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Partially disordered Heisenberg antiferromagnet with short-range stripe correlations
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Zero-point quantum fluctuations of a Néel order can produce effective interactions between quasi-orphan
spins weakly coupled to the lattice. On the

√
3 × √

3-distorted triangular lattice, this phenomenon leads to a
correlated partially disordered phase. In this article, we use matrix product state methods to study a similar
model: the S = 1/2 stuffed square lattice. Tuning the exchange amplitudes we go from a square lattice plus
orphan central spins at J ′/J = 0, to the union jack lattice at J ′/J = 1, and a square lattice including all spins
at J/J ′ = 0. We calculate the complete antiferromagnetic phase diagram, dominated by ferrimagnetic and Néel
orders, and compare it with existing results. Most importantly, we find a partially disordered phase in the weakly
frustrated regime. In this phase, the Néel order from the square lattice is unaffected, while the central spins form
a collective state with exponentially decaying double-striped correlations. We also study the role of quantum
fluctuations by introducing an ordering staggered magnetic field on the square sublattice and find that the central
spins order ferromagnetically when fluctuations from the Néel order are suppressed.

DOI: 10.1103/PhysRevB.107.134418

I. INTRODUCTION

Quantum spin systems provide a vast playground to study
all kinds of interesting phenomena. This is mainly due to the
zero-point quantum fluctuations which, enhanced by magnetic
frustration, lead to the emergence of novel collective many-
body states. Over the last decade, a great deal of interest has
been devoted to the highly frustrated Heisenberg antiferro-
magnets, both theoretically and experimentally, in the search
for quantum spin liquids. These highly entangled states with
fractional spinon excitations have been found theoretically,
for example, in two-dimensional systems such as the kagome
[1–12] or triangular lattice with next-nearest neighbor inter-
actions [13–23]. Experimentally, there are several spin-liquid
candidates (or compounds that show anomalous features and
are thought to lie close to one) [24–34].

However, in some cases, fluctuations can counter-
intuitively lead to ordered states. For example, classical
frustrated spin systems can exhibit an accidental degeneracy
in the classical limit at zero temperature, which is usually
caused by a vanishing coupling energy between subsystems.
This happens in the J1 − J2 Heisenberg model on the square
lattice at large J2, where the system decouples into two in-
dependent square lattices with two independent Néel orders
[35]. However, at finite temperatures, the thermal fluctuations
correlate the angle between the two subsystems, and the de-
generacy is lifted. This phenomenon has been studied in many
classical cases and it is usually referred to as order by disorder
[36–41]. Quantum fluctuations at zero temperature can also
break degeneracies from their classical counterparts, playing
a similar role as thermal fluctuations, leading to order by
quantum disorder [42–51].

In frustrated systems, quantum fluctuations can also pre-
vent different subsystems from coupling. One example of

this is the one-dimensionalization effect which occurs when
Heisenberg chains are coupled in a frustrated manner form-
ing a spatially anisotropic triangular lattice [52–58]. For spin
S = 1/2 systems, even though the chains are gapless and
present quasi-long-range order, an interchain coupling of over
50% of the intra-chain coupling is needed to break the one-
dimensional character [54,56]. For spin S = 1 systems, an
interchain coupling of about the same magnitude as the Hal-
dane gap is needed to close it and develop a two-dimensional
incommensurate spiral order [57]. There are also several com-
pounds in which this mechanism is thought to play a key role
in the effective reduction of the dimension [59–64].

Recently, it was proposed that zero-point quantum fluc-
tuations above the magnetic order can induce effective
correlations between spins weakly coupled to the lattice
[65,66]. This was studied on the

√
3 × √

3-distorted triangular
lattice, a model proposed for the LiZn2Mo3O8 compound,
where the triangular lattice is deformed into an emergent
honeycomb lattice (J) coupled to central spins (J ′) [67]. Exact
diagonalization [68] and matrix product state [65] calculations
determined that for J ′ > 0.2J the center spins couple to the
lattice, canting the Néel order from the honeycomb subsystem
into a ferrimagnet over the whole triangular lattice. However,
for J ′ < 0.2J the center spins remain disordered and decou-
pled from the lattice, forming a partially disordered phase
[65].

Furthermore, in the partially disordered phase, the cen-
ter spins are ferromagnetically correlated at short distances.
These correlations originate from a Casimir-like effect, in the
sense that they are mediated by the zero-point quantum fluctu-
ations of the Néel order of the honeycomb lattice. The weakly
coupled nature of the partial disorder allows to integrate out
the degrees of freedom of the ordered sublattice. A second-
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FIG. 1. Stuffed square lattice where the exchange amplitude J
(full line) couples the spins in the square lattice and J ′ (dashed line)
couples them to the spins at the center of each square. The three
sublattices A, B, and C are shown in colors. The plotted lattices are
named Ly × Lx = 8 × 4, and the number of sites is N = 8 × 4 = 32.
There are as many sites C as sites AB. The red line and numbers
on the right side indicate the path chosen to map the system into a
one-dimensional chain for the MPS calculations.

order perturbation theory in J ′ and 1/S expansions resulted
in an effective model for the central spins with nearest-
neighbor ferromagnetic XY interactions (which dominate at
large S) and next-nearest-neighbor antiferromagnetic Ising
interactions (dominant at small S) [66]. This model exhibits
a transition between a double stripe phase (dubbed 〈2〉) and a
ferromagnetic phase at Sc = 0.646, where the magnetic order
is destabilized by quantum fluctuations. This is surprisingly
close to S = 1/2 and could be the mechanism responsible for
the partially disordered phase. These results raise the question
about the ubiquitousness of the partially disordered phase in
models with a subsystem of weakly coupled spins. In other
cases, the effective model governing the disordered subsystem
will be different and could either lead to other exotic disor-
dered states, or the system not hosting a partially disordered
phase at all.

Motivated by these questions, in this article we study the
stuffed square lattice. This model is formed by a square lattice,
J , connected to sites at the center of each square by J ′ (see
Fig. 1). This allows us to study the existence of the partial
disorder phenomenon and the structure of the inner correla-
tions induced by quantum fluctuations of the Néel-ordered
square sublattice. A similar model has been proposed in the
context of the layered compound Sr2TcO4 compound, where
frustrated center sites suppress interplane couplings [69].

We find that, for low values of J ′, the spins at the
center of the squares are disordered. However, their corre-
lations present a double-stripped pattern with exponentially
decaying ferromagnetic correlations along one direction and
antiferromagnetic correlations to third-nearest neighbors in
the perpendicular direction. In analogy with the stuffed honey-
comb lattice, we argue that this is consistent with the expected
effective model for the central spins. We further study the
role of quantum fluctuations in this phase by introducing an
ordering magnetic field on the square sublattice. For large
enough fields, quantum fluctuations are suppressed and the
center sites become ferromagnetically ordered.

The rest of the article is organized as follows: in Sec. II
we introduce the antiferromagnetic Heisenberg model for the
stuffed square lattice and the general considerations of our
matrix product states (MPS) calculations. In Sec. III, we show

and discuss our results, first about the general quantum phase
diagram, and finally, we explore in more detail the weakly
coupled limit. Finally, in Sec. IV we present the summary and
conclusions of our work.

II. MODEL AND METHOD

We define the antiferromagnetic Heisenberg Hamiltonian
for the stuffed square lattice as

H = J
∑
〈i j〉

Si · S j + J ′ ∑
[i j]

Si · S j, (1)

where J is the exchange interaction between nearest neighbors
in the square lattice 〈i j〉 and J ′ connects the center spins to
the square lattice [i j]. It is convenient to separate the lattice
into three sublattices (see Fig. 1). Sublattices A and B are
always equivalent and form the main square lattice, and the
C sublattice is composed of the spins at the center. This
model has some well-known limits. For J ′/J = 0 it becomes
the square lattice Heisenberg model (on the AB sublattice,
with completely orphan spins C). In the opposite limit, for
J/J ′ = 0, the system becomes again a square lattice, but with
twice the number of spins (in this limit the square lattice is
formed by sublattices AB and C). Finally, the case J = J ′ is
known as the union jack lattice [70–75], a square lattice with
only half of its next-nearest-neighbor interactions.

To solve the model in Eq. (1) we use the MPS methods
provided by the ITensor libraries [76,77]. In particular, we use
the density-matrix renormalization group algorithm to find
the ground state of the system, which requires a transforma-
tion of the two-dimensional system into a one-dimensional
chain. The standard way to do this is with a zig-zag path
from the bottom up and from left to right (shown by the red
path in Fig. 1). Two-dimensional systems are usually better
represented by Ly × Lx cylinders with periodic boundary con-
ditions along Ly and Lx � Ly [78]. However, in our case the
system is composed of two square lattices of size Ly/2 × Lx,
so we use Lx � Ly/2. The truncation procedure is controlled
by the bond dimension, D. Most results are obtained with
D = 3000, while in some cases we have used up to D = 5000
to ensure convergence of our results. Truncation errors are
always kept below 10−6.

III. RESULTS

Throughout the article we use the following parametriza-
tion for J and J ′:

J = cos

(
α

π

2

)
J ′ = sin

(
α

π

2

)
, (2)

to cover the whole range of antiferromagnetic exchange in-
teractions with α ∈ [0, 1]. This way, all limits are reached:
for α = 0, 0.5 and 1, we get J ′/J = 0, 1, and ∞ (J/J ′ = 0),
respectively.

A. Phase diagram

Before getting into the detail of our calculations, we
present the phase diagram obtained, which is comprised of
three distinct phases (see Fig. 2): a correlated partially disor-
dered phase (PD), a ferrimagnetically (FI) ordered phase, and
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FIG. 2. Schematic phase diagram of the stuffed square lattice
as obtained by our MPS calculations. The phase diagram has three
different phases: a correlated partially disordered phase (PD) for low
values of α, a ferrimagnetic phase (FI) for intermediate values, and a
Néel order for large values of α.

a Néel ordered phase. For 0 � α � 0.15 the system exhibits a
PD phase driven by quantum fluctuations analogous to the one
found in the stuffed honeycomb lattice [65]. In this phase, AB
spins form a Néel order with algebraically decaying correla-
tions, while the C spins remain disordered with exponentially
decaying correlations. Nonetheless, the structure of correla-
tions is nontrivial and it is compatible with a double-striped
phase. This phase, albeit ordered, was predicted for the ef-
fective model of the central spins of the stuffed honeycomb
lattice [66].

For α � 0.15 a first-order phase transition to a FI canted
state occurs, where C spins are aligned ferromagnetically and
A and B spins form an angle π ± φ with C. This phase is char-
acterized by a nonzero total magnetization. As α grows, the
angle φ goes from � π/2 to 0, where it transitions to a Néel
ordered phase that recovers the U(1) symmetry (see Fig. 2).
This transition has been studied previously, and both classi-
cal and linear spin-wave results show that φ = arccos(J ′/2J )
with a critical value αc � 0.7 (J ′ = 2J) [70,71]. On the other
hand, we find αc � 0.6, which is in close agreement with
previous calculations with series expansions [α = 0.633(5)]
and coupled cluster methods [α = 0.63(1)] [72,73]. Finally,
in the Néel phase, the spins in the AB sublattice are ferromag-
netically aligned and opposite to the spins in the C sublattice.

B. Ferro- and antiferromagnetic magnetizations

An important quantity to characterize these different
phases is the static spin structure factor

SX (q) = 1

NX

∑
i, j∈X

〈Si · S j〉 eiqri j , (3)

where X refers to a given sublattice (A, B, C, or AB) or the
whole lattice (ABC); and NX is the number of sites in X .
The wave vector q = (qx, qy) is discretized along the peri-
odic direction qy, while it can take any value along qx. In
practice, however, both can be taken as continuous as long
as we remember that important features will only appear at
the values allowed by the cylindrical boundary conditions.
Orders related to forbidden wave vectors are frustrated by the
boundary conditions. In this sense, it is important to note that
all the sublattices are square lattices (even though some are
tilted to the x and y axes defined in Fig. 1). We take Lx and Ly

as even numbers to be able to host the Néel orders at α = 0
and 1, as well as the intermediate FI order.

α
0.0

0.2

0.4

m

Ly × Lx = 4 × 12(a)

α
0.0

0.2

0.4

m

Ly × Lx = 8 × 12(b)

PD FI Néel

mA
FE

mC
FE

mAB
FE

mAB
AF

mABC
AF

mC
FE − mABC

AF

0.0 0.2 0.4 0.6 0.8 1.0
α

0.0

0.2

0.4

m

Ly × Lx = 12 × 14(c)

FIG. 3. Ferro- and antiferromagnetic magnetizations mX
FE and

mX
AF [see Eq. (4) in main text] as a function of α =

(2/π ) arctan(J ′/J ). Different sublattices are indicated in the legend,
and different lattice sizes are indicated inside each panel. Results
for X = B are not shown since mB = mA always. The three different
phases are indicated by shaded areas and referenced in (b). The gray
dashed lines corresponds to the difference mC

FE − mABC
AF .

As a first approach, we calculate the spin structure factor
from Eq. (3) at the points q = 0 and q = π = (±π,±π ), cor-
responding to the ferromagnetic and antiferromagnetic Néel
magnetizations, respectively. Explicitly, both magnetizations
are written as

mX
FE =

√
SX (0)

NX
mX

AF =
√

SX (π)

NX
, (4)

where FE stands for ferromagnetic, AF for antiferromagnetic,
and X indicates the sublattice. It is important to say that these
are not true magnetizations since in two dimensions order can
only exist in the thermodynamic limit [79]. A further note of
caution must be added: the peak in the spin structure factor
can only be associated with a semi-classical magnetization
if there are no other nonequivalent peaks. We will comment
when this is or is not the case. But, in general, m should just
be considered as a convenient measure of the signal coming
from a given part of the spin structure factor.

We show the values of sublattice magnetizations mX
AF and

mX
FE for lattice sizes 4 × 12, 8 × 12 and 12 × 14 in Figs. 3(a)–

3(c), respectively. The results are not sensitive to Lx (not
shown) and are qualitatively similar when changing Ly. All
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lattices exhibit three distinguishable phases. The PD phase at
low values of α has the ferromagnetic magnetization from
sublattices A and B equal to the antiferromagnetic magne-
tization from the sublattice AB, i.e., mA

FE = mB
FE = mAB

AF. In
this phase, the previous magnetizations represent the only
peaks in the corresponding spin structure factors. Altogether,
these features indicate that the Néel order from the square
lattice AB at α = 0 (J ′ = 0) extends to finite values of α.
On the other hand, the sublattice C does not have either a
ferro- or antiferromagnetic magnetization, and thus it cannot
be characterized by this analysis. However, it is important to
note that the magnetization in the AB sublattice is unaltered
by the coupling of the C sublattice. That is to say, mAB

AF is
almost constant in the PD phase. This also happens in the
stuffed honeycomb lattice in the weakly frustrated limit [65]
and it seems to be a common feature of models where orphan
spins couple in a frustrated manner to an unfrustrated lattice.

The passage to the FI phase is marked by a first-order phase
transition in the C sublattice. At the phase transition, C spins
develop a sudden ferromagnetic order accompanied by an
almost classical value of mC

FE � 0.5 (that does not seem to de-
crease with the lattice size). At the same time, mA

FE = mB
FE 	=

mAB
AF, indicating that A and B sublattices no longer form a Néel

order in AB. Instead, sublattice AB develops a small ferro-
magnetic magnetization that grows with α, signaling that the
spins A and B are losing the collinearity from the Néel order.
However, sublattices A and B are still purely ferromagnetic
and there is a three-sublattice order (together with C). All of
these features are strongly suggesting a FI order in the whole
lattice, as predicted by previous calculations [72,73]. A FI
phase is characterized by a total nonzero magnetization. We
will use this fact to probe the FI order and calculate the angle
between the three sublattices.

Before moving on to the Néel phase, let us remark again the
similarities to the stuffed honeycomb lattice model [65]. First,
there is a small increase of the magnetization in sublattices A
and B when sublattice C orders ferromagnetically. This can
be interpreted as a consequence of the reduction of quantum
fluctuations caused by the sublattice C acting as a magnetic
field on the sublattice AB [65,80]. Secondly, the magnetiza-
tion sublattice C is always higher or equal to the magnetization
in A and B (clearly seen in Fig. 3 for the Ly = 12 lattices).
This result is typical from lattices with inequivalent sites,
where higher values of magnetization are observed for sites
with lower effective coordination number [81].

To complete the analysis of Fig. 3 we turn to the other end
of the phase diagram (large values of α). For the Néel phase,
the ferromagnetic magnetizations of sublattices C and AB are
the same as the antiferromagnetic magnetization on the whole
lattice, mC

FE = mAB
FE = mABC

AF . This implies that the antiferro-
magnetic order in the whole lattice ABC is formed by two
ferromagnetic sublattices C and AB (both have the same num-
ber of sites). Exactly in the limit α = 1 the system becomes a
tilted square lattice with only nearest-neighbor interactions J ′
(J = 0). This phase extends to finite values of J/J ′. To better
visualize the phase transition, in Fig. 3 we plot the difference
mC

FE − mABC
AF in gray dashed lines. From our calculations we

can place the phase transition at αc = 0.60(5), marked by
the separation of the relevant magnetizations, mC

FE 	= mABC
AF ,

i.e., mC
FE − mABC

AF 	= 0. The critical point coincides with the

Sz/(S NC)

0.00
0.02
0.04
0.06
0.08

E
−

E
0

α = 0.0

α = 0.1

α = 0.2

0.0 0.2 0.4 0.6 0.8 1.0
Sz/(SNC)

0.0

0.2

0.4

0.6

E
−

E
0 0.0

0.1

0.30.40.50.60.8

α = 0.0

α = 0.1

α = 0.2

α = 0.3

α = 0.4

α = 0.5

α = 0.6

α = 0.8

FIG. 4. Energy in each subspace Sz minus the ground-state en-
ergy at Sz = 0 for different values of α as a function of Sz/(SNc ).
This normalization is chosen so that 1 indicates the fully polarized
C sublattice. Both panels show the same results in different scales.
The arrows indicate the maximum value of the Sz subspace where
the ground state can be found. Calculations correspond to the 8 × 12
lattice.

value of α for which the lowest magnetization is observed for
all lattices, α = 0.6. This critical point is in close agreement
with the value obtained from the series expansions and CCM
calculations, α = 0.63(1) [72,73].

C. Total magnetization and magnetic order

As mentioned above, the FI phase is characterized by a
nonzero total magnetization. This means that the ground state
of the system can be found in several Sz subspaces. We define
the subspace Sz

max as the one with the largest Sz that still
contains the ground state. Also, E (Sz ) refers to the energy
of the lowest-lying state in the subspace Sz. This implies
that E (Sz = 0) = ... = E (Sz

max) (equivalent to E (−Sz
max) due

to inversion symmetry). In contrast, a ground state with zero
total magnetization can only be found on the Sz = 0 subspace.
Therefore, E (Sz ) is a good quantity to differentiate the phases
of our model. We show these results in Fig. 4. The axis is
normalized by the highest possible magnetization value of the
C sublattice, SNC where S = 1/2. Also, to be able to compare
different values of α, we always subtract the ground-state
energy E0 = E (Sz = 0). The results shown correspond to the
8 × 12 lattice, but all other lattices show equivalent behaviors.
The top and bottom panels show two different energy scales
to show more clearly all features.

For α = 0, the C spins are completely decoupled and there-
fore do not contribute to the total energy. Thus, E (Sz = 0) =
... = E (SNC) and the first real excited state (hosted by the
AB sublattice) can be found in the Sz = SNC + 1 subspace
(see blue curves in Fig. 4). This first excited state becomes
gapless only in the thermodynamic limit, representing the
magnonic excitations corresponding to the Goldstone modes.
When α 	= 0 but small, in the PD phase, we observe that
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d
eg

FIG. 5. Semiclassical angle between spins A and B as a function
of α for different lattice sizes [see Eq. (6) in the main text]. The
spin-wave (same as the classical) solution is shown in the black line
[70]. The inset shows the semiclassical picture of the magnetic order.

the ground state has Sz = 0 and all other subspaces represent
excited states. This means that even though the C spins do not
affect the magnetic order in the AB square lattice (remember
that AB magnetization does not change and the order remains
a Néel order, see Fig. 3), they are not trivially decoupled as
in α = 0. Instead, they form a state which harbors the lowest
energy excitations of the system. This is understandable in
this regime, where J ′ is much smaller than J . From these
calculations, it is not possible to predict what happens to the
excitations of the C sublattice in the thermodynamic limit
(whether the disordered state is gapped or gapless).

For values of α corresponding to the FI phase, we find
indeed a nonzero total magnetization. This is shown in Fig. 4,
where the ground-state energy is found on several consecutive
subspaces. The value Sz

max (indicated by black arrows) is the
highest close to the transition point to the PD phase and then
decreases when α increases approaching the Néel phase. At
some point it becomes zero, indicating the passing to the Néel
order in the whole lattice ABC.

Regarding the nature of the transition between the PD
and the FI phases, in Fig. 4 the ferromagnetic states are
already visible as excited states before the transition, i.e., in
the plateau at E − E0 � 0.06 for α = 0.2. Namely, the spin
structure factor of the C spins in the plateau presents a ferro-
magnetic peak. These ferrimagnetic states lower their energy
as α increases until they become the true ground state in the FI
phase. The energy-level crossing along with the abrupt change
in the magnetization observed in Fig. 3 confirms a first-order
phase transition of the C spins. We note that the small devia-
tions around the plateau come from the difficulty in obtaining
well-converged results when two completely different phases
have very similar energies.

We can further characterize the FI phase by using the semi-
classical picture of the magnetic order in Ref. [65], shown in
the inset of Fig. 5. This picture assumes that all spins within a
given sublattice (A, B, and C) point in the same direction with
an effective size given by mX for each sublattice. This is not
true for finite-size systems, which conserve SU(2) symmetry
and therefore 〈Sγ

i 〉 = 0 for γ = x, y, z. However, because the
structure factor from each sublattice shows only a ferromag-

netic peak, we can still use the semiclassical picture as an
approximation.

We know the values of mX
FE from the Sz = 0 calculations

shown in Fig. 3 (for which we recall that mA and mB are
always the same). In the subspace Sz

max, the expectation values
of the Sz

i operator on each site of the sublattice C are close to
the value of the magnetization mC

FE from the Sz = 0 subspace
(i.e., 〈Sz

i 〉 � mC
FE); and for the A and B spins, the expectation

values are approximately 〈Sz
i 〉 � −mA

FE cos φ. From the to-
tal magnetization

∑
i∈ABC〈Sz

i 〉 = ∑
i∈C〈Sz

i 〉 + ∑
i∈AB〈Sz

i 〉, we
then get

Sz
max = NC mC

FE − NAB mA
FE cos φ, (5)

where 2φ is the angle between spins A and B (see inset of
Fig. 5). Thus, we can calculate the angles in the FI phase using

2φ = 2 arccos

(
mC

FE − Sz
max
NC

mA
FE

)
, (6)

where we used the fact that NAB = NC in all our lattices. It is
important to note that even if this formula is strictly correct
only for the FI phase, it also gives the proper results for the
PD and Néel phases. In the Néel phase, all sublattices A, B,
and C show only ferromagnetic peaks. In that case, we get
Sz

max = 0 and mC
FE = mAB

FE (which should replace mA
FE), and

thus 2φ = 0 indicating that the spins A and B point all in the
same direction and antiparallel to those in sublattice C. Again,
this is consistent with the Néel order over the whole lattice
ABC. In the PD phase, we have to consider mC

FE = 0. Since
Sz

max = 0 and mA
FE is finite, the formula results in 2φ = π ,

indicating that spins at A and B are antiparallel and consistent
with the AB Néel order.

We show in Fig. 5 the results for the angle obtained from
Eq. (6) with the considerations mentioned above. We can
see that the behavior of the angle between spins A and B is
very similar to the classical and semiclassical solutions, in the
sense that there is an almost linear part at low α to later drops
abruptly at large values of α. Close to the phase transition
at α = 0.6, cos(φ) takes values around 1, leading to large
uncertainty in the calculation of φ. This can be seen in Eq. (6)
where a small deviation of Sz

max from 0 leads to large changes
in 2φ.

The key difference between our calculations and the semi-
classical result is that the quantum fluctuations push the
semiclassical behavior to higher values of α and leave a region
where the AB sublattice has the same order as in α = 0.
That is, the orphan spins do not couple to the lattice and
form a collective state. This effect of the zero-point quantum
fluctuations is also observed in the stuffed honeycomb lattice
[65]. From our calculations, it is difficult to determine if the
angle changes smoothly or not at the critical point between
PD and FI phases. However, the first-order phase transition
may be accompanied by a small discontinuity in the angle.
As the C spins order ferromagnetically with almost classical
magnetization close to the critical point and α 	= 0, the AB
spins are expected to see this change and deviate by some
finite angle from the Néel order.
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FIG. 6. Spin structure factor SX(q) normalized by the value at the

antiferromagnetic peak SAB(π) for α = 0.1. Lattice sizes are 4 × 12
and 8 × 12 (top and bottom, respectively), and different sublattices
are AB and C (left and right, respectively). The first Brillouin zone
is delimited by white dashed lines.

D. Structure factor and correlations

So far we have completed the analysis and characterization
of the FI phase for intermediate values of α and the Néel
order for larger values of α. We also know that at low values
of α, in the PD phase, the Néel order in the sublattice AB
remains stable regardless of the strength with which the C
spins are coupled. All it remains, then, is to characterize the
state formed by the C spins in the PD phase.

To do this, we start by calculating the complete spin struc-
ture factors of the AB and C sublattices, shown on the left
and right panels of Fig. 6, respectively. The results for the
4 × 12 and 8 × 12 lattices are shown in the top and bottom
panels, respectively. For both lattices, S(q) is normalized by
the antiferromagnetic peak in the AB sublattice SAB(π). On
one hand, the peaks in the AB sublattice appear at S(π)
and get sharper when the lattice size increases, signaling the
magnetic order towards the thermodynamic limit. On the other
hand, the peaks in the C sublattice appear at (±π

2 , 0) and
(0,±π

2 ) in the first Brillouin zone. These peaks are consis-
tent with a stripe pattern that repeats every four sites. Two
possible orders are: a double-striped order normally dubbed
〈2〉 (or two-up-two-down), or a spin spiral where spins point
perpendicular to the neighboring stripes. Surprisingly enough,
〈2〉 is one of the competing phases predicted for the effective
model of C spins interacting due to quantum fluctuations of
the Néel order in the stuffed honeycomb lattice [66]. However,
in the present case, the peaks get lower and diffuse when the
lattice size increases, indicating a disordered state with strong
quantum effects. For the Ly = 12 lattices (not shown), the
points (0,±π

2 ) are not allowed in the Brillouin zone due to
the cylindrical boundary conditions. Peaks at (±π

2 , 0) could
still appear, but this does not happen. Instead, the results show
that stripes tend to align along the long and nonperiodic axis,
but are frustrated. The next available lattice that can host this
kind of peak has Ly = 16. For this case, we are not able
to obtain quantitatively precise results and the C sublattice

FIG. 7. The effect of excitations in the AB sublattice (i.e., two-
spin flip, representing a coherent two-magnon excitation) leading
to effective second-nearest neighbors interactions between C spins
(green). In (a), the case of the stuffed honeycomb lattice taken from
Ref. [66] and in (b) the analogous excitations for the present case
of the stuffed square lattice. Excited AB spins are shown in darker
colors, and the effective field over C spins is shown by the shaded
figures.

shows a well-established 〈2〉 phase that spuriously breaks the
SU(2) symmetry by having finite and almost classical 〈Sz

i 〉.
The latter decrease with increasing MPS bond dimension, but
not nearly enough to obtain accurate results. This behavior of
the MPS method is expected when bond dimensions are not
large enough to precisely simulate the given state.

The similarity between the stuffed honeycomb and square
lattices can be understood in terms of the same physical pro-
cesses (we illustrate the similarities in Fig. 7). The effective
model derived in Ref. [66] for the central spins has xy and
zz interactions that depend on S to several neighbours in the
effective triangular lattice. For example, for S = 1/2, anti-
ferromagnetic Jz is dominant for second nearest neighbors
and decay to Jz

7 = 0.028Jz
2 for seventh-nearest neighbors. On

the other hand, for S = 2, ferromagnetic Jxy is dominant to
nearest neighbors, and both |Jz| and |Jxy| decay to about 1%
of |Jxy

1 | for fourth-nearest neighbors. There are also single-ion
anisotropy terms for S > 1/2. All in all, the xy ferromag-
netic interactions between C spins arise from the transverse
quantum fluctuations of the ordered sublattice AB. This can
be qualitatively understood considering the second-order pro-
cesses involving a virtual spin-flip of one AB spin connected
through the J ′ bonds to two C spins. In our case, the same
process is realized between first- and second-nearest neigh-
bors in the square C sublattice. On the other hand, in the
stuffed honeycomb lattice, antiferromagnetic Ising interac-
tions arise from coherent two-magnon processes that connect
two C spins through two AB spins [illustrated Fig. 7(a)]. In
our present case, these processes would lead to the same kind
of interactions between third- and fourth-nearest neighbors in
the square lattice C [illustrated in Fig. 7(b)]. Even though
this is not a formal derivation, it is to be expected that the
effective Hamiltonian of the C spins, in this case, is one
with xy ferromagnetic interactions to first- and second-nearest
neighbors and Ising antiferromagnetic interactions to third-
and fourth-nearest neighbors.

To complement the spin structure factor analysis, we show
in Fig. 8 the real-space correlations to first-, second- and
third-nearest neighbors in the square C sublattice. Ferro- and
antiferromagnetic correlations are indicated by blue and or-
ange, respectively, whereas the strength is indicated by the
thickness of the lines (correlations with absolute values below
0.005 are not shown for simplicity). The average values and
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0.25 0.01(4) 0.01(4)−0.37(6)
0.18(3)−0.60(3) 0.05(1)

FIG. 8. First- to third-nearest neighbor correlations in the C sub-
lattice corresponding to the 4 × 12 (top) and 8 × 12 (bottom) lattices
for α = 0.1. Blue and orange lines indicate ferro- and antiferromag-
netic correlations 〈Si · S j〉, respectively. The thickness is proportional
to |〈Si · S j〉|. The numbers indicate the average and standard devia-
tion of the type of correlation along the lattice (indicated by arrows).

standard deviation for each type of correlation are shown in
the numbers between the two lattices. For both the 4 × 12
and the 8 × 12 lattices (2 × 12 and 4 × 12 C sublattices), the
largest correlations are ferromagnetic to nearest neighbors in
one direction and antiferromagnetic to third-nearest neighbors
in the perpendicular direction. This is consistent with our
previous qualitative picture of effective interactions. Further-
more, as it happens for the case of the stuffed honeycomb
lattice in the low-S limit [66], the antiferromagnetic corre-
lations are the dominant ones. All these features reinforce
the similarities between the two lattices and strongly suggest
that these effective interactions generally originate from a
Casimir-like effect due to zero-point quantum fluctuations of a
magnetically ordered sublattice. However, these weak effects
may only be seen in these kinds of models where C spins do
not interact directly with one another. As it has been suggested
for the stuffed honeycomb lattice [82], small antiferromag-
netic interactions between the spins in the square sublattice C
may be sufficient to order them and wash away these effects.

Finally, we show in Fig. 9 the decay of correlations. Taking
a leftmost site, we calculate all the correlations with same-
type spins along the Lx direction. The results do not change
qualitatively if a site at the center of the system is taken, show-
ing that the edges do not play an important role. The shown
results correspond to the 8 × 12 lattice, and the differences
with values for different Ly positions are all smaller than the
symbol size. The correlations used are the same on the left
and right panels. On the left panel, the linear axis allows us
to identify an exponential decay. The C sublattice shows a
clear and strong exponential decay of the correlations through
a good linear fit. This indicates short-range correlations in
the C sublattice along the stripes and a gapped state. This,
together with the scaling behavior of the peaks in the static
structure factor, is consistent with a disordered phase. On the
right panel, the logarithmic x axis allows us to see power-law
decaying correlations. Ordered magnets are expected to show
power-law decaying correlations. In this panel we see that the
AB sublattice shows good linear behavior at shorter distances,
indicating an ordering tendency towards the thermodynamic

0 2 4 6 8 10

−15

−10

−5

0

lo
g
(|〈

S
i
·S

j
〉|)

AB sublattice
lin fit R2 = 0.93
C sublattice
lin fit R2 = 0.999

0 1 2

AB sublattice
lin fit R2 = 0.99
C sublattice
lin fit R2 = 0.89

FIG. 9. Correlations along the Lx direction for the 8 × 12 lattice
at α = 0.1. Blue and orange indicate the AB and C sublattices,
respectively. Log-lin (left) and log-log (right) scales allow us to dif-
ferentiate between exponential and power-law decaying correlations.
For each case, a linear fit is performed and shown in lines of the
corresponding colors.

limit. At large distances, the correlations deviate from the
power law and agree better with exponential decay. This
change of behavior is expected for MPS methods and it is
connected to the finite bond dimension [83]. The difference
in the decay law of the correlations for the two sublattices is a
strong indication of a PD phase.

However, the antiferromagnetic correlations between third-
nearest neighbors in the perpendicular direction are strong
(see Fig. 8). In the Ly = 8 lattices, it is not possible to study the
decay of such correlations, because the third-nearest neighbor
along Ly is the same in the two directions due to the cylindrical
boundary conditions. This could be the reason for such a high
value of correlations, −0.6, which is rather close the −0.75
from a singlet. On the other hand, for the Ly = 4 lattices, the
strong antiferromagnetic correlations to third-nearest neigh-
bors are along the Lx direction. This lattice is too small and
not very representative of the two-dimensional limit to jump
to conclusions, but no decay of these correlations with the
distance is observed. Also, ferromagnetic correlations along
Ly of exactly 0.25 could be a signal of a triplet forming be-
tween sites. Altogether, it is difficult to determine the ground
state in the thermodynamic limit from these calculations, and
other methods suitable for larger lattices may be needed. How-
ever, we have collected enough evidence pointing towards
a disordered but correlated state. This is consistent with a
correlated PD at low values of α. As in the case of the stuffed
honeycomb lattice [65], short-range correlations inside the
disordered sublattice are mostly ferromagnetic. But here we
were able to characterize the structure of the correlations as a
double stripe.

E. Stability of the partially disordered phase and classical limit

To complete our analysis, we study the stability of the PD
phase. In Ref. [66], an effective Hamiltonian for the central
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FIG. 10. The antiferromagnetic magnetization mAB
AF for the AB

sublattice and the ferromagnetic magnetization mC
FE for the C sublat-

tice as a function of the staggered magnetic field h applied on the
AB sublattice. The solid lines correspond to the total magnetization,
while the dashed lines correspond to the in-plane xy and out-of-plane
z contributions for the C sublattice. Results correspond to the 8 × 8
lattice with α = 0.1.

spins in the stuffed honeycomb lattice was derived. Such a
Hamiltonian and its corresponding ground state depend on
the value of the spin S. The authors found that for small
values of S the ground state is a double stripe 〈2〉, whereas for
large S the solution is ferromagnetic. Between the two phases,
the fluctuations increase the corrections to the magnetization,
indicating a possible disordered phase at Sc = 0.646 (close to
the quantum case S = 1/2). Our solution for S = 1/2 shows a
disordered structure whose correlations show signatures of the
〈2〉 phase. Studying the same system at higher values S should
lead to a ferromagnetic state for the C sublattice. However,
such a study is beyond the scope of this article. Instead, we
approach the classical limit by applying a staggered magnetic
field h on the open edges of the AB sublattice, reinforcing
the Néel order. For large enough magnetic fields, the quantum
fluctuations above the Néel order become small and should
induce a ferromagnetic in-plane order (considering a magnetic
field in the z direction).

We show in Fig. 10 the magnetization as a function of
the staggered magnetic field h applied on the edges of the
AB sublattice. The full lines show the antiferromagnetic mag-
netization mAB

AF for the AB sublattice and the ferromagnetic
magnetization mC

FE for the C sublattice. The results shown
correspond to the 8 × 8 lattice at α = 0.1. As h grows, the
magnetization of the AB sublattice grows, getting closer to the
classical value; while the ferromagnetic magnetization of C
spins remains close to 0. Eventually, for h � 0.3 J , the C spin
structure factor develops a ferromagnetic peak and the fer-
romagnetic magnetization mC

FE grows notoriously. At h = 0,
the system preserves the SU(2) symmetry from the Hamilto-
nian and the in-plane contribution represents 2/3 of the total
structure factor, indicating an equal contribution of every spin
direction. However, for h 	= 0 the Hamiltonian has only U(1)
symmetry around the z spin axis. For the sublattice AB, this
means that the signal in the z structure factor increases slowly
as h increases (while the signal in xy decreases). On the other
hand, above h � 0.3 J , we observe that the C sublattice forms
a ferromagnetic state where the in-plane contributions account

for almost all the signal at the ferromagnetic peak (see dashed
lines in Fig. 10). This indicates that the ferromagnetic moment
of the C sublattice is indeed in the xy plane, perpendicular
to the Néel order in the AB sublattice, in agreement with
predictions for the effective model on the stuffed honeycomb
lattice [66].

IV. CONCLUSIONS

In this article, we have studied the stuffed square lattice,
which consists of a square lattice (J) with extra spins at the
center of each square. These central spins are connected to the
spins in the square lattice by J ′. Using a parametrization J =
cos(απ/2) and J ′ = sin(απ/2), we covered the whole range
of antiferromagnetic interactions with α ∈ [0, 1]. Using MPS
on ladders from Ly = 4 to 12, and Lx up to 14, we found three
different phases in the corresponding quantum phase diagram.
These are represented schematically in Fig. 2.

For low values of α, we found a partially disordered but
correlated phase, in analogy to the previously studied stuffed
honeycomb lattice [65,66]. In this phase, the square lattice
presents a Néel magnetic order that is unaffected by the
coupling of the central spins J ′. The central spins, on the
other hand, are decoupled from the square lattice but cor-
related between themselves even though there is no direct
exchange coupling between them. These effective correlations
are induced by a Casimir-like effect, due to the zero-point
quantum fluctuations of the Néel order in the square lattice,
which acts as the medium in which the central spins are
submerged. The effective Hamiltonian of the central spins
seems to be dominated by short-range ferromagnetic (first and
second nearest neighbors) and long-range antiferromagnetic
interactions (third- and fourth-nearest neighbors). The latter
are the dominant correlations but are not sufficient to develop
a long-range magnetic order in the central-spins sublattice.
Instead, a structure of double-striped correlations appears,
which decay exponentially along the stripes. For finite sys-
tems, the ground state in this phase has a total Sz = 0 with
finite and very low energy excitations (of order J ′) belonging
to the central-spins sublattice. In the thermodynamic limit,
the square lattice would host gapless magnon excitations
corresponding to the Goldstone modes, which would be the
lowest-lying excitations of the system.

When α grows, there is a first-order phase transition to a
ferrimagnetic state. The exact point of the transition, how-
ever, seems to depend on the system size. In this sense, it
is important to note that the double stripe correlations along
the x direction are frustrated in Ly = 12 because of the peri-
odic boundary conditions, causing the critical value of α to
be particularly lower for this system size (the ferrimagnetic
phase is favored). To confirm the existence of the partially
disordered phase in the thermodynamic limit, we have done
calculations for systems with Ly = 16. Even though these
results are not entirely reliable, we can detect a strong jump in
the ferromagnetic magnetization of the sublattice C, signaling
a phase transition at αC = 0.175(25). All in all, we can say
that the partially disordered phase should exist for α � 0.15
in the thermodynamic limit.

For intermediate values of α, the central spins order ferro-
magnetically and induce a canting angle on the square lattice.
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The resulting ground state is ferrimagnetic with a total spin
different from 0. Contrary to most conventional ferrimagnetic
systems, here the total nonzero ferromagnetic spin emerges
solely from antiferromagnetic interactions in a system of
equal spins. The value of Sz

max is maximum close to the tran-
sition point to the partially disordered phase and decreases
to 0 as α grows. At α = 0.6, there is a phase transition to
a Néel order over the whole lattice, which is a tilted square
lattice dominated by J ′. This value is in agreement with the
predicted phase transition by series expansions and coupled
cluster method calculations [72,73], α = 0.63.

Finally, inspired by the calculations in Ref. [66] for the
effective Hamiltonian of the central spins in the stuffed hon-
eycomb lattice, we have studied the effect of reducing the
quantum fluctuations. We did so by applying a staggered mag-
netic field reinforcing the magnetic Néel order of the square
lattice. We obtained that a phase transition occurs when quan-
tum fluctuations are damped, into a phase where the central
spins are ferromagnetically aligned. Furthermore, the ferro-
magnetic C correlations exist only in the plane perpendicular
to the Néel order in the AB sublattice. This result is consistent
with the large-S results of the effective Hamiltonian for the
stuffed honeycomb lattice.

The most interesting part of the phase diagram lies in the
weakly-frustrated regime at low values of α or J ′/J , as it is the
only phase that does not appear in the semiclassical solution

of the model. And it is, therefore, of purely quantum origin.
This adds up to the previous calculations on the stuffed hon-
eycomb lattice and shows that the partially disordered phase
is common in these kinds of systems. Also, the disordered
sublattice is not trivially disordered and the inner correlations
of the central spins develop a double stripe pattern, originated
from the quantum fluctuations from the ordered sublattice.
In conclusion, these kinds of systems with weakly coupled
spins to a magnetically ordered lattice provide an interesting
playground to study exotic quantum states.
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