future work.

VIII. SUMMARY

In summary, we have obtained the phase diagram of the
transverse-field XY model with boundary fields along the x
direction. First-, second-, and fourth-order phase transitions
exist.

The first-order phase transition between positive and neg-
ative phases occurs at −hw < −hx

R = hx
L < hw, which is the

coexistence line. For hx
R < −hw and hx

L = hw, there is a con-
tinuous wetting transition. It is second order for g �= 1 − γ 2

and fourth order for g = 1 − γ 2. The second-order wetting
transition belongs to the same universality of the transverse-
field Ising model with the boundary field. The fourth-order
wetting transition belongs to a new universality class, with a
correlation length exponent ν = 2 and a dynamic exponent
z = 2.

Tuning the boundary fields should be simple in the ex-
perimental realization. Our work may be tested in further
experiments with cold atoms [38].
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APPENDIX: DETERMINATION OF THE PHASE
TRANSITION POINT hw

In light of Eqs. (19) and (21), we expand and simplify the
first two terms of the eigenequation Dψk = ε2

kψk:

c1E1 + c2E2 = 0,

c1E1F1 + c2E2F2 = 0, (A1)

where

E1 = x3
1 (1 − γ )

[
1 + γ − 2gx−1

1 + (1 − γ )x−2
1

]
,

E2 = x3
2 (1 − γ )

[
1 + γ − 2gx−1

2 + (1 − γ )x−2
2

]
,

F1 = −x1
{
1 − γ 2 − 2g(1+γ )x−1

1 + [
(1 + γ )2 − 4hx

L
2]x−2

1

}
,

F2 = −x2
{
1 − γ 2 − 2g(1+γ )x−1

2 + [
(1 + γ )2 − 4hx

L
2]x−2

2

}
.

(A2)

And considering ε2(x1) = ε2(x2) yields the relationship be-
tween x1, x2, and hx

L,

x1, x2 = a ± √
b

c
, (A3)

where

a = gαL,

b = αL
[
g2αL − (1 − γ 2)β2

L

]
,

c = αLβL, (A4)

and αL = (1 + γ )2 − 4hx
L

2, βL = 1 + γ − 2hx
L

2.

To determine hw =
√

1−g+γ−
√

g(g−1+γ 2 )
2 at the wetting

phase transition point, we use the critical condition of x = 1
from Eq. (A3). We then consider the magnitude relationship
between g and 1 − γ 2 by analyzing three cases for Eq. (27):

(1) g > 1 − γ 2. This is the most common case: hw =√
1−g+γ−

√
g(g−1+γ 2 )

2 . And assuming γ = 1, we restore the

transition point hw = √
1 − g, which is consistent with the

wetting phase transition point obtained in the transverse-field
Ising model [27].

(2) g = 1 − γ 2. As the term under the square root sign is

zero, we can easily determine that hw =
√

γ (γ+1)
2 .

(3) g < 1 − γ 2. For hx
L = 0, we know that b = (1 +

γ )4[g2 − (1 − γ 2)] < 0, a = g(1 + γ )2, and c = (1 + γ )3 in
Eqs. (A4). Thus, for g < 1 − γ 2, Eq. (A3) becomes

x = a + i
√−b

c
, (A5)

and it has a magnitude |x| = 1−γ

1+γ
< 1.

However, b is still less than zero as hx
L increases, and b

cannot become positive until hx
L is greater than 1+γ

2 . Thus, x is

a complex number, and |x| < 1 for b < 0. As |x| =
√

a2−b
c2 =

1, we obtain the wetting transition point hw =
√

γ (γ+1)
2 , which

satisfies hw <
1+γ

2 .
Considering Eq. (21), the eigenvalue of the localized eigen-

state at the left end is given by

ε2
L = 4hx

L
2
(
hx

L
2 − γ

)(
β2

L − g2αL
)

−β2
LαL

. (A6)

The formula presented above only applies to g � 1 − γ 2,
considering the particularity of x for g < 1 − γ 2. This case
with g < 1 − γ 2 does not satisfy Eq. (A6) but satisfies

ε2
L = g2 + γ 2 − 2gβL√

αL(1 − γ 2)
+ β2

L

αL
. (A7)

Conversely, if we fix the left boundary field hx
L and vary

the right boundary field hx
R to observe the quantum phase

transition, we similarly expand and simplify the last two terms
of the eigenequations D′ψk = ε2

kψk in Eqs. (20) and (21),
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where D′ = (A − B)(A + B):

d1x1(γ − 1)E ′
1 + d2x2(γ − 1)E ′

2 = 0,

d1E ′
1F ′

1 + d2E ′
2F ′

2 = 0, (A8)

where

E ′
1 = 1 − 2gx1 + x2

1 + γ
(
x2

1 − 1
)
,

E ′
2 = 1 − 2gx2 + x2

2 + γ
(
x2

2 − 1
)
,

F ′
1 = hx

R
2(1 + γN )2 − (1 + γ )

[
1 + γ − 2gx1 + (1 − γ )x2

1

]
,

F ′
2 = hx

R
2(1 + γN )2 − (1 + γ )

[
1 + γ − 2gx2 + (1 − γ )x2

2

]
.

(A9)

Then we obtain the relationship between x1, x2, and hx
R:

x1, x2 = a′ ± √
b′

c′ , (A10)

where

a′ = gαR,

b′ = αR
[
g2αR − (1 − γ 2)βR

2
]
,

c′ = (1 − γ 2)βR. (A11)

For αR = (1 + γ )2 − 4hx
R

2 and βR = 1 + γ − 2hx
R

2, the
only difference from αL, βL is that αR, βR is related to hx

R. Con-
sidering Eq. (21), the eigenvalue of the localized eigenstate at
the right end is given by

g > 1 − γ 2, ε2
R = 4hx

R
2
(
hx

R
2 − γ

)
(βR

2 − g2αR)

−βR
2αR

,

g � 1 − γ 2, ε2
R = g2 + γ 2 − 2gβR√

αR(1 − γ 2)
+ βR

2

αR
.

(A12)

Equations (A6), (A7), and (A12) show that the difference
in the eigenvalues of the localized states at the two bound-
aries is determined by the two boundary fields hx

L, hx
R. The

calculated wetting phase transition point hw is consistent with
Eq. (27).
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