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Manifestation of spin nematic ordering in the spin-1 chain system
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Spin-1 chain material is considered. Recently, it was predicted that the spin nematic ordered phase can be
realized due to the spin-elastic coupling. In this study we show that the appearance of the spin nematic ordering
and phase transitions to such ordered states can be studied using magneto-acoustic experiments. One can observe
such phases and phase transitions considering relative changes of the velocity of sound (related to the changes
of the elastic modulus of the crystal) as a function of temperature and the external magnetic field. It is shown
that those relative changes are proportional to the spin quadrupole susceptibility of the system. The results are
obtained using the exact Bethe ansatz solution and Quantum Monte Carlo simulations for several typical values
of the biquadratic spin-spin exchange interaction and for various values of the spin-elastic coupling and elastic

modules.
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I. INTRODUCTION

Electron systems with nonconventional ordering connected
with electron correlations, e.g., with the rotation symmetry
breaking, attract attention of physicists. Such systems are
similar to ordered states of molecules in liquid crystals [1].
In liquid crystals the distinguished orientation of molecules
is present. The order parameter in the nematic system is a
director [2], and it breaks the rotational O(3) symmetry. It
is different from the magnetization (the order parameter in
magnetically ordered systems), which is a vector violating the
time-reversal symmetry. Nematic properties were observed
in many correlated electron materials, like iron-based super-
conductors [3-6], heavy fermion systems [7], and rare-earth
insulators [8]. For some electron systems the nematic or-
dering is related to orbital degrees of freedom of electrons
[8], while for other systems it is connected with the spin
subsystem. For the latter the spin nematic ordering is re-
lated to the spin multipole (e.g., quadrupole) ordering, unlike
the usual magnetic ordering, which corresponds to the spin
dipole ordering. The order parameters of the spin nematic
phases are nonzero components of the expectation values
of the second-rank spin traceless quadrupolar tensor Q%f =
S*SP + SPSY — [S(S + 1)/3184p, Wwhere S* (a = x, y, z) is the
operator of the projection of the spin S, while magnetic or-
der parameters are expectation values of the operators S*
or their combinations. The single-ion spin nematic ordering
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can exist for spin systems with § > 1, while the inter-ion
spin nematic ordering can be present for any value of S,
including S = 1/2, see, e.g., [9,10]. In magnetic systems the
spin nematic ordering was predicted theoretically [11-13], in
Refs. [14,15] the microscopic origin of the non-Heisenberg
spin-spin interactions were considered. Nonetheless, the con-
struction of the microscopic theory remains among important
tasks for physicists. As a rule, the spin nematic ordering is
caused by the exchange spin-spin coupling and with weaker
relativistic interactions. In many cases the onset of the spin
nematic ordering in magnetic material is connected with the
geometrical frustration of the spin lattice, which suppresses
the usual magnetic ordering [16—18]. For § > 1 the spin ne-
matic ordering was predicted for systems with the biquadratic
spin-spin exchange (quadrupole-quadrupole) interaction [19].
The biquadratic exchange coupling is considered to be small
in usual magnetic systems. However, the analysis of the ex-
periments with the Ni-based magnetic material [20-22], and
ultracold atoms [23,24] implies that the biquadratic spin-spin
interaction is essential.

Spin chain materials (or quasi-one-dimensional quantum
spin systems) are magnetic systems in which the spin-spin
interaction along one space direction is much larger than
along other directions. In recent years many spin chain ma-
terials were synthesized due to the progress in fabrication
of new materials with special properties. For many of one-
dimensional spin models exact quantum mechanical solutions
are known [25], and, therefore, that integrability permits to
obtain theoretically exact characteristics of those models. It
must be noted that peculiarities of the one-dimensional den-
sity of states yield an enhancement of quantum and thermal
fluctuations. The latter results in the destruction of the long-
range ordering for quantum systems with gapless excitations
for nonzero temperatures [26]. Instead, in the ground state
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one-dimensional quantum systems can manifest a long-range
ordering [27,28], with quantum phase transitions between or-
dered and disordered phases.

The spin nematic order parameter is not coupled to the
external field directly. It is the reason why, despite many
efforts [29-31], the results of experiments with magnetic ma-
terials often cannot be considered as a proof for existence of
the spin nematic ordering. In the present paper we consider
one-dimensional quantum spin-1 system coupled to the elastic
subsystem of the spin-chain material. Recently it was shown
[32] that such a system manifests phase transitions to the spin
nematic ordered phase, in which quadrupole spin ordering
take place. Here we show how the transitions to the spin
nematic state and spin nematic ordered phases themselves
can be observed when studying elastic characteristics of the
system. Namely, we show that the temperature and external
magnetic field dependencies of elastic modules and velocities
of sound can reveal features, caused by the phase transitions
to the spin nematic ordered state and between spin nematic
ordered phases (spin nematic reorientation transitions).

II. RENORMALIZATION OF ELASTIC
CHARACTERISTICS

Let us consider the spin-1 chain system described by the
Hamiltonian

H= Z [JSn : Sn+l +J/(Sn : Sn+1)2

2
—HS; = D(09),] + CN 5. (1)

where S, is the operator of the spin S = 1 in the nth site of
the chain, J > 0 is the exchange parameter (here we limit
ourselves with the most interesting antiferromagnetic linear
spin-spin interaction), J’ is the parameter of the biquadratic
spin-spin exchange coupling (or spin quadrupole-quadrupole
interaction), H is the external magnetic field (the units in
which the effective magneton, gup = 1, are used; here g is
the effective g factor and pp is the Bohr magneton), (OQ)n =
(S% )2 — S(S + 1)/3 is the Stevens operator [25], related to the
component of the spin quadrupole tensor %/, D is the value
of the single-ion magnetic anisotropy coupled to that Stevens
operator, C is the elastic modulus, € is the strain (combination
of strains), related to that modulus, and N is the number of
spins in the chain. We can assume that D = ae, where a is
the parameter of the magneto-elastic coupling. Physically, the
ligands (nonmagnetic ions, surrounding the magnetic ones)
produce the crystalline electric field. That field acts on the
orbital moment of the magnetic ion, yielding the preferred
direction of the orbital moment. Then, due to the spin-orbit
interaction, such a mechanism creates the single-ion magnetic
anisotropy for the magnetic ions. Suppose we start with the
magnetically isotropic situation (e.g., the cubic symmetry of
the crystal). Then the tetragonal strains € produce the change
of the elastic energy, see Eq. (1), reducing the symmetry of
the crystal. On the other hand, those strains yield, accord-
ing to the above, the magnetic anisotropy. If the energy of
the magnetically anisotropic spin chain system is lower than
the isotropic one, one has the gain of the energy, while the
elastic subsystem loses the energy, and the phase transition of

the Jahn-Teller type to the state with the nonzero magnetic
anisotropy takes place [32]. The nonzero order parameter,
which characterizes the state with the magnetic anisotropy is
the expectation value of the Stevens operator (or the zth com-
ponent of the spin quadrupole moment Q, = (ZH(OS n), and,
correspondingly, the component of the spin quadrupole mo-
ment per site g. = N~'Q.). In the ordered state with nonzero
q. the spin-rotational symmetry is violated, hence the ordered
state is the spin nematic ordered state.

Notice that here we consider the onset of the single-ion
magnetic anisotropy in the spin-chain material. There exists
the possibility of the exchange-striction mechanism, in which
the exchange parameter depends on changes of the positions
of magnetic ions themselves or of nonmagnetic ions, which
participate in the nondirect exchange, see, e.g., [31,33-35].
Such a situation can also produce spin nematic ordering in a
spin chain material. We do not consider here that case; notice
that below all obtained results are presented in units of J.

Following [35-37], according to the elasticity theory [38]
we can write

ou _ foled @)

o ox’
where u are displacements, and o are stresses, related to the
strains €. (Notice that in [36,37] displacements and strains
were denoted by the same letter, however it did not affect
the correctness of the results of [36,37], because in the cal-
culations only the right-hand side of Eq. (2) was used.). The
stress can be obtained as the derivative of the free energy of
the system per site f with respect to €,

af
o =— =Ce — aq,. 3)
de
Then we obtain
0 0 dq, 0
do _ Jde _ da:d€ @
0x 0x de dx
from which the renormalized elastic modulus is
0
Car = C—a%t =C—d'y,, 5)

where y, is the related component of the spin nematic
(quadrupole) susceptibility x, = (dq./9D) = a='(dq./d¢).
The relative change of the elastic modulus, hence, can be
written as

A _ 2

e % (©)

C C C
In magneto-acoustic experiments [39] one often measures the
absolute values and the relative changes of the velocity of the
sound v. For highly symmetric crystals the latter is related
to the elastic modulus via C = pv?, where p is the density
of the crystal. Then, according to the above, one can extract
the spin nematic susceptibility x, from the magneto-acoustic
experiments, which measure the relative changes of the sound
velocities (or the elastic modules). The spin nematic order-
ing manifests itself in the changes of the behavior of y,,
and, therefore, one can directly observe the phase transitions
to the spin nematic ordered phase in such magneto-acoustic
experiments. For convenience we can define, following [32]
o = C/a?, so that Xg = —a(AC/C).
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The ground-state energy at the fixed magnetic field H and
constant « corresponds to the minimum of the energy of the
system with the Hamiltonian (1) at zero temperature with
respect to D,

Emin(Hsa):ngnE(Hsta)ZE(Hvainsa)v (7)

so that
0E(H,D, a)
—|p= =0, 8
3D |D=Dpnin (8)
and, therefore
q: = aDpip. 9

Hence, in the case of zero temperature 7 = 0 the spin
quadrupole susceptibility (per site) is

_0%E
=N

_ g,

9D
D=Dyy,

= Var{q}}. (10

D=Dyin

Here g7 =N “1Q.(Dpin). Actually, in condensed matter
physics the measurement of the dispersion Var{x} = (x?) —
(x)? of a variable x is often used as the powerful tool to
obtain the important information about possible ordering in a
subsystem, corresponding to (x), phase transitions, etc. (Here
(x) is the mean over the distribution function of x.)

In the case of finite temperatures 7 we can write

Xg(T) =T~ ((¢2) — (408)- (11)

Here (. ..)s is the thermodynamic (Gibbs) mean.

A. Bethe ansatz solution of the SU(3) symmetric spin-1 model

The spin-1 chain model is exactly solvable in the SU(3)
symmetric situation at which J' =J (so-called Uimin-Lai-
Sutherland model [40—42]). For that spin model all compo-
nents of the spin moment ), S,”"* and the Stevens operators
>, (05, (m =0, £1 £ 2) commute with the exchange part
of the Hamiltonian, hence they have the same set of eigenfunc-
tions. One can classify all the states of the SU(3) symmetric
Hamiltonian according to values of projections of the compo-
nents of the SU(3) fields.

Within the Bethe ansatz method the eigenvalues and eigen-
functions of the model can be described by two sets of
quantum numbers called rapidities u;f“:t"b, and v)"_,. Here
ngpc With a, b, c = £1, 0 are the numbers of states with each
possible values of the z-projection of the site spin S;, ie.,
+1, 0. They are related to each other via the obvious constrain
ny; 4+ ng +n_; = N. One can suppose that n, < n; < n.. For
periodic boundary conditions the rapidities satisfy the follow-
ing set of Bethe ansatz equations (BAE):

ng na+np
OVX Ny = T ] X —vw) [T Xy = uy),
m=1 q=1

j: 1,...,na+”lb, 1_[X2(Um_vb)

b=1
ngtn_p
=[] X —upym=1.....n, (12)
g=1

TABLE I. Values of n, ., M., and Q, for various relations be-
tween ny, ng, and n_; for the ground state of the SU(3) symmetric
spin-1 chain.

ng np ne MZ’ Qz.

n_y no n N —2n, —n, N/3 —n,
n_q ni no n, — ng n, +n, —2N/3
o n_y n N —2n, —n, N/3 —n,

no n n_y ng +2n, — N N/3 —n,

n n_y no ng — Ny n, +n, —2N/3
n no n_y 2n, +n, — N N/3 —ny,

where X,(y) = (2y +in)/(2y — in). The eigenvalue of the
system is

ng+np
E=J|N-)" * |- bNm — DNg (13)
I A B

where m, = N~1(>" %) is the eigenvalue of the z projection
of the total spin of the system.

In the ground state for the antiferromagnetic case J > 0
in the thermodynamic limit N, n, ;. — oo with the ratios
ngp.c/N fixed the rapidities, which satisfy the BAE, are real
[40]. The equations for the densities of rapidities p(u) and
o(v) are
A

2 p(u) = ay(u) — /A dyaz(u —y)p(y)

B
—l—/ dza,(u — 7)o (2),

-B

A
2no(v) = fA dya;(v —y)p(y)

B
—/ dza,(v — 2)0(2), (14)

B

where a;(x) = 4/(1 +4x?), ap =2/(1 +x*). The limits of
integration are determined from the condition

B
Ng
i d ,
N [B Yo (y)

A
fa ; o f_A dxp(x). (15)

The ground-state energy is

A
E =N|:J—J/ dxa;(x)p(x) — Hm, —qu]. (16)
—A

There exist six following possibilities [32], see the
Table I, to determine the values n, . via nijo, For in-
stance, for n, = n_y, and n, = ny, one has n. =n; =N —
(ng +np) so that M, =Nm+z=N — (n, +np) —n, (..,
m,=1— " dupu) — [*, dvo(v)), and Q, = Ng, =N —
(g + 1) + 1 — @N/3) (e, go = (1/3) = [*, dup(u) +
ffB dvo (v)). [This case is related to the situation of large
positive values of the magnetic field H.] At fixed values of
the fields D and H we minimize the ground state energy with
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0.35 i —owmc,
030k N=1000 spins,
0.25
3 0'20_ — Exact solution
0.15
0.10
0.05
coOFEL ., , ., . . 4 . i
0 1 2 3 4 5
H

FIG. 1. The dependence of the spin nematic (quadrupole) sus-
ceptibility (per site) x, on the magnetic field H at T = 0 (red curve)
and T = 0.1 (black curve) for the case J/ =J = 1 ata = 0.

respect to 0 < A, B < oo and (M.);, (Q;);- Here the index
i=1,2,...,6enumerates possible combinations, connecting
ngp.c and ny o for given values of the fields D and H as it is
shown in the Table I.

In what follows all numerical calculation were performed
in dimensionless units, so that J = 1.

In our calculations we mostly used the finite temperature
Quantum Monte Carlo (QMC) method [43-45]. To check the
correctness of such numerical simulations in Fig. 1 the results
for the spin nematic (quadrupole) susceptibility of the spin-1
chain decoupled from the elastic subsystem as a function of
the magnetic field H obtained using the exact Bethe ansatz
(the red curve) and the low-temperature QMC method (the
black curve) are presented. One can see that the QMC results
agree very well with the exact ones, except of the vicinity
of phase transitions caused by the external magnetic field
[32]. In our calculations the zero-temperature dependencies
of x, were obtained by the numerical differentiation of g, [see
Eq. (10)],

~ qz(Dmin + (SD) - qz(Dmin)
Xe NoD ’

8D < 1. (17)

B. The effect

We have pointed out in the Introduction that the main goal
of this study is to propose the mechanism of the experimental
observation of the spin nematic phase and the phase transition
to the spin nematic ordered phase. To realize that goal we pro-
pose to measure the magnetic field H and the temperature T
dependencies of the spin nematic (quadrupole) susceptibility,
which, as it was shown above, determines the changes of the
elastic modules and the velocities of sound. The latter can be
measured in magneto-acoustic experiments.

To remind, the physics is as follows. The strain € of the
elastic subsystem reduces the symmetry of the crystal down to
the tetragonal one. For some values of the strain, and, hence,
of the related parameter of the single ion anisotropy D = ae,
the energy of the spin subsystem becomes smaller than the one

o
0.1
—0.15
0.2
R —0.25
0.3
——0.35
0.4
4 5
0.50
0.25
«~ 0.00f
o
-0.25
-0.50
1 1
4 5
2
0
o ?
-4
-6
1 1 1 1 1 1
0 1 2 3 4 5

FIG. 2. The dependencies of the spin nematic (quadrupole) sus-
ceptibility per site, x, (upper panel), the spin quadrupole moment per
site ¢} (central panel), and the quadrupole field (the parameter of the
single-ion magnetic anisotropy) Dy, (lower panel) on the magnetic
field H at different values of the parameter «. All results have been
obtained by the QMC method for the system of N = 1000 spins
at the temperature 7 = 0.1. The exchange parameter is J = 1, the
parameter of the biquadratic spin-spin exchange coupling is J' = 1.

at D = 0. Hence, such a strain produces the energy loss of the
elastic subsystem, and, at the same time, the energy gain in the
spin subsystem of the crystal. The situation is reminiscent of
the Jahn-Teller effect, however, for the spin subsystem: The
strain lifts the degeneracy of the spin subsystem, because in
the absence of the magnetic anisotropy, caused by the strain,
the direction of the spin nematic order parameter is arbitrary.
Depending on the parameter o = C/a?, transitions to the spin
nematic ordered phases can be realized. The external magnetic
field H affects the spin nematic ordering caused by the interac-
tion with the elastic subsystem. Notice that the magnetic field
itself can cause the spin nematic ordering without the coupling
to the elastic subsystem [32].

C. The magnetic field dependence

Due to the good agreement between the results of exact
solution and QMC for the SU(3) symmetric case (see Fig. 1)
we have used the QMC simulation for our further calculations.
The reason is the following: The QMC method allows us to
perform calculation at arbitrary value of J’, while the exact
solution is valid for the case of J/ = J only.

134421-4



MANIFESTATION OF SPIN NEMATIC ORDERING IN THE ...

PHYSICAL REVIEW B 107, 134421 (2023)

3+
>0
2+
I *
q<0
1k
g>0 | 4¢=0
O . . . 1 1
0.0 0.1 0.2 0.3 0.4
a

FIG. 3. The ground-state phase diagram for the SU(3) symmetric
spin-1 system.

First of all, we have performed the analysis of g} (H) =

—% |p=p,;, dependencies for different values of « (see the
central panel of Fig. 2). At H = 0 we have established that

(1) For @ < &’ & 0.15 the spontaneous spin quadrupole
moment exists and g} < 0. Itis the case of the strong coupling
between the magnetic and elastic subsystems.

(ii)) For o' <o <oa”~0.2 the spontaneous spin
quadrupole moment also exists, but g¥ > 0. It is the case
of the intermediate coupling.

(iii) For o > o” the spontaneous spin quadrupole moment
is absent. It is the case of the weak coupling.

Actually, as it is seen from Fig. 2, at « = 0.1 (the black
curve) the spontaneous spin quadrupole moment [i.e., the
nonzero g; (H = 0)] is g = —2/3, and the quadrupole field
(the parameter of the single-ion magnetic anisotropy) is
nonzero, Dy, # 0, for « = 0.15 (the red curve) we have
qr = 1/3, and Dy, # 0, finally, for & > 0.15 one sees that
g} = 0and Dy = 0.

In the case of H > 0 the ground-state phase diagram
becomes more complicated. For SU(3) symmetric spin-1 sys-
tem, it is presented in Fig. 3. The diagram was obtained
using the exact solution of the Bethe ansatz equations. The
lines correspond to quantum phase transitions between the
phase without the spin nematic ordering (¢} = 0), and two
spin nematic ordered phases with the easy-plane (g7 < 0) and
easy-axis (g; > 0) magnetic anisotropy.

The series of curves x,(H) is presented in the upper panel
of Fig. 2. One can see that if the spontaneous spin quadrupole
moment is present then the value of x,(H) decreases at H —
0 and even tends to zero. This result seems to be reason-
able, because the ordering in the spin quadrupole subsystem
suppresses fluctuations due to the onset of long-range correla-
tions. Vice versa, if the spontaneous spin quadrupole moment
is absent then x,(0) # 0. Thus, the measurement of y,(H =
0) should be a powerful indicator of the spin nematic ordered
phase.

The field dependencies of x,, g%, and Dy, for J' =1/2
and J' = 0 are shown in Fig. 4 and Fig. 5, respectively. Notice
that for the pure Heisenberg case J' = 0 the gap for spin

y =
175
150} a
0.1
12510 \N —0.15
1.00f \ 0.2
N sl \\ ——0.25
I 03
050 g ——0.35
025 SN—— 0.4
0.00 . . .
040 1 2 3 4 5
02| / /
//
o 3 4 5
2| ﬁ
of B e
Q'E 2+
4k
6}
sl . . . . .
0 1 2 3 4 5

H

FIG. 4. The same series of the dependencies as in Fig. 2, but for
J ' =0.5.

o
0.1
—0.15
0.2
—0.25
0.3
—0.35
0.4
4 5
0.4}
-0.6 -
0'8 1 1 1 1 1 1
0 1 2 3 4 5
2 //_/—
or T he———F
C—Z B
Qé
-4
6k
1 1 1 1 1 1
0 1 2 3 4 5

FIG. 5. The same series of the dependencies as in Fig. 2, but for
J =0.
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FIG. 6. The dependencies of the spin nematic (quadrupole) sus-
ceptibility per site x, (upper panel), the quadrupole spin moment per
site g7 (central panel), and the quadrupole field (the parameter of
the single-ion magnetic anisotropy) Dy, (lower panel) on the tem-
perature 7' at different values of the parameter ««. All the results have
been obtained by the QMC method for the system of N = 1000 spins
at zero magnetic field H = 0. The exchange parameter is J = 1, the
parameter of the biquadratic spin-spin exchange coupling is J' = 1.

excitations ~J exp(—n S) is predicted [46]. We can see the
shifts of o’ and " values with respect to the SU(3) symmetric
case. For example, for J' = 1/2 the critical values are o’ ~
0.2, a” = 0.25 and for J' = 0 the critical values are o’ ~ 0.3
and «” = 0.35. Besides, in these non-SU(3) symmetric sys-
tems the well-defined area of the transition from ¢} =0 to
q; # 0 is absent. As the result, the peaks in the dependencies
Xq(H) are absent or, at least, they are strongly suppressed.

At the same time, the trend established by us in the
SU(3) symmetric case still remains: If the spontaneous spin
quadrupole moment is present, then the value of y,(H) de-
creases at H — 0. Whereas, the absence of peaks in the x,(H)
dependencies and the finite value of x,(0) at g} # 0 make
non-SU(3) symmetric systems less suitable for spin nematic
state detection.

D. The temperature dependence

The temperature dependencies of x4, g}, and Dy, are
presented in Figs. 6-8. Figure 6 corresponds to the SU(3)
symmetric model (/=1 with J = 1), and Figs. 7 and 8
describe the cases with J' = 1/2 and J' = 0, respectively.

0.50

0.25F

~ 0.00 |-
*a_ ~
-0.25

-0.50 |

FIG. 7. The same series of the dependencies as in Fig. 6, but for
J =0.5.

As for the magnetic field dependencies, presented in the
previous subsection, the spin nematic order parameter, the
spin nematic (quadrupole) susceptibility, and the related to
the strain quadrupole field (the parameter of the single-ion
magnetic anisotropy), related to the minimal free energy of
the spin and the elastic subsystems are shown as a function of
the temperature. Analysis of the situation is performed similar
to the magnetic field dependence. For all considered cases
at high temperature the system is in the state with zero spin
nematic order parameter (see the central panels of Figs. 6-8).
With the decrease of the temperature the system can appear
in the spin nematic ordered phase with nonzero value of the
order parameter g; for strong enough coupling (small enough
o) between the elastic and spin subsystems. For large o the
system remains in the state with zero spin nematic ordering.
Depending on the value of « the spin nematic ordering can
be of the easy-axis or the easy-plane type (different signs of
g; #0). It is interesting to see that for the Heisenberg case
J' =0 at intermediate values of the coupling parameter «
one can observe the temperature-governed phase transition
between two spin nematic ordered phases, with the easy-plane
like magnetic anisotropy and with the easy-axis one, see blue
lines (o = 0.25) in Fig. 8.

One can see from the figures that there are several
types of peculiarities in x,(7") curves. The first type is ob-
servable in all series, even in the case of the absence of
the quadrupole-quadrupole (biquadratic spin-spin) interaction
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FIG. 8. The same series of the dependencies as in Fig. 6, but for
J =0.

(J' = 0). Therefore, this peculiarity is determined just by
the appearance of nonzero quadrupole field (Dp;, # 0). Such
a situation is typical for the strong coupling between the
magnetic and elastic subsystems, i.e., for small « (see, for
example, the black curves corresponding to & = 0.1). That is
why for this type of peculiarity a weak shift of the transition
temperature on J’ is typical. It should be noted that such a
behavior is similar to the temperature behavior of the mag-
netic susceptibility of paramagnets in an external magnetic
field H.

Similar to the previous case, the second type of peculiar-
ities is also determined by a nonzero quadrupole field (the
parameter of the single-ion magnetic anisotropy). However,
in this case the jump in the quadrupole field is accompanied
by the changes both in the value and the sign of Dy,. This
type of peculiarities is observable in the model with J' =0
only. Such a situation is typical for intermediate values of «
(see, for example, the blue curve corresponding to o = 0.25
in Fig. 8). The typical temperature of peculiarities is about
T ~1.

The third type of peculiarities seems to be the most interest-
ing for the experimental detection, because it is realized in the
most common systems with the weak coupling between the
magnetic and elastic subsystems. This peculiarity is caused
by the quadrupole-quadrupole (biquadratic spin-spin) interac-
tion and it appears in the SU(3) symmetric model only (see
the curves corresponding to o = 0.25, 0.3, 0.35, and 0.4 in

0.00
-0.25
© -0.50
S
<
-0.75
——0.35
Lol 0.4

0.00 o 1 2 3 4 5 6 7 8 9

AC/C

AC/C

FIG. 9. The dependencies of the relative changes of the elastic
modulus AC/C on the temperature 7" at zero magnetic field H = 0
for different values of the parameter or. Upper panel corresponds
to J' = 1; central panel corresponds to J' = 0.5 and lower panel
corresponds to J' = 0. All the results were obtained by the QMC
method for the system of N = 1000 spins.

Fig. 6). As it can be seen, for these values of the parameter
a the values of g} and Dp, are equal to zero in the total
temperature range. The temperature dependence of x,(7) in
this case can be well described in the terms of the Curie-Weiss
law.

Note that, as it can be expected, if the peculiarities are
absent (for large values of «), then the temperature depen-
dence of yx,(T) with the high accuracy can be described
by the Curie law [x,(T) ~ T7'7 in the total temperature
range.

III. ELASTIC AND MAGNETO-ACOUSTIC
CHARACTERISTICS

Using the results of previous sections here we present the
results for the temperature and magnetic field behavior of the
relative changes of the elastic modulus AC/C. Notice that
such dependencies can be observed in magneto-acoustic ex-
periments, which measure relative changes of sound velocities
[39], since C = pv?. Figures 9 and 10 present the temper-
ature and the magnetic field dependencies of the relative
changes of the elastic modulus for several typical values of
the spin-spin biquadratic exchange (quadrupole-quadrupole)
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FIG. 10. The low-temperature dependencies of the relative
changes of the elastic modulus AC/C on the magnetic field H for
different values of the parameter . Upper panel corresponds to
J' = 1; central panel corresponds to J' = 0.5 and lower panel corre-
sponds to J' = 0. All the results were obtained by the QMC method
for the system of N = 1000 spins at the temperature 7 = 0.1. (The
temperature and the magnetic field are measured in units of the
exchange constant J).

interaction. For potential experiments the cases with J =J’
[the SU(3) symmetric case], and with J' =0 (it is often
believed that the exchange interaction even between spins
S > 1/2 is of standard Heisenberg bilinear in spins form) are
most interesting.

First of all from the temperature dependence of the relative
changes of elastic modules we see that for T >> J the changes
of elastic modules behave according the Curie-Weiss law for
all values of the parameter o: AC/C is softening with the
decrease of the temperature. The transition to the spin ne-
matic ordered phase manifest itself at relatively large values
of the temperature of order of several values of the exchange
constant, and not like the exchange parameter itself, usual for
spin-1/2 chain systems. It is physically clear, because we con-
sider spin-1 situation, and, besides, the single-ion magnetic
anisotropy, and not the inter-ion exchange anisotropy. The
transition is manifested most sharply for the SU(3) symmetric
case. Notice that for that case the transition to the spin nematic
ordered phase exists only for ¢ = 0.1, 0.15: The minima at
larger values of « are caused by the quantum phase transition,
cf. Fig. 1, between the SU(3) symmetric phase and the SU(2)

symmetric one [32], characteristic for the J' = J case only.
It is interesting to notice that the value of the temperature,
at which the phase transition to the spin nematic ordered
phase becomes smaller with the decrease of the parameter
o, is small. However, for smaller values of « the feature,
related to the phase transition, becomes more pronounced.
Also it is interesting to point out that with the decrease of
the temperature for small « the spin nematic ordered phase is
related to the easy-plane magnetic anisotropy, while for larger
values of o the easy-axis magnetic anisotropy appears. The
most interesting situation can be realized for the Heisenberg
case J' = 0, at intermediate o ~ 0.25. With the temperature
decrease down to T ~ 1.5J the phase transition from the state
without spin nematic ordering to the easy-plane spin nematic
ordered phase takes place, and then, at further temperature
lowering to T ~ 0.8J the reorientation phase transition for the
spin nematic order parameter takes place from the easy-plane
to the easy-axis situation. Those transitions can be clearly
seen from the features of the temperature dependence of
AC/C. For large enough values of « the reentrant situation
can be realized: First, with the decrease of the temperature
the system enters the spin nematic ordered phase, and for
lower temperatures it goes to the state without spin nematic
ordering. The case with J' = 0.5/ is intermediate between
the two mentioned situations. Here mostly the transition to
the spin nematic phase with the easy-plane anisotropy takes
place, however, at intermediate values of a ~ 0.3 the spin
nematic easy-axis situation is realized. The features, related
to those phase transitions, can be observed in the tempera-
ture dependence of velocities of sound in magneto-acoustic
experiments.

The magnetic field dependencies of the relative changes of
elastic modules reveal the following features. At large values
of the field H the transition to the spin polarized phase takes
place. In that phase the spin nematic ordering is also present,
however, it has the trivial nature. For small values of the
parameter o (strong spin-elastic coupling), when the value
of the magnetic field is decreased, the transition to the spin
nematic phase with the easy-plane anisotropy takes place for
the values of the biquadratic exchange J' # J. For the SU(3)
symmetric case the transitions between three spin nematic
ordered phase take place: For large H the easy-axis phase
is realized, and for smaller values of H two easy-plane spin
nematic phases appear with different values of the spin ne-
matic order parameter. For larger values of « (smaller values
of the spin-elastic interaction) the transition between those
phases takes place in two steps: First, when decreasing the
value of H the system goes from the spin nematic easy-axis
ordered phase to the state with smaller or almost zero spin
nematic order parameter, and then, for lower values of H
the spin nematic easy-plane ordering takes place. For inter-
mediate values of the parameter o for J' =J and J' = 0.5/
when the magnetic field is decreased the transition from the
spin nematic easy-plane ordered state to the easy-plane or-
dered state with the small value of the order parameter takes
place, and then, at lower values of H the spin nematic or-
der parameter becomes zero. The features, related to those
phase transitions, can be clearly seen from the magnetic
field dependence of velocities of sound in magneto-acoustic
experiments.
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IV. SUMMARY

Summarizing, in this study we have shown how the spin
nematic ordered phase and the phase transition to such a phase
can be observed in experiments. As the example we have
considered the spin-1 chain system. Due to the coupling of
the spin subsystem with the elastic one, the Jahn-Teller like
transition to the spin nematic ordered phase can take place
[32], in which the spin degeneracy is lifted by the elastic
strain. We have shown that the onset of the spin nematic or-
dering can be studied using magneto-acoustic experiments, by
considering relative changes of the velocity of sound, which
are related to the relative changes of the elastic modulus of
the crystal. We have shown that those relative changes are
proportional to the spin nematic (quadrupole) susceptibility
of the system. We have calculated the temperature and the
magnetic field dependencies of the latter using the exact Bethe
ansatz solution and Quantum Monte Carlo simulations for
several typical values of the biquadratic spin-spin exchange
interaction. It has been shown that for the SU(3) symmetric
case of the spin-spin coupling in the chain the phase transi-
tion to the spin nematic ordered phase manifests itself in the
change of the temperature behavior of the elastic modulus
from softening (at high temperatures according the Curie-
Weiss law) to hardening with the decrease of 7. For the
intermediate biquadratic exchange and for the absence of the
latter (the Haldane situation with only Heisenberg coupling
between spins) one or two phase transitions can be observed.
The highest temperature feature is related to the transition to
the spin nematic ordered state, while the other corresponds to
the transition between spin nematic ordered states with differ-
ent spin nematic order parameters (for example, between the
state with the easy-plane to the easy-axis spin anisotropy, i.e.,
spin nematic reorientation phase transitions). In the magnetic

field dependence of the relative change of the elastic modulus
(sound velocity) one can observe features related to the phase
transition between the spin-polarized state (the paramagnetic
phase, in which spin nematic ordering is trivial) and the spin
nematic ordered phase, or the state with zero-spin nematic
order parameter, depending on the strength of the coupling
between the spin and the elastic subsystems and the value
of the elastic modulus. For some values of the biquadratic
spin-spin exchange interaction and for the intermediate val-
ues of the spin-lattice coupling and elastic modulus we have
predicted additional phase transitions between spin nematic
ordered phases with different orderings, or between the phase
with zero-spin nematic order parameter and the phase with
nonzero spin nematic ordering. One can observe such phase
transitions as features in the magnetic field behavior of the
relative change of the sound velocity. Our predictions can be
checked in magneto-acoustic experiments with spin-1 chain
compounds like [47-57] containing magnetic ions with 3d>
electron configuration for V3*, Cr**, Mn>*, Ti** ions, or 343
electron configuration for Ni**, Cu®*, or Co™ ions with the
isotropic g factors.
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