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The quantum many-body interactions in one-dimensional spin- 1
2 systems are subject to Tomonaga-Luttinger

liquid (TLL) physics, which predict an array of multiparticle excitations that form continua in momentum-energy
space. Here we use inelastic neutron spectroscopy to study the TLL spin dynamics in SrCo2V2O8, a compound
which contains weakly coupled spin- 1

2 chains of Co atoms, at 0.05 K and in a longitudinal magnetic field
up to 9.0 T. The measurements were performed above 3.9 T, where the ground-state Néel antiferromagnetic
(AFM) order is completely suppressed and the multiparticle excitations are exclusively of the TLL type. In
this region and below 7.0 T, the longitudinal TLL mode—psinon/antipsinon (P/AP)—is unexpectedly well
described by a damped harmonic oscillator (DHO) while approaching the zone center defining the static spin-spin
correlations. A non-DHO-type, continuumlike signal is seen at higher fields, but deviations from the ideal
one-dimensional TLL still remain. This change in the P/AP mode coincides with the phase transition between the
longitudinal spin density wave (LSDW) and transverse AFM order. Inside the LSDW state, the DHO-type P/AP
spectral weight increases and the linewidth broadens as the magnetic order parameter decreases. These results
reveal the impact of three-dimensional magnetic order on the TLL spin dynamics; they call for beyond-mean-
field treatment for the interchain exchange interactions.

DOI: 10.1103/PhysRevB.107.134425

I. INTRODUCTION

The Tomonaga-Luttinger liquid (TLL) theory describes in-
teractions in one dimension (1D) [1]. From this theory, the
spatial spin-spin correlation functions of an isolated spin- 1

2
chain are expected to show power-law decays [2]. The trans-
verse correlation function should be

〈Sx
0Sx

r 〉 ≈ (−1)rr−η (1)

and the longitudinal correlation function should be

〈Sz
0Sz

r〉 − M2
z ≈ cos(2kFr)r−1/η, (2)

where x and z are the directions perpendicular and parallel
to the anisotropy axis, r is the distance between two spins,
and Mz is the mean ferromagnetic moment per spin along
the anisotropy axis. The Fermi wave number in this case is
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affected by the magnetization, such that kF = π (1/2 − Mz).
This means that the longitudinal spin correlation is incom-
mensurate with the chain lattice. η is the TLL exponent that
determines the dominant type of fluctuation: when η > 1.0,
the longitudinal spin fluctuations always overwhelm the trans-
verse ones, and when η < 1.0, the transverse fluctuations
dominate.

The spin- 1
2 XXZ Heisenberg model maps to TLL theory and

can be used to explore its spin dynamics [2–4]. The relevant
Hamiltonian is

ĤXXZ = J
∑

i

(
Sx

i Sx
i+1 + Sy

i Sy
i+1 + �Sz

i Sz
i+1

)

− gzμ0μBH
∑

i

Sz
i , (3)

where J > 0 is the nearest-neighbor antiferromagnetic (AFM)
intrachain exchange constant, � is the anisotropy parameter,
gz is the component of the Landé g tensor parallel to the
anisotropy axis z, and H is the magnitude of the externally
applied longitudinal magnetic field along z. This model is
exactly solvable.

In the Heisenberg-Ising regime (� > 1.0), the solution has
a gapped AFM ground state of Néel type with an easy-axis
anisotropy. The characteristic excitations for this type of 1D
Néel order are spinons [5,6]. A quantum phase transition
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(QPT) from the Néel state to a TLL state can be triggered
by applying an external magnetic field along z, at a critical
field μ0Hc. In this TLL state, η is always greater than 1
at intermediate fields, and so the primary spin fluctuations
are longitudinal in nature. However, increasing the magnetic
field decreases η, and when it falls below 1, transverse spin
fluctuations dominate.

The TLL-type spin dynamics above μ0Hc have been ex-
tensively studied, both theoretically [7,8] and experimentally
[9–14]. There are three types of characteristic multiparti-
cle excitation: psinon/psinon (P/P) modes, psinon/antipsinon
(P/AP) modes, and Bethe n-strings (n = 2, 3, . . . ). While
these excitations are distinct in many ways, they all form con-
tinua over well-defined regions of momentum-energy space
for an ideal TLL, like the multispinon continua observed in
the Néel state of isolated Heisenberg-Ising spin- 1

2 chains [5].
The longitudinal dispersions of these three types of multipar-
ticle excitation observed in experiment are in broad agreement
with theoretical expectations [10,11,13]. However, certain
types of TLL modes disperse in directions perpendicular to
the chain [12,14]; this effect is not captured by Eq. (3).

These deviations from an ideal TLL point to the impor-
tance of interchain exchange interactions. At low fields, these
interactions are responsible for the persistence of Néel order-
ing at finite temperatures, and the confinement of spinons;
the latter transforms the spinon continua into a series of dis-
crete Zeeman ladders [6,15]. In the field region where the
TLL physics prevails, the interchain interactions give rise
to two emergent magnetic orders [16–20]. Above a criti-
cal field μ0Hc1, a longitudinal spin density wave (LSDW)
state replaces the Néel order at sufficiently low temperatures.
Whether μ0Hc1 corresponds to the true quantum critical point
(μ0Hc) for the 1D Néel-TLL QPT is an open question [14]. At
higher fields, when η drops below 1 [16,19], there is a second
phase transition to a transverse antiferromagnetic (TAFM)
state at μ0Hc2. The effect of these ordering phenomena on the
TLL spin dynamics is unclear and investigating this is the aim
of this study.

In this paper, we report on the behavior of the TLL spin
dynamics in the LSDW and TAFM phases, using SrCo2V2O8

as our model XXZ system (� ≈ 2.0) [6,9,10]. SrCo2V2O8

has fourfold screw chains of Co with effective spin- 1
2 and

Ising-like easy-axis anisotropy, which run along the crystal-
lographic c axis (Fig. 1). The LSDW develops at μ0Hc1 =
3.9 T and the TAFM develops at μ0Hc2 = 7.0 T. The incom-
mensurability of the LSDW follows the description of the
longitudinal spin correlation in Eq. (2), supporting an intimate
link between this three-dimensional order and the TLL spin
dynamics [16,20]. The three types of TLL multiparticle exci-
tation discussed above have all been observed in this material
above μ0Hc1 [9,10,14].

In this work, the TLL spin dynamics were studied by high-
resolution inelastic neutron scattering. The experimental setup
used here is particularly sensitive to the longitudinal P/AP
mode. We show that its line shape is not a continuum in the
LSDW phase, especially close to the zone centers defining the
static spin-spin correlations, but can instead be well defined
by a damped harmonic oscillator (DHO) as though it were
a single-particle excitation. It only becomes non-DHO type
and continuumlike in the TAFM phase, although deviations

FIG. 1. Crystal structure of SrCo2V2O8. (a) Three-dimensional
atomic lattice. Unit-cell boundaries are marked by dashed lines.
Shaded polygons are CoO6 octahedra. (b) Fourfold screw chains of
Co atoms in the ac plane.

from the pure 1D physics still remain. A careful study of the
DHO-type longitudinal P/AP mode inside the LSDW phase
also reveals a sharper but weaker response where the magnetic
order parameter is strong (i.e., close to μ0Hc1).

II. METHODS

Inelastic neutron scattering experiments were performed
on the cold-neutron triple-axis spectrometer ThALES at the
Institut Laue-Langevin (ILL) [21]. The sample, also used in
Ref. [20], was a cylindrical single crystal (height 22 mm, di-
ameter 6 mm, mass 2.7 g) grown by the floating zone method
[22]. The quality of the sample was checked by neutron Laue
diffraction; no impurity could be resolved.

In the experiment, the sample was mounted in a dilution
refrigerator inside a 10 T vertical cryomagnet. The initial
and final neutron wave vectors were selected using a PG
(002) monochromator and analyzer. The final wave vector was
fixed at 1.3 Å−1. The instrumental resolution in this setup is
about 88 µeV in full width at half maximum (FWHM). The
crystallographic c axis was parallel to the vertical magnetic
field to match the XXZ model [Eq. (3)]. The spin excitations
were measured in the reciprocal plane (H, K, 0), as used in
Ref. [14]. All experimental data presented below were col-
lected at 0.05 K.

III. EXPERIMENTAL RESULTS

In this study, we focus on the inelastic neutron scatter-
ing energy transfer spectra at QAFM = (2, 3, 0) and QFM =
(2, 2, 0). QAFM is a magnetic zone center for the Néel and
TAFM phases, while QFM is a zone center for the underlying
crystal structure [14,20]. The closest magnetic zone center
in the LSDW phase to QAFM is QLSDW = (2, 3, δ), where
δ = 4Mz/gzμB [20]. This means that in a narrow field region
above μ0Hc1, QAFM � QLSDW.

Due to the fourfold screw chain structure, the Brillouin
zone in SrCo2V2O8 is folded by a factor of four along
the reciprocal c� axis, meaning that the TLL excitations at
L = 0, 1

4 , 1
2 , and 3

4 can be observed simultaneously at L = 0
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FIG. 2. Experiment vs theory comparison for the TLL spin dy-
namics at (a) QAFM and (b) QFM. The region below 0.2 meV, where
the elastic peak arising from the LSDW or TAFM order prevails,
has been excluded. Solid curves are theoretical line shapes for an
ideal 1D TLL, which are reproduced from Ref. [10] and then scaled
to match the experimental intensities. Vertical lines mark the peak
positions theory curves.

[6,10,11,14]. Some additional information on the energy dis-
persion of the excitations between QAFM and QFM is reported
in Ref. [14].

A peaklike feature that dominates the spectral weights
above ∼0.3 meV can be observed at all measured magnetic
fields (e.g., see Fig. 2). In this energy regime (a few meV),
the TLL theory predicts excitations with distinct directions,
profiles, and spectral weights at L = 0, 1

4 , 1
2 , and 3

4 [8–10];
all of them contribute to the experimental data due to the
aforementioned zone folding. Assignments of the relevant
modes can be helped by considering our in-plane scattering
geometry, which is more sensitive to the spin fluctuations
along the chain because neutrons probe the magnetic moments
perpendicular to the momentum transfer. Only the longitudi-
nal P/AP mode at L = 1

2 is relatively coherent and intense.
Therefore, it accounts for the dominant peaklike feature, as
reported in our previous work [14]. Certain transverse modes
are also expected, including Bethe 2-strings, P/AP, and P/P
modes. However, their spectral weights at QAFM and QFM are
very small due to the in-plane scattering geometry [14]. Only
the relatively strong transverse modes at L = 1

2 [10] will be
considered in our numerical analysis (Sec. III B).

A. Deviations from an ideal 1D TLL

In Fig. 2, we show the measured spin excitations at 6.0 and
9.0 T. These data cover both LSDW and TAFM phases [20].
For comparison, we also include the theoretical predictions
of Eq. (3) for an isolated spin- 1

2 chain; they are reproduced
from Ref. [10] and then appropriately scaled to match the
experimental intensities. We find that the P/AP mode energy
at QAFM is softened with respect to the theoretical predictions,
while that at QFM is slightly hardened. This is consistent with
the effect of three-dimensional magnetic ordering, which will
be discussed in detail later. Moreover, the theory fails to repro-
duce the experimental line shape at QAFM because the latter
is found to be much sharper. In contrast, the experimental line
shape is in better agreement with the theory at QFM, except the
aforementioned energy mismatch (∼0.09 meV at both fields).
At 6.0 T, a small bump can be resolved around 2.3 meV.
This is the Bethe 2-string state (see below, and Refs. [10,14]).

Equation (3) predicts this mode at about 2.7 meV, which is
outside our measurement window at this field.

B. Numerical model

The direct comparison with theory above showed signifi-
cant deviations from an ideal TLL [8–10] in both mode line
shape and energy, especially at QAFM, which is very close to
QLSDW for the LSDW phase, and it is indeed a magnetic zone
center for the TAFM phase [20]. These observations support
the impact of dimensional crossover, e.g., interchain exchange
interactions and three-dimensional magnetic ordering. To fur-
ther describe these deviations, we have performed numerical
analyses on the experimental data. We do this by fitting each
mode to an analytical profile. Only those with a resolvable
contribution to the inelastic neutron spectra are considered.
Our numerical model is summarized below.

(i) The elastic peak. This was fitted using a resolution-
limited Gaussian function with the area being the only
adjustable parameter.

(ii) The gapped longitudinal P/AP modes at L = 1
2 . This is

the strongest inelastic component in each spectrum. A DHO
function with adjustable area, center, and width is used. This
choice is discussed in more detail later.

(iii) The gapped transverse Bethe 2-string modes at L = 1
2 .

This component is much weaker and appears in the higher end
of the covered energy range, and moves out of it above 6.0 T
(Fig. 3) [8,14]. A DHO function with adjustable area, center,
and width is used. The center has been discussed in Ref. [14],
while no magnetic field dependence can be resolved for its
width and area (not shown).

(iv) The gapless transverse continuum contributions at L =
1
2 . These are approximated by a combined Lorentzian function
and constant term. The Lorentzian function is centered at
zero energy; its area and width are adjustable. Both terms
are truncated at zero-energy transfer by a step function to
reinforce the gapless nature of these excitations at L = 1

2
(see the Appendix) [10]. Recently, this profile has been used
to numerically reproduce the spin excitation continuum in
Yb2Pt2Pb [12].

The four components are added together and then convo-
luted with the experimental resolution function. The total fits
are the red lines in Fig. 3, and the individual contributions are
also shown. A model similar to this, but without the elastic
peak term, was used by us to analyze the data above 0.3 meV
and below μ0Hc2 [14].

C. Line-shape changes across the LSDW-TAFM
phase transition

Theoretically, the TLL modes are best described as con-
tinuum modes due to their multiparticle nature, and none
of their energy line shapes can be well defined by a simple
analytical form [7,8]. This means that the DHO, which can be
understood as a single mode with a single decay channel [23],
should not match the intrinsic line shape of the longitudinal
P/AP mode (or, indeed, any other TLL modes) in an isolated
XXZ chain. Nonetheless, here we use the DHO to evaluate
the deviations from the theoretical expectations of 1D TLL
physics revealed in Sec. III A. A similar approach has been
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FIG. 3. The inelastic neutron scattering spectra measured at (a)–(d) the Néel/TAFM zone center QAFM = (2, 3, 0), and (e)–(h) the crystal
zone center QFM = (2, 2, 0), at different magnetic fields and at a temperature of 0.05 K. The solid lines are the numerical fits described in the
main text, with instrumental resolution included; the red line is the total fit and the other colors describe the four individual contributions as
labeled in the legend. The black arrows mark the Bethe 2-string modes. The insets show close-up information on the elastic peaks measured at
each condition, including the Gaussian fits used to characterize them.

used by Wessler et al. [24]. The P/AP mode dominates the
measured energy spectra. If the DHO fits well, we will be able
to quantitatively describe how these deviations reconstruct the
mode line shape. Our numerical model also contains other
terms in order to reproduce the weaker transverse modes
(Sec. III B). Their spectral weights are very small (Fig. 3) and,
to a good approximation, their deviations from the pure 1D
TLL physics can be neglected in the current work.

A visual inspection of Fig. 3 shows that the DHO works
well in the LSDW phase, but less well in the TAFM phase.
In the LSDW phase, there is no additional scattering on the
high-energy side of the peak, as would normally be expected
for the excitations at the start of a continuum [24]. The other
modes included in our fit have much smaller spectral weights,
and so even if they are picking up some additional scattering
from a long tail on the longitudinal P/AP signal, this is still
too small to affect the overall P/AP line shape.

Above μ0Hc2, however, the DHO function fails to fit the
P/AP mode. To assess the discrepancy, we calculate the ad-
justed R-squared value,

R2
adj = 1 − (1 − R2)

nd − 1

nd − np − 1
, (4)

where R2 is the coefficient of determination, nd is the number
of individual data points, and np is the number of fitting
parameters. In this calculation, we have excluded the data
below 0.3 meV to minimize the effect of the elastic peak
contributions. For this reason, we have also excluded the
spectrum at QAFM and 4.0 T, where this mode is located below
0.3 meV [Fig. 5(b)]. As shown in Fig. 4, the R2

adj values at both
QAFM and QFM undergo a sharp, sizable reduction on entering
the TAFM phase. Below μ0Hc2, the R2

adj values at QAFM are
always closer to 1.0 (a perfect fit) than those at QFM. Since
QAFM is in close vicinity of QLSDW [20], these observations

suggest that the static spin-spin correlations in the LSDW
state, which are strong close to QLSDW, stabilizes the DHO-
type longitudinal P/AP mode. Again, we emphasize that the
purpose of this analysis is not to reproduce the line shape of
the longitudinal P/AP mode at all fields, but to highlight how
the mode behavior deviates from the theoretical descriptions
for an ideal TLL. A complete description of the line shape in
the TAFM phase is outside the scope of this paper.

D. Longitudinal P/AP mode in magnetic field

Although the DHO function only describes the longitudinal
P/AP mode well in the LSDW phase, it still provides an

FIG. 4. The adjusted R-squared value [Eq. (4)] for the fits illus-
trated in Fig. 3 as a function of magnetic field. μ0Hc1 and μ0Hc2

(main text) are indicated by vertical lines. The thick shaded lines are
guides for the eye.
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FIG. 5. The fitted parameters of the DHO used to describe the
longitudinal psinon/antipsinon (P/AP) mode, as a function of mag-
netic field. The parameters shown are (a) the area, (b) the center,
(c) the full width at half maximum (FWHM), and (d) the effective
bandwidth, defined as the energy difference between the mode ener-
gies at the two zone centers. The vertical lines mark μ0Hc1 and μ0Hc2

(main text). The thick shaded curves are guides for the eye.

informative parametrization of the behavior of the excitations
in the TAFM phase, and so now we consider how these param-
eters vary across the field range that is examined here (Fig. 5).

1. Spectral weight

At 4.0 T, which is 0.1 T above μ0Hc1, the DHO areas,
or spectral weights, at QAFM and QFM are small [Fig. 5(a)].
At QAFM and intermediate magnetic fields, the area increases
approximately linearly. A kink develops at μ0Hc2, beyond
which the field-induced variation is greatly suppressed. At
QFM, the area appears to increase approximately linearly over
the whole field range, although data points above 9.0 T in
the TAFM phase are lacking. The exception to this is the
measurement at 4.0 T, and this will be revisited later. There
is no resolvable kink at μ0Hc2.

We can also see that the uncertainties of the P/AP area
in the TAFM phase are larger than those in the LSDW
phase, especially for the data at QFM. An examination of the
covariance-variance matrices in the numerical analysis reveals
strong correlations between the P/AP area and width parame-
ters (not shown). The latter also has larger uncertainties in the
TAFM phase [Fig. 5(c)]. In our model, the P/AP excitations
are represented by a DHO (Sec. III B). The DHO captures the
P/AP profile less well in the TAFM phase (Fig. 4, Sec.III C),
explaining the larger uncertainties that are observed.

We attempt to interpret these observations based on the
scenario where the LSDW mainly results from the partial
condensation of the longitudinal P/AP mode at QLSDW. Such
a condensation is favored because this mode is intrinsically

gapless at QLSDW [8,10,11]. Two effects are expected when
increasing the magnetic field in the LSDW state.

First, the LSDW order parameter gets weakened [17,20].
This enhances the fluctuating moment. Second, QAFM grad-
ually becomes experimentally distinct from QLSDW. Conse-
quently, the amount of condensed longitudinal P/APs at QAFM

decreases. Both effects can “free” the condensed longitudinal
P/APs at QAFM. Accordingly, the DHO area is increased. The
LSDW state is fully suppressed at μ0Hc2. The TAFM state
at higher fields comes from the condensed transverse spin
fluctuations. This means that the longitudinal P/AP mode is
less sensitive to the order in this phase, so that the effect of
increased field is weakened, giving rise to a kink at μ0Hc2.

QFM is a crystal zone center, making the longitudinal
P/APs there less sensitive to the interaction with the ordered
magnetic moment at QLSDW. We suggest that this explains the
weaker field dependence of the spectral weight from 5.0 T
upwards, which is similar to that seen in the TAFM state
for QAFM. However, this cannot explain the suppressed DHO
area at 4.0 T. Since this field is only 0.1 T above μ0Hc1, we
suggest that the criticality underlying the Néel-LSDW phase
transition plays a role here. In other words, we speculate that
the longitudinal P/AP mode is suppressed everywhere in the
momentum space in the close vicinity of μ0Hc1.

2. Dispersion

The centers of the longitudinal P/AP mode obtained from
the DHO fitting are plotted in Fig. 5(b). Previously, similar
data have been reported for the longitudinal P/AP mode at
(2.3, 2.3, 0) [10], where the mode center lies between those
at QAFM and QFM [14]. This mode is always softer at QAFM.
At both zone centers, the variation as a function of field is
approximately linear, albeit with slightly different slopes.

Next, we consider the effective bandwidth. This parameter
is equal to the difference between the DHO center positions
at QAFM and QFM [Fig. 5(d)] [14]. The longitudinal P/AP
band is broadest close to μ0Hc1 (∼0.50 meV), and gradually
decreases to about 0.32 meV at μ0Hc2, staying approximately
constant up to the highest field that is probed (9.0 T). The
finite bandwidth reveals that the longitudinal P/APs are not
solitonic perpendicular to the chains. In other words, the inter-
chain P/AP-P/AP correlations are significant in SrCo2V2O8.
The underlying interactions are responsible for the devia-
tions from the pure 1D TLL physics. Since the bandwidth
varies strongly with magnetic field, these interactions are less
likely to come solely from the conventional direct or indi-
rect exchange integrals, which are determined by the crystal
structure. We propose that they scale with the molecular field
generated by the bulk magnetic order parameter. As reported
in Ref. [20], the LSDW order weakens on approaching μ0Hc2.
Between μ0Hc2 and 9.0 T, the change in the TAFM order
parameter is small.

3. Linewidth

For an ideal DHO, the FWHM is inversely proportional
to the lifetime of the mode. As shown in Fig. 5(c), the lon-
gitudinal P/AP mode at QAFM is sharper than that at QFM

over the entire magnetic field window that is probed. This is
clearly illustrated in Fig. 6, where the FWHM is plotted for
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FIG. 6. The FWHM of the DHO profile describing the longitudi-
nal P/AP mode as a function of momentum transfer at 5.5 T. K = 1.0
and 3.0 are Néel/TAFM zone centers. The thick shaded line is a guide
for the eye.

a range of momentum transfer values measured at 5.5 T (in
the LSDW phase). The mode sharpens close to momentum
transfers where H + K + L = odd integer; these positions
are closer to the corresponding magnetic zone centers of the
LSDW phase [20]. These results strongly suggest that at least
in the LSDW phase where the longitudinal P/AP mode well
resembles a DHO, its lifetime at a given magnetic field is
prolonged by the static magnetic correlations.

We now discuss the magnetic field effect on the linewidth.
For both QAFM and QFM, the P/AP mode is sharpest at 4.0 T.
As the magnetic field increases, the mode FWHM gets broad-
ened [Fig. 5(c)]. This supports field-enhanced damping. In the
TAFM phase, the mode becomes too damped, or additional
damping channels emerge, so that it is no longer a DHO. This
partially recovers the continuumlike line shape.

One important factor in the quasi-1D systems of this class,
which is not captured by the XXZ model [Eq. (3)], is the
molecular field generated by neighboring chains due to three-
dimensional magnetic ordering. This effect has been studied
for the spinon line-shape reconstruction in the Néel state
[6,14,15,25]. We are not aware of any theoretical framework
addressing the impact of such effect on the TLL spin dy-
namics. We suggest one possible scenario for understanding
the behavior of the longitudinal P/AP linewidth. Its magnetic
field dependence is reminiscent of that of the spinon mode
in the bulk Néel state [14]. In the latter case, below μ0Hc1,
the spinon continuum expected for an isolated spin chain
is sharpened by the interchain molecular field [6,14,15,25];
the field-enhanced damping is related to the weakening of
the magnetic order parameter or the generation of magnetic
inhomogeneities (spin flips). Similarly, the linewidth of the
longitudinal P/AP mode above μ0Hc1 could also be controlled
by the LSDW or TAFM order parameter. However, additional
complications arise due to the complex magnetic structures of
the LSDW and TAFM phases [17,18]. In particular, the LSDW
has an incommensurate structure with easy-axis anisotropy,
while TAFM is commensurate with predominantly easy-plane
anisotropy. In order to thoroughly understand the longitudinal
P/AP linewidth, the molecular fields in the corresponding
regions need to be studied.

IV. CONCLUSION

In summary, we have used inelastic neutron scattering to
study the TLL-type spin dynamics in the quasi-1D quantum
magnet SrCo2V2O8. We identify a strong response of the
longitudinal P/AP mode to the LSDW and TAFM phases,
as well as their underlying interchain magnetic correlations.
In particular, this mode resembles a damped harmonic os-
cillator in the LSDW phase and close to its magnetic zone
center, which is in stark contrast to the continuous line-shape
prediction for isolated spin chains [8,10]. Furthermore, we
show that the three-dimensional magnetic ordering weak-
ens the spectral weight, promotes the in-plane dispersion,
and sharpens the spectral linewidth of the longitudinal P/AP
mode, especially in the LSDW phase. All these observations
stress the importance of dimensional crossover, which has
only been treated on the mean-field level in the literature
[6,14,25]. We also observe some evidence suggesting a re-
sponse in some transverse TLL modes (see the Appendix).
Further studies are demanded for clarifying the relevant
questions.

The data collected at the ILL are available [21].
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APPENDIX: TRANSVERSE CONTINUUM
IN MAGNETIC FIELD

In addition to the strong and relatively sharp longitudinal
P/AP feature studied in the main text, there is also a much
weaker and broader feature that can be assigned as a contin-
uum. We argue that it is transverse in nature on the basis of

FIG. 7. The magnetic field dependence of the transverse con-
tinuum contributions. (a) Combined Lorentzian+constant term at
QAFM. (b) Constant at QFM. Those at QAFM inside the TAFM phase
are also included for comparison. The vertical solid lines mark μ0Hc1

and μ0Hc2.
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numerical calculations [8,10]. In SrCo2V2O8, the transverse
modes at L = 0, 1

4 , 1
2 , and 3

4 can be simultaneously probed
at (H, K, 0) due to the Brillouin zone folding [10]. In our
horizontal scattering geometry, which is most sensitive to
the longitudinal TLL spin dynamics because neutrons probe
the magnetic fluctuations perpendicular to the momentum
transfer, there are two candidates for generating a resolv-
able transverse response: the gapless P/AP at L = 1

2 and the
gapless P/P at L = 1

2 . It is impossible to separate these two
continua in our data.

For the purposes of our fit, we include two terms, a
Lorentzian function centered at zero energy and a constant;
both are truncated at zero energy to reinforce the gapless na-
ture [8,10]. Mathematically, this combined term is necessary
because, in the case of a very broad continuum, the profile will
appear as a constant in the probed energy window, and so the
Lorentzian is no longer able to describe it adequately.

The transverse continuum contribution is illustrated in
Fig. 7. At QFM, only an almost field-independent constant
profile is present [Figs. 3(e)–3(h), Fig. 7(b)]; no Lorentzian
profile can be resolved. At QAFM, the continuum is dominated
by the Lorentzian profile inside the LSDW state [Fig. 7(a)].
The enormously large uncertainties for the data at 4.0 T are
caused by the strong correlations between the Lorentzian
and Gaussian profiles. The latter describes the elastic line
(Sec. III B) and overwhelms the spectral weights below
0.3 meV, where most spectral weights of the Lorentzian-type
continuum at 4.0 T are located [Fig. 3(a)]. Phenomenologi-
cally, it is clear that the Lorentzian contribution gets gradually
suppressed while approaching μ0Hc2. Only the constant pro-
file persists into the TAFM phase, the amplitude of which is
similar to those at QFM [Fig. 7(b)]. From this, we conclude
that the LSDW-TAFM transition only affects the transverse
continua at QAFM.
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