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Between waves and patterns: Spin wave freezing in films with Dzyaloshinskii-Moriya interaction
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The relationship between waves and static pattern formation is an intriguing effect and remains unexplained
in many areas of physics, including magnetism. We study the spin-wave-mediated spin reorientation transition
(SRT) in magnetic films with uniaxial magnetic anisotropy and Dzyaloshinskii-Moriya interaction (DMI). In
particular, we show that propagating spin waves can freeze in the SRT, causing periodic magnetic domains to
arise, which is reminiscent of the wave amplitude distribution. This process can take place under the influence of
a change in the magnetic field, but also of other parameters. Interestingly, at the SRT, DMI nonreciprocity leads
to the emergence of flowing magnetization patterns, which suggests a spontaneous breaking of translational
symmetry, and the formation of magnonic space-time crystals. The described phenomena are general and should
take place in a large family of magnetic materials. Therefore, the results should be of great importance for the
further development of spintronics and magnonics.
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I. INTRODUCTION

Pattern formation mediated by collective harmonic oscil-
lations is an intriguing phenomenon that combines linear
equilibrium dynamics and spontaneously broken translational
symmetry that occurs in nonlinear phase transitions. The ef-
fect is quite common in nature and has been observed in
hydrodynamic systems as thermal convection or parametric-
wave instabilities, nonlinear optics, chemical reactions, and
biological systems [1–4]. Research on the subject has recently
extended to nonreciprocal systems, where the role of time-
reversal symmetry breaking in the self-organization process
has been studied, and interesting collective phenomena, such
as time crystals, synchronization, or flowing patterns, have
been observed [5,6].

Phase transitions in ferromagnetic materials include those
between a paramagnetic and a magnetically ordered state,
and the domain nucleation process, which leads to the sta-
bilization of irregular or regular domain structures [7]. The
domain structure is usually determined by the interplay be-
tween the magnetostatic interaction, magnetic anisotropy,
the exchange interaction, and the magnetic and thermal
history. Due to strong spin-orbit interactions at the in-
terface between ultrathin ferromagnets and nonmagnetic
metals, Dzyaloshinskii-Moriya anisotropic exchange interac-
tion (DMI) can result in a chiral magnetization distribution
[8].

Spin waves (SWs), propagating coherent disturbances of
magnetization, are considered as prospective information car-
riers [9–11]. Most research on the propagation of SWs is
devoted to their propagation in uniform or nanostructured
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media, such as through the use of different hole arrangements
[12–14]. However, in recent years inhomogeneous magne-
tization textures have been recognized as promising media
with unique properties [15–19]. For SWs propagating per-
pendicularly to the static magnetization direction [i.e., in the
Damon-Eshbach (DE) geometry] in thin films with uniaxial
magnetic anisotropy, the SW dispersion relation can be non-
monotonic, with a minimum at the wave number k �= 0 [15].
When decreasing the bias magnetic field, this minimum can
reach a near-zero frequency in a process known as mode soft-
ening, followed by magnetization instability, which initiates
a spin reorientation transition (SRT) with spatial symmetry
breaking. In mode softening, the impact of the spatial SW
amplitude distribution on the stable magnetization domain
pattern of various types has been confirmed in micromagnetic
simulations for a ferromagnet bar, a ferromagnetic stripe, an
elliptical nanodot, and recently ultrathin magnetic film with
DMI [20–23]. Also, the magnetization instability at the edge
of the film resulting in skyrmion nucleation is predicted to
be initiated by the edge-localized SWs [24]. Moreover, stripe
domain patterns in fields just below the SRT are systems in
which Higgs and Goldstone modes, both related to transla-
tional symmetry breaking, have been observed recently [25].
However, the interplay between magnetization dynamics and
a static magnetization configuration, in particular the role
of SWs in the formation of regular magnetization patterns
[21,26], and the influence of magnetic anisotropy and film
thickness, remain largely unexplored. Furthermore, the effect
of DMI-induced nonreciprocity [27–31] on the mode soft-
ening and on the SRT, i.e., the influence of time-reversal
symmetry breaking on SW-mediated pattern formation, has
not been studied yet.

Here, we address the above-mentioned questions and prob-
lems, showing the close relationship between the spatial
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distribution of the SW amplitude at the SRT and the mag-
netic domain structure stabilizing after the transition. Using
micromagnetic simulations, we numerically characterize the
SW-freezing process that leads to the translational symmetry
breaking at the SRT, and we determine analytical conditions
of this domain nucleation process. The possibility of ob-
serving flowing stripe domain patterns during the SRT in
ferromagnetic thin films with the nonreciprocal dispersion
relation is also demonstrated. To generalize our conclusions,
we present the behavior of SWs while approaching SRTs
induced by the magnetic field, magnetic anisotropy, DMI
constant, and film thickness. We show that homogeneous thin
and ultrathin films with uniaxial magnetic anisotropy and
DMI are an excellent platform for studying phase transitions
and pattern formation (magnetization). Therefore, our results
are not only promising from an application point of view in
magnonics and spintronics, but they also reveal the relation-
ship between waves and static patterns exemplified by SWs
and magnetization texture occurring at ambient temperature
and available for testing with state-of-the-art experimental
techniques.

II. SPIN WAVE SOFTENING

Ferromagnetic films with uniaxial magnetic anisotropy are
usually characterized by the following: (i) their thickness

d , (ii) magnetic anisotropy Ku [that can by expressed as
the quality factor Q = 2Ku/(μ0M2

s ), where Ms is the satu-
ration magnetization], (iii) exchange constant Aex [that can
be used as the exchange length, lex = √

2Aex/(μ0M2
s )], and

(iv) DMI coefficient D [that can be used, similarly, as the
DMI length, lDM = 2D/(μ0M2

s )]. The magnitudes of d , Q,
D, and the external magnetic field H determine stable mag-
netization configurations; thus they are of particular interest
while approaching an SRT, at critical values denoted by an
asterisk, H∗, Q∗, D∗ or d∗. For instance, a field-induced SRT
(H-SRT) occurs while the in-plane magnetic field H , applied
to an initially in-plane saturated sample, decreases below its
critical value H∗. Both H-SRT and Q-SRT (Q-induced SRT)
have already been studied in ultrathin films by micromagnetic
simulations and in the sinusoidal-like stripe domain approach
[32,33]. Magnetic ultrathin films with Q < 1 are typically
in-plane magnetized at remanence; however, they can undergo
a d-SRT when their thickness increases above d∗. Finally, a
D-SRT can occur when the DMI constant is increased above
its critical value D∗ [34].

The dispersion relation in the DE geometry in thin
films with a homogeneous in-plane magnetization with con-
tributions from the magnetostatic interaction, the uniaxial
magnetic anisotropy, the exchange interaction, and the DMI
[29,30,35,36] can be expressed in reduced parameters (see
Table I in Appendix F) as follows:

f (κ ) = f0

⎡
⎣

√(
h + κ2

d2
ex

+ ξ (|κ|)
)(

h + κ2

d2
ex

− ξ (|κ|) − Q + 1

)
+ Dex

dex
κ

⎤
⎦, (1)

where ξ (κ ) = 1 − [1 − exp(−κ )]/κ , κ = kd is a dimension-
less wave number (more precisely, the units of κ are radians,
but this fact does not affect any following derivations or
numbers). Quantities dex = d/lex and Dex = lDM/lex are the
reduced thickness and the reduced DMI length, respectively,
both related to the exchange length, and h = H/Ms is the
dimensionless in-plane applied magnetic field. The frequency
f is reduced by a factor f0 = γμ0Ms/(2π ). Thus, we will
henceforth use the reduced parameters h∗, d∗

ex, and D∗
ex (in-

stead of H∗, d∗, and D∗, respectively) also for the description
of the respective SRTs.

Let us consider the following general conditions:

df (κ )

dκ
= 0, (2a)

f (κ ) = 0, (2b)

describing the vanishing of the SW group and phase ve-
locities for nonzero wave numbers. Simultaneous vanishing
takes place at a critical wave number κ∗. We will show that
at this point the magnetization structure becomes unstable,
which assists an SRT and leads to the formation of stripe
domain patterns. Thus, the parameters that satisfy the condi-
tions Eqs. (2a) and (2b) will henceforth be called critical and
denoted by an asterisk. Searching for relationships between
these parameters and the material constants when approach-
ing the SRT is one of the main subjects of this study. In

the following sections, we will analyze the conditions of the
instability, the factors influencing the SRT process, and the
relation between the SW mode and the relaxed magnetization
stripe domains formed after crossing the SRT, especially the
critical SW wavelength and the critical period of the nucle-
ated domain structure, Λ∗ and p∗, respectively. Expressed in
reduced units, they are both Λ∗

ex = Λ∗/lex and p∗
ex = p∗/lex.

Considering Eq. (1) in an ultrathin film [κ � 1, so ξ (κ ) ≈
|κ|/2] without DMI, the solution of Eqs. (2a) and (2b) leads
to the following formula for the critical field:

h∗ = Q − 1 + d2
ex

16
. (3a)

This applies to the case of H-SRT, i.e., when h is a free
parameter, while the others are arbitrary. If we fix h = 0, then

Q∗ = 1 − d2
ex

16
, (3b)

which corresponds to a Q-SRT at remanence. In both cases,
the critical SW wavelength is

Λ∗
ex = 2πdex

κ∗ = 8π

dex
, (3c)

and this formula is valid for both H-SRT and Q-SRT men-
tioned above. Note that these relationships obtained from an
SW analysis and determining the critical values Q∗ and Λ∗

ex
[Eqs. (3b) and (3c)] are the same as Q∗ and p∗

ex reported in

134416-2



BETWEEN WAVES AND PATTERNS: SPIN WAVE … PHYSICAL REVIEW B 107, 134416 (2023)

FIG. 1. Analytical dispersion relations constructed with Eq. (1)
illustrating conditions required for SRT occurrence. (a) H -SRT for
Q = 1.1, Dex = 0, and dex = 0.624; (b) Q-SRT for h = 0, Dex = 0,
and dex = 0.624; (c) D-SRT for h = 0, Q = 0.6, and dex = 0.624;
(d) d-SRT for h = 0, Q = 0.6, and Dex = 0. Black lines in (b)–
(d) pertain to the same set of parameters (h = 0, Q = 0.6, Dex = 0,
dex = 0.624). The red dots and vertical dashed lines represent the
conditions, where Eqs. (2a) and (2b) are satisfied, indicating the
values of κ∗. The violet dots in (a) represent the conditions, where
only Eq. (2a) is satisfied.

Ref. [33], based on an analysis of the static properties of stripe
domain patterns.

Figure 1 shows the dispersion relations of SWs in a film
with dex = 0.624, an exemplary value corresponding to ul-
trathin Co film of d = 2 nm (see the Methods section) in
the DE geometry for different critical parameters. Let us first
consider the system with Q = 1.1; see Fig. 1(a). The in-plane
magnetization state is forced by applying a sufficiently high
in-plane bias field. The dispersion is plotted for h = 1.06h∗,
where the critical field is h∗ = 0.123. The dispersion for h∗
has very sharp minima reaching f = 0 (marked with the red
dots), fulfilling Eqs. (2a) and (2b). For the higher field value,
the minima (marked with the violet dots) fulfill Eq. (2a) only;
however, their locations κmin are very close to κ∗, while their
frequency is fmin > 0. The following plots in Figs. 1(b), 1(c),
and 1(d) indicate conditions suitable for SRT of the other
types for Q < 1. We start from the same set of parameters, i.e.,
h = 0, Q = 0.6, Dex = 0, and dex = 0.624; the corresponding
dispersion curve is represented by the black line in each plot.
To obtain f (κ∗) = 0, we need to increase the following: (i)
Q to Q∗ = 0.977, or (ii) Dex to D∗

ex = 0.87, or (iii) dex to
d∗

ex = 4.87; the respective curves are plotted with the red lines
in Figs. 1(b), 1(c), and 1(d).

In Appendix E there is an analysis revealing that for small
field values, the global minimum of dispersion dependence
falls for DE modes (see Fig. 11). It occurs even when the
backward volume modes corresponding to the propagation
along the field direction have significantly lower frequencies
at high fields. As h∗ is approaching, the minimum of the DE
dispersion drastically drops down below the bottom of the
backward mode band around κ∗. This observation confirms

our assumption of the unique relationship between DE SWs
and SRT.

III. ANALYSIS OF PHASE TRANSITIONS

The analytical dispersion relations presented above de-
scribe the SW dynamics in uniformly in-plane magnetized
films in the linear approximation. Let us analyze the re-
sults of micromagnetic simulations performed with MUMAX3
software [37] to better understand the nature of the insta-
bility while approaching f = 0. In principle, any of the
above-discussed SRT scenarios could be considered for
demonstration; however, we focus our discussion on the H-
SRT, which is the simplest to realize experimentally. Thus, we
select h as the free parameter, keeping constant Q, Dex, and
dex. We will approach h∗ for the following two systems: (a)
ultrathin film (dex < 1) with Q > 1, focusing our discussion
on a 2-nm-thick Co layer (dex = 0.624), and (b) thin film with
Q < 1, considering a 200-nm-thick film of yttrium iron garnet
(YIG) (dex = 11.9). The details of simulations are specified in
the Methods section.

A. Ultrathin films

We perform micromagnetic simulations of an ultrathin
film, discussed in Fig. 1(a). First, we analyze the field-
dependent response of a uniformly magnetized film to
a point-source-like low-amplitude excitation that can be
treated as local fluctuations enabling broadband excitation of
SWs. For several values of h > h∗, we simulated the SW
dispersion relation, which in addition to revealing the fre-
quency dependence on the wave number [Eq. (1)], also
indicates the relative intensity of SWs (see Fig. 7 in
Appendix B for sample plots). The SW intensity reaches a
maximum at the bottom of the SW spectrum (κmin, fmin), and
increases drastically when h decreases to h∗, as presented with
the empty-square line in Fig. 2(a). Our analysis indicates the
linearization of the SW polarization along the z-axis and the
way of entering the nonlinear regime just before the SRT. This
indicates a significant enhancement of the susceptibility of
the soft SW mode when approaching the SRT in accordance
with predictions made for other hydrodynamic systems [2].
For each calculated dispersion, we also take the wavelength
Λmin

ex = 2πdex/κmin related to the minimum of f (κ ) depen-
dence. In Fig. 2(b), the numerical results (open squares) super-
imposed with the theoretical predictions obtained from Eq. (1)
(dotted line) are shown, revealing a very good agreement.
While decreasing h down to h∗, the SW wavelength decreases
slightly and approaches the critical value Λ∗

ex.
In the same system, we analyze the static magnetization

distribution for 0 < h < h∗. We determine the field-dependent
magnetic configuration, for which the energy density of
the system reaches the minimum. While increasing h, the
mean values of normalized my and squared mz magnetiza-
tion components, 〈my〉 and 〈m2

z 〉, respectively, increase to 1
and decrease to 0, respectively, reaching the SRT [Fig. 2(a)],
whose location (field value) is in a very good agreement with
the theoretical one [Fig. 1(a)]. Figure 2(b) shows the field
dependence of the stripe domain period pex. One can find that
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FIG. 2. A relation between the static magnetization configuration
of a stripe domain pattern and the SW profile, below and above the
SRT, respectively. Simulations have been performed for an ultrathin
film depending on h for dex = 0.624, Q = 1.1, and Dex = 0. Nor-
malized field h-dependencies are of the following: (a) static 〈my〉 and
〈m2

z 〉 (solid circles and squares); critical field h∗ = 0.123 is deter-
mined by simulations; maximal amplitude of mz oscillations from
dynamic simulations (open squares); (b) reduced equilibrium domain
period pex from static simulations (solid circles), SW wavelength
Λmin

ex from dynamic simulations (open squares), and from theory
given by Eqs. (1) and (2a) (dashed green line). Solid lines are plotted
as guides for the eye. The yellow background corresponds to the
field range of occurrence of a magnetic state with an out-of-plane
magnetization component, and the white background corresponds to
an in-plane state.

the critical p∗
ex is equal to the critical Λ∗

ex, and that p∗
ex has an

order of magnitude lower value than pex at remanence.
Matching of Λ∗

ex and p∗
ex is an important result demonstrat-

ing a direct connection between the SWs just above h∗ and
the stable magnetization configuration just below h∗, despite
their very different mechanisms: the low-amplitude linear dy-
namics of propagating excitation prove to be correlated with
the static magnetization distribution after the SRT, a nonlinear
process by its very nature. This correlation is illustrated by
temporal evolution of the magnetization distribution from the
uniform in-plane state after the point-source-like excitation
(see the Methods section) in the vicinity of h∗. For h � h∗
[Fig. 3(a)], the SW spreads with increasing amplitude and
finally stabilizes after a few nanoseconds as a periodic stripe
domain pattern, covering the whole area of the simulated
film. In contrast, for h � h∗ [Fig. 3(b)], only low-amplitude
SWs occur, spreading from the source and decaying over

time due to damping. The temporal profiles of 〈m2
z 〉 (averaged

over the whole sample) for h � h∗ and h � h∗ are superim-
posed in Fig. 3(d) as black and blue lines, respectively. They
clearly indicate a nonlinear process of spontaneous spatial-
symmetry breaking initiated by low-amplitude disturbance of
magnetization; for h∗, where f = 0, that disturbance is frozen,
yielding the formation of a domain pattern of the same period.
Therefore, mode softening for fields below h∗ leads to the
formation of the stripe domain pattern, i.e., SW freezing.

The introduction of DMI to our systems leads to an in-
triguing effect of formation of the time-dependent phase of
magnetization with a flowing stripe domain pattern [5,6].
Temporal evolution of the magnetization profile for the system
with Dex �= 0 is shown in Fig. 3(c). The magnetic field is
slightly below h∗ to enable pattern formation. The DMI results
in pattern flowing in the direction determined by the sign
of κ∗. The amplitude of excited magnetization increases to
saturation [Fig. 3(d)], and the flowing patterns slow down and
stabilize. This structure may be considered as another pos-
sible realization of the room-temperature space-time crystals
[38–40]. We observe that the completion time of the SRT
is significantly longer with the DMI, and strongly decreases
with increasing damping constant α. This is clearly visible
in Fig. 3(d); cf. the dashed orange and dashed red lines cor-
responding to α = 0.005 and 0.02, respectively. In the latter
case, it takes 70 ns from the initiation of the fluctuation to
stabilize the resulting magnetic distribution fully, while for
lower α the stabilization process is several times slower. The
SW freezing process for both Dex �= 0 and Dex = 0 cases is
additionally illustrated in dynamic plots within the movie,
provided in the Supplemental Material [41].

Here, it is significant that for both cases h < h∗ shown in
Figs. 3(a) and 3(c), during the SRT we observe an expansion
of a periodic magnetization distribution with an increasing
range of angles of deviation from the initial in-plane ori-
entation. This behavior is very different from that of SWs,
whose amplitude, due to damping, usually decreases rapidly
with time. This type of expansion of the magnetic distribution
occurring during SRT, in systems with DMI and a flowing
pattern, can move for long distances, and the damping is no
longer a limiting factor, but it influences the rate of the am-
plitude increase. These patterns may find various applications
and provide a playground for fundamental studies of phase
transitions in space and time. For example, in addition to using
a continuous drive that results in a Floquet time crystal, a
pulse technique can be used where a time crystal is initiated
by a drive that is turned off [42]. This scenario is illustrated
in Fig. 3(c), where a sinc-type pulse of the microwave field
initiates the emergence of the dynamic flowing magnetization
pattern.

B. Thin films

Within the already discussed ultrathin case, the magne-
tization distribution has been homogeneous across the film
thickness. At the next step, we perform a similar analysis
for thicker layers (dex = 11.9, Q = 0.25), where one can
expect that demagnetization induces inhomogeneous flux-
closure magnetic distribution across the film thickness, such
as, e.g., weak stripe domains [7,43]. For this type of stripe
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FIG. 3. Time evolution of the pattern formation in ultrathin Co film for Q = 1.1. (a) h = 0.998h∗ and (b) h = 1.003h∗; in these simulations,
h∗ = 0.123, Dex = 0, and damping parameter α = 0.005. (c) Dex = 0.123, h = 0.996h∗ (where h∗ = 0.124), and α = 0.02. The color scales
in all density maps are conserved. (d) Temporal dependencies of 〈m2

z 〉 are averaged over the whole systems, for the cases (a), (b), and (c), and
additionally for the DMI case from (c) with low α = 0.005 (the orange dashed line). The same results in the form of a movie can be found in
the Supplemental Material [41].

domains, the cross-sectional view reveals that domain walls
resemble vortices with parallel in-plane aligned cores. The
field dependencies in dynamics and statics, obtained from
micromagnetic simulations, are qualitatively similar to those
shown in Fig. 2, and they are presented in Appendix C (see
Fig. 8). The dispersion relation calculated for a saturated

system (h = 1.05h∗) is shown in Fig. 4(a). The band that
approaches f = 0 at κ = κ∗ is responsible for the phase tran-
sition. The maximum of magnetization dynamic amplitude is
observed at (κmin, fmin) at the minimum of SW dispersion, as
marked by the black dot. The cross-sectional view of the SW
amplitude distribution at this point is shown in Fig. 4(b). The

FIG. 4. Simulated h-dependent static and dynamic properties of thin film with Q = 0.25, Dex = 0, and dex = 11.9. (a) SW dispersion
relation for h = 1.05h∗ (SW intensity is in log scale); the white dashed line represents the analytical dispersion [Eq. (1)]; (b) mode of
oscillations at the point (κmin, fmin ) in the dispersion relation, as marked with the black dot in (a); the mx and mz dynamic magnetization
components are presented by the black arrows, my ≈ 1; (c),(d) static magnetization distribution at h = 0.95h∗ and 0, respectively. The mx and
mz static magnetization components are presented by the white arrows, while the static my component is coded by color.
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profile should be understood as a photograph of distribution
of the dynamic magnetization component, moving along the x
direction. This dynamic magnetization distribution is similar
to the static magnetization weak stripe domain pattern [7],
found for h < h∗, as presented in Fig. 4(c) for h = 0.95h∗.
Thus, the mechanism of SW freezing in thin films, regardless
of the appearance of more complicated magnetic patterns,
looks similar to the one discussed for ultrathin films with
one-dimensional magnetization distribution. The lower the
field value, the lower the phase velocity, and, finally, the phase
velocity vanishes, when f = 0 for h∗ and κ∗. At this point, we
observe the SRT and finally get a weak stripe domain pattern
with the spatial distribution resembling the mode profile of
SWs for fields just above h∗ at κ ≈ κ∗. While decreasing
the field down to 0, this flux closure vortex-type structure
[Fig. 4(d)] evolves: mx and mz magnetization components be-
come more distinct, and the domain period increases slightly.
The theoretical dispersion relation [Eq. (1)] plotted in Fig. 4(a)
with the white dashed line cannot be used to find conditions
required for the occurrence of SW freezing in thin film since
it does not describe SW dynamics well in thicker films. Nu-
merical simulations more accurately describe the properties of
such systems.

IV. INFLUENCE OF H , Q, D, AND d ON THE SRT

We already know that the SW softening mediates a phase
transition from the in-plane saturated state to the stripe domain
pattern with a period matching the wavelength of SWs at
zero frequency. We discussed the H-SRT case, and now let
us analyze the other types of SRTs, which can be understood
as boundaries in a multidimensional space of material pa-
rameters, h, Q, Dex, and dex. Below we discuss SRTs on the
following two planes: (a) (Q, Dex) and (b) (Q, dex).

A. SRTs on the (Q, Dex ) plane

To characterize the SRT within the (Q, Dex) cross-
section of the available parameter space, in the case of
ultrathin films (here, we take dex = 0.624), one can solve
Eqs. (2) numerically. The results of such calculations are
shown in Figs. 5(a) and 5(b). The white region corresponds to
the in-plane magnetization state, and the yellow-red regions
correspond to the states with a nonzero out-of-plane mag-
netization component. The separating solid black line marks
the zero-field SRT, and it can also be calculated analytically
[see Eqs. (A1) in Appendix A]. Within the out-of-plane state,
the magnetization can be turned into an in-plane orientation if
the bias field is above the critical field h∗ plotted as contours
in Fig. 5(a). The critical field value is found to be increasing
with both Q and Dex. The values of Λ∗

ex (or p∗
ex equivalently)

plotted as contours in Fig. 5(b) generally decrease with in-
creasing Dex, with a minor dependence on Q. They can be
compared with the calculated equilibrium domain structure
period pex, corresponding to the minimal energy state in the
zero external magnetic field shown in Fig. 5(c). An analogical
map of the equilibrium period plotted for a Co film with a
different thickness and a variety of possible magnetic states
are discussed in Ref. [34]. There is a substantial difference in
values of domain periods, critical p∗

ex and pex at remanence,

in particular in the right-bottom corner of the diagram, where
the latter one can be orders of magnitude higher [33]. In fact,
this diversity has already been discussed in Sec. III A and
illustrated for the case Dex = 0 in Fig. 2(b). On the other hand,
both periods are converged in the top part of the diagrams (for
high Dex). Figure 5(d) shows scans of p∗

ex and pex along Dex

for selected values of Q. This demonstrates a possibility of the
existence of a stripe domain varying widely in size, depending
on the magnetic history. When operating with the perpendic-
ular field, huge equilibrium domains may be formed. On the
other hand, when playing with the in-plane field, fine structure
can be obtained at the H-SRT from the frozen SW, and this
structure should persist as metastable even after reducing the
field down to 0. The possibility of the formation of domains
of hugely different sizes using a perpendicular or in-plane
applied magnetic field has been confirmed experimentally
in Co ultrathin films [32]. Another example of diversity of
magnetization states depending on sample magnetic history
is the domain structure formation across temperature-driven
SRT due to reversible Q(T ) dependence [44].

B. SRTs on the (Q, dex ) plane

Another view of the phase transition diagram in our four-
dimensional parameter space is provided in Fig. 6, showing
the Q and dex dependencies with constant Dex = 0, with a
similar (to Fig. 5) convention of colors for the ranges of
the in-plane and out-of-plane magnetization distributions. The
solid black lines in Fig. 6 describe the zero-field SRT con-
structed by the classical approach proposed by Hubert [7,45]
and based on micromagnetic equations considering domain
nucleation. Characteristic regimes in the (Q, dex) space can be
distinguished. In ultrathin films (dex < 1), the parameters h∗
and Λ∗

ex can be described analytically with Eqs. (3) [or higher-
term approximation-based Eqs. (D1)]. For these equations, as
well as for numerical solution of Eqs. (2), the zero-field SRTs
are plotted in Fig. 6(b) with the dashed lines. While leaving
the ultrathin regime (increasing dex), the minimum of SW
dispersion for a field approaching the critical field h∗ (SW
freezing effect) should be determined numerically due to dis-
crepancies in this regime for the analytical dispersion relation
based on Eq. (1). This is discussed above and illustrated in
Figs. 4 and 9. Finally, the regime of low Q and high dex media
can be described analytically again with Eqs. (D2), applied
after Ref. [25], discussed further in Appendix D. The contours
in Figs. 6(a) and 6(b) are the values of h∗ and p∗

ex (or equiva-
lently Λ∗

ex of the softened SWs), respectively, calculated with
micromagnetic simulations of the magnetization state over
wide ranges of Q and dex. The bottom parts of both maps (low
dex below the scissors) are calculated using the theoretical
approach [Eqs. (D1a) and (D1c)]. Interestingly, p∗

ex or Λ∗
ex

changes in a nonmonotonic way, reaching higher values at
either dex � 1 or Q � 1 regions. In the inset to Fig. 6(b),
we present the simulated behavior of p∗

ex(dex) along the h = 0
SRT line assisted with the theoretical dependencies and plot-
ted for analytically describable regimes. Speaking in terms of
κ , inversely proportional to the wavelength (or period), the
low κ regions (or high Λex or pex regions at either low dex or
low Q) have a particular practical experimental importance. In
those regimes, it is possible to excite SWs by experimentally
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FIG. 5. Calculated diagrams and SRT lines in the (Q, Dex ) space for the ultrathin film case with dex = 0.624. (a),(b) Theoretical SRT [i.e.,
numerical solution of Eqs. (2a) and (2b)]; (a) the map of critical field h∗; (b) the map of critical period p∗

ex or wavelength Λ∗
ex for the values of

h∗ shown in (a); (c) the map of reduced period found in micromagnetic simulations from energy minimization at zero field; (d) a comparison
of freezing (b) and zero-field (c) reduced periods for selected Q values [marked with the vertical lines in (b) and (c)]. The white points denote
the parameters discussed in the labeled figures.

available antennas, or to detect SWs by the Brillouin light
scattering (BLS) technique [25] instead of large-scale facility
synchrotron methods [46] required for studying the high κ

(small Λex or pex) regime. For SW excitations at h > h∗, the
values of interesting κ (or Λex) do not change substantially, as
can be noted in Figs. 2(b) and 8(b).

The open symbols in Fig. 6(a) represent the values of
(Q, dex) already discussed throughout the manuscript and pre-
sented in the labeled figures. Within the open triangle, we also
considered a point in the Q � 1 regime where the analytical
formulas [Eqs. (D2)] can be used. In Fig. 11 in Appendix E,
we discuss the simulated spectra in the DE configuration for
two field values, illustrating the effect of SW freezing. The
obtained values of critical parameters are in good agreement
with the analytical ones. Additionally, for the identical pa-
rameters, we calculate the spectra in the backward-volume
magnetostatic wave geometry. Different minima for these

modes clearly indicate that SW freezing takes place for the
DE mode that is connected to the creation of stripe domains
along the magnetic field.

Finally, let us discuss the advantages of using the nondi-
mensional parameters introduced in the dispersion relation
[Eq. (1)] and exploited throughout this work. Any given set
of parameters h, Q, Dex, and dex can be recalculated for dif-
ferent material, involving different material-specific Ms, Aex,
and gyromagnetic ratio γ , and yielding the same effect for
proper absolute parameters H , Ku, D, and d . This issue is
discussed in detail in Appendix F. Our nondimensional space
covers a number of magnetic materials with a broad range of
accessible parameters depending on the experimental goal and
taking into account the limitations of available experimental
methods. For example, lex in YIG is about five times larger
than in Co due to different Ms and Aex values; thus, about
five times larger real thicknesses and, in dynamics, about
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FIG. 6. Simulated SRT in the (Q, dex ) space for Dex = 0. (a) The map of critical field h∗; (b) the map of critical period p∗
ex or wavelength

Λ∗
ex for the values of h∗ shown in (a). The open symbols in (a) denote the values of parameters discussed throughout the manuscript and

presented in the indicated figures. The dashed lines in (b) are analytical and numerical approximations of zero-field SRT according to the
dispersion-based theory, and the dotted line is the zero-field SRT in the Q � 1 regime. The black solid line in (a) and (b) is Hubert’s theory for
the zero-field SRT. The area below the scissors is filled according to theoretical dependences instead of simulations (see the text for details).
The inset in (b) is a scan of p∗

ex or Λ∗
ex along the zero-field SRT (the black “Hubert” line) according to simulations and applicable analytical

approaches.

five times lower wave numbers are required for the same
effect to occur in YIG. In particular, large wave numbers
can be a bottleneck in experimental validation, e.g., in BLS,
where the employed laser light wavelength limits the SW
wave numbers, resulting in measurable periods in the range of
hundreds of nanometers. On the other hand, frequencies that
scale with Ms, are about 10 times lower in YIG than in Co.
Recently, DMI has been proven to exist also in garnets [47],
and although the absolute D values in these materials seem
to be extremely low as compared to those found in metals,
the values of the corresponding reduced parameter Dex are
similar. The results of micromagnetic simulations indicate that
the normalized parameters work well up to the instability for
ultrathin and thin films. It is important to note that based on the
normalized parameters in the linear SW theory, we can es-
timate the magnetization stripe domain pattern emerging in
a nonlinear remagnetization process due to the demonstrated
correlation between the softening of SWs and the nucleation
of stripe domains.

V. CONCLUSIONS

We have provided a combined view of the interplay be-
tween static stripe magnetic domains and the SW dynamics
in films with uniaxial perpendicular magnetic anisotropy and
DMI, representing an important class of ferromagnetic mate-
rials. The interconnection involves a critical behavior of SWs,
with the vanishing of their phase and group velocities at a
critical value of the bias magnetic field, which is accomplished
by the DE type of SWs, regardless of which type of mode has
the minimum at higher magnetic field values. At the critical
field, the SW freezes, its amplitude rises, and a stripe domain

structure is formed with the period p∗
ex and spatial distribution

equal to the wavelength Λ∗
ex and profile, respectively, of the

frozen SW. From the static point of view, this occurs in the
form of an SRT.

Our study is based on an analytical approach and mi-
cromagnetic simulations with analysis of the bias magnetic-
field-induced transition H-SRT, the most common and very
significant one for its reversibility. However, the freezing pro-
cess is also observed in other transitions, such as Q-SRT or
D-SRT, which can also be realized reversibly by changing the
temperature or the electric field. The thickness-driven phase
transition d-SRT is related to following different magneti-
zation distributions: simple stripe domains in ultrathin films,
and complex weak stripe domains that are nonuniform across
thickness, with domain walls resembling vortices in thicker
films with Q < 1, and asymmetric across the film thickness
when D �= 0. At remanence, the creation of different do-
main structures can be expected, as follows: (i) metastable
structures with the critical period p∗

ex, and (ii) equilibrium
structures with a period up to orders of magnitude larger than
p∗

ex. p∗
ex can be described with simple analytical formulas

either in low-dex or in low-Q approximations. We have shown
that the formation of the stripe magnetic domain in homo-
geneously magnetized ferromagnetic film can be induced by
a pulselike point source of SWs just below SRT, offering a
scenario for the expansion of the magnetization pattern at
velocities controlled by damping.

The DMI breaks time-reversal symmetry in ferromagnetic
ultrathin films, but it also results in the formation of a flowing
stripe domain magnetization pattern after passing through an
H-SRT with a decreasing bias magnetic field. This effect can
offer an opportunity to form magnonic space-time crystals
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and study fundamental properties of classical systems related
to spontaneous translational symmetry breaking in space and
time.

Our simulations have been performed for ultrathin and thin
films of cobalt and yttrium iron garnet. However, the results
presented in the units normalized to the material constants can
be easily rescaled to other magnetic media with the extension
of the conclusions made.

VI. METHODS

We used MUMAX3 [37] to perform micromagnetic sim-
ulations for the following two representative systems: (i) a
2-nm-thick Co ultrathin film with Ms = 1.42 MA/m and
Aex = 13 pJ/m, and (ii) a 200-nm-thick YIG thin film with
Ms = 143 kA/m and Aex = 3.65 pJ/m. The assumed val-
ues of Ms and Aex in the Co and YIG films correspond to
the exchange lengths of 3.2 and 16.8 nm, respectively; thus,
the reduced thickness values in the respective systems are
dex = 0.624 and 11.9. The sizes of the simulated systems
are Sx × 10 × 2 nm3 and Sx × 100 × 200 nm3, and those of
their unit cells are 1 × 10 × 2 nm3 and 10 × 100 × 10 nm3,
respectively. In simulations, we assume the periodic bound-
ary conditions along the x and y directions; therefore, we
can regard our system as infinite in the (x, y) plane. Static
relaxation of the systems has been performed to determine
the preferred magnetization orientation and the domain stripe
period in the out-of-plane magnetization state. The value of
Sx has been adjusted for different H , Q, and D values, and
the total energy density of the sample has been monitored to
find the minimal energy state. In addition to the two basic
systems of the described geometries, different films thick-
nesses have also been simulated for Co film by increasing the
number of cells along the z direction, keeping the unit cell size
constant.

The dynamic response of the system has been calcu-
lated after a low-amplitude localized microwave magnetic
field pulse, sinc-shaped in the spatial and temporal domains,
hmf = a sinc(2π fcutt )sinc(kcutx), applied along the (1, 1, 1)
direction, with the peak-amplitude a of order of 0.1 mT,
and various cutoff frequencies fcut and cutoff wave num-
bers kcut, selected individually to cover a region of interest
of particular dispersion relations (see the maximal values
of f and k in the presented dispersions). The simulation
started at t = −10/ fcut. The calculations have been done for
Gilbert damping constant α = 0.05 (or lower if specified)
and for gyromagnetic ratio γ = 1.76 × 1011 rad/T/s. The
dispersion relations for the data stored with the sampling in-
terval providing spectral resolution up to fmax = 1.1 fcut have
been calculated by the two-dimensional fast Fourier trans-
formation (FFT) of a time-dependent stack of x-dependent
magnetization distributions (mz component, averaged over
the thickness), converting a 2D (x, t )-dependent matrix into
reciprocal space (k, f ). The mode profiles have been cal-
culated using the inverse FFT from the (k, f ) space with
a binary mask composed of 1 in a selected point (k0, f0)
and 0 elsewhere. In this case, both mx and mz components
were taken into account, keeping the resolution along the z
direction.
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APPENDIX A: SW SOFTENING IN ULTRATHIN FILMS
WITH DMI

In Eqs. (3) in the main text, the formulas for critical param-
eters at the SRTs have been proposed for the ultrathin case,
without DMI. Under the same approximation of ξ (κ ) = |κ|/2,
the conditions (2) and (1) can also be found for Dex �= 0. For
the simple case of the zero-field SRT, the equations can be
solved analytically, yielding

Q∗ = 1 − 3a

8
+ 3a2

16d2
ex

+ 5d2
ex

16
− 3d4

ex

8a
+ 3d6

ex

16a2
− D2

ex,

(A1a)

where

a = 3

√
d4

ex

(
2Dex +

√
d2

ex + 4D2
ex

)2
. (A1b)

The critical SW wavelength is

Λ∗
ex = p∗

ex = 4a

a2 − ad2
ex + d4

ex

, (A1c)

which is far more complicated than the respective Eqs. (3).
Nevertheless, the formulas for Q∗ and Λ∗

ex from both sets of
equations become identical, when inserting Dex = 0. Equa-
tion (A1a) is plotted for dex = 0.624 in Figs. 5(a) and 5(b)
in the main text, and it agrees well with the boundary h = 0
SRT found from numerical calculations for the original ξ (κ )
(without approximations).

APPENDIX B: DISPERSION RELATION
IN ULTRATHIN FILMS

The dynamic response of a uniformly magnetized ultrathin
film with dex = 0.624 (i.e., a Co film with d = 2 nm) and
Q = 1.1 has been simulated for several values of h > h∗; the
results are shown in Fig. 2 and discussed in the main text. The
simulated dispersion relations are presented in Fig. 7, where
they are compared with the theoretical predictions based on
Eq. (1), represented by black dashed lines. The case consid-
ered in Fig. 7(b) is the same as that in Fig. 1(a) in the main
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FIG. 7. Dispersion relation in ultrathin film for dex = 0.624 (i.e., 2 nm of Co), Q = 1.1, Dex = 0, and increasing field, all above the critical
value h∗ = 0.123: (a) h = 1.01h∗; (b) h = 1.06h∗ [this is the case presented in Fig. 1(a)]; 1(c) h = 1.63h∗. SW intensity is coded by color in log
scale. While increasing the field, the band moves up and its intensity decreases. The dashed lines are plotted according to the dispersion-based
theory [Eq. (1)].

text. With increasing field, the observed band moves up and its
intensity near the minima decreases, as explained in Fig. 2(a).

APPENDIX C: SW FREEZING AND DISPERSION
RELATION IN THIN FILMS

The orientation of the static magnetization in thin film
dex = 11.9 (which corresponds to 200 nm of YIG) and Q =
0.25 has been calculated versus h to determine the value of
h∗, as has been done for the ultrathin film (Fig. 2 in the
main text). Note that these results are qualitatively similar.
The critical field value h∗ = 0.04 has been found from the
field dependences of 〈my〉 and 〈m2

z 〉. The result is presented in
Fig. 8(a) along with the amplitude of the dynamic response of
the system for h > h∗ that increases strongly as h decreases to
h∗. Figure 8(b) shows the field dependence of the following:
(i) reduced equilibrium (minimum energy) domain period for
h < h∗, and (ii) SW wavelength at minimum of SW dispersion
for h > h∗.

The dispersion relations for this thin film have been cal-
culated for several values of Q and h > h∗. The selected
cases are illustrated in Figs. 9(a) and 9(b) for Q = 0.6, in
h = 1.03h∗ and h = 1.21h∗, respectively, where h∗ = 0.32.
Superimposed in the plot are the theoretical dependences cal-
culated from Eq. (1), represented by dashed lines. Since the
theory based on dispersions does not correctly describe inho-
mogeneous oscillations in anisotropic systems (as discussed
in Sec. IV in the main text), the numerical and theoretical
results differ substantially, except for very low (close to 0) or
very high wave numbers. Figures 9(c) and 9(d) show the mode
profiles for two different wave numbers, distinguished by the
black points in Fig. 9(a). The mode profile for the lower wave
number (large periodicity) in the range of wave vectors, where
the simulation results agree with the theory, is characterized
by the amplitude concentration at one of the layer surfaces,
which is characteristic for DE modes. The latter mode profile,
at the minimum of the band, is close to the SW freezing (when
the field is slightly increased above h∗), and the dynamic
magnetization pattern has a characteristic vortexlike shape as
in Fig. 4 in the main text.

FIG. 8. A relation between the static magnetization configuration
of a stripe domain pattern and the SW profile below and above
the SRT, respectively. Simulations have been performed for the
thin film depending on h for dex = 11.9, Q = 0.25, and Dex = 0.
Normalized field h-dependencies are of the following: (a) static
〈my〉 and 〈m2

z 〉 (solid squares and circles); critical field h∗ = 0.04
is determined by simulations; maximal amplitude of oscillations
is determined by dynamic simulations (open squares); (b) reduced
equilibrium domain period pex is determined by static simulations
(solid circles), and wavelength of SWs Λmin

ex is determined by dy-
namic simulations (open squares). Solid lines are plotted as guides
for the eye. The yellow background corresponds to the field range of
occurrence of a magnetic state with an out-of-plane magnetization
component, while the white background corresponds to the in-plane
state.
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FIG. 9. Dispersion relations and SW mode profiles in thin films, dex = 11.9 and Q = 0.6. (a),(b) Dispersion relations for h = 1.03h∗ and
1.21h∗. While increasing the field above, the band moves up and its intensity decreases. SW intensity is coded by color in log scale. The
white dashed lines are theoretical dependences according to Eq. (1) at the given values of the field. (c),(d) Mode profiles in h = 1.03h∗, where
h∗ = 0.32, at the points marked with dots in (a).

The introduction of DMI makes the dispersion relations
asymmetric, as shown in Fig. 1(c) in the main text. Fig-
ures 10(a) and 10(b) present the simulated dispersion in a
thin film for Dex = 0.246 and 1.23 (that correspond to D = 1
and 5 mJ/m2 in Co, respectively). As h decreases to h∗, the
band descends to touch the f = 0 axis at a negative k; only at
this point is the SW freezing process possible. The sign of the
wave number corresponding to f = 0 depends on the signs of
the DMI constant and the magnetic field. The mode profiles at
both minima of the band [Figs. 10(c) and 10(d)] look spatially
similar. The only difference is the opposite (up/down) shifts
of the centers of the vortices in the domain walls. However,
the frequencies and, consequently, the phase velocities differ
substantially.

The asymmetry of the dispersion increases with increasing
DMI, and the difference between the SW velocities at the
two minima can change drastically. In particular, when the
DMI is strong enough, the dispersion relation can have one
minimum only, the other being flattened, as in Fig. 10(b),
where Dex = 1.23 (D = 5 mJ/m2 in Co). As in Fig. 9, the

theoretical dispersion cannot describe the systems (plotted
with white dashed lines) due to inhomogeneous oscillations.

APPENDIX D: CRITICAL PERIOD IN THE (Q, dex ) PLANE

In Sec. IV B in the main text, the SRT is discussed in the
(Q, dex) parameter space. It can be described analytically in
the two following regimes: (i) ultrathin film, dex < 1, where
Q � 1; and (ii) low anisotropy, Q � 1, for dex � 1. In the
former case of homogeneously magnetized ultrathin magnetic
films, one can apply the dispersion-based theory and SW
softening. In Eqs. (3) in the main text, the formulas for critical
parameters at the SRTs have been proposed. Alternatively, one
can employ a higher-term approximation of ξ (κ ) ≈ |κ|/2 −
κ2/6 to obtain a higher-term approximation of critical field,

h∗ = Q − 1 + 3d2
ex

8
(
6 + d2

ex

) . (D1a)

For the zero-field SRT, one has

Q∗ = 1 − 3d2
ex

8
(
6 + d2

ex

) . (D1b)

FIG. 10. Dispersion relations and SW mode profiles in thin film with DMI, dex = 11.9 and Q = 0.6. (a),(b) Dispersion relations for
Dex = 0.246 and 1.23 and h = 1.06h∗ and 1.11h∗, respectively. While increasing DMI, the band tilts, becoming more asymmetric. SW intensity
is coded by color in log scale. The white dashed lines are theoretical dependences according to Eq. (1) at the given values of the field.
(c),(d) Mode profiles for Dex = 0.246 in h = 1.06h∗, at the points marked with dots in (a).
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FIG. 11. The simulated dispersion relations in DE (solid lines) and BVMW (dashed lines) modes for the following two systems: (a) an
ultrathin film, dex = 0.624 and Q = 1.1, and in magnetic field, h1 = 1.0005h∗ and h2 = 1.14h∗; (b) a thick and low-anisotropy film, Q = 0.01
and dex = 100, and in magnetic field, h1 = 1.02h∗ and h2 = 7.5h∗.

The critical SW wavelength is

Λ∗
ex = p∗

ex = 8π

dex
+ 4πdex

3
, (D1c)

and this formula is valid for different types of SRT, being
independent of h and Q. Equations (D1) become analogous
to Eqs. (3) for the case dex � 1. Equations (D1a) and (D1c)
are used to complete the lower part of Figs. 6(a) and 6(b),
respectively, and in the inset of Fig. 6(b), as a low-dex case of
p∗

ex(dex) dependence along the SRT at remanence.
On the other hand, the low-Q case is discussed in Ref. [25].

Based on the Landau theory, the authors derive an equation for
critical field, which can be rewritten in our normalized units
as

h∗ = Q − 2π
√

Q

dex
. (D2a)

The condition for h = 0 transition is then written as

Q∗ =
(

2π

dex

)2

, (D2b)

which is equivalent to Hubert’s theory-based approximation,
and is plotted in Fig. 6(b) as the black dotted line. Further, the
SW wavelength along this zero-field SRT can be calculated as

Λ∗
ex = p∗

ex = 2dex. (D2c)

The general formula for the case h �= 0 is

Λ∗
ex = p∗

ex = 2dex

√
π√

Qdex − π
. (D2d)

Between the above analytically describable regimes, the
transitional middle-dex SW freezing parameters can be suc-
cessfully described by micromagnetic simulations.

APPENDIX E: DE AND BACKWARD-VOLUME
MAGNETOSTATIC WAVE GEOMETRIES

Let us compare the dispersion relations of SWs prop-
agating perpendicularly and parallelly to the direction of
the applied magnetic field, i.e., the DE configuration and
backward-volume magnetostatic wave (BVMW) configura-
tion, respectively. For this purpose, we performed calculations
by solving the linearized Landau-Lifshitz equation in the fre-
quency domain using the finite-element method implemented
in the COMSOL MULTIPHYSICS environment [48]. We per-
formed calculations for the following two cases: (i) ultrathin
film with dex = 0.624 and Q = 1.1, and (ii) low-anisotropy
media with Q = 0.01 and dex = 100 (which corresponds to
1.68-μm-thick YIG film). The results of the dispersion re-
lations for the fields h1 � h∗ and h2 > h∗ are displayed in
Fig. 11 by the red and black lines, respectively. Relevant
values of h∗ have been determined from Eq. (D1a) for the
ultrathin case and from Eq. (D2a) for the low-anisotropy
case. For the larger field, the frequencies of the DE band
for all the wave vectors are higher than those of the BVMW
band. However, as the value of the magnetic field decreases,
the frequencies of the DE band for wave vectors around κ∗
decrease significantly, and the global minimum of the dis-
persion relation occurs for the DE configuration; see the red
lines in Figs. 11(a) and 11(b). The estimated κ∗ values agree
well with the analytical values, according to Eqs. (D1c) and
(D2d), which confirms the validity of the interpretation that
the softening DE mode around κ∗ mediates the formation of
the stripe domain pattern parallel to applied field direction,
which is expected from experiments.
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TABLE I. Absolute and normalized parameters used throughout
the work. All parameters that appear with an asterisk refer to the
critical values at the SRTs. In magnetization dynamics it corresponds
to the situation when both Eqs. (2a) and (2b) are satisfied. For all
parameters that appear with the “min” subscript throughout the text,
only Eq. (2a) is satisfied.

Absolute Normalized

Exchange length lex =
√

2Aex

μ0M2
s

DMI length lDM = 2D

μ0M2
s

Magnetic field H h = H

Ms

Anisotropy (quality factor) Ku Q = 2Ku

μ0M2
s

Film thickness d dex = d

lex

DMI constant D Dex = lDM

lex

SW wave number k κ = kd

SW frequency f
f

f0
, f0 = γμ0Ms

2π

SW wavelength Λ = 2π

k
Λex = 2πdex

κ

Equilibrium domain period p pex = p

lex

Critical period p∗ = Λ∗ p∗
ex = Λ∗

ex

APPENDIX F: NORMALIZED PARAMETERS AND
SCALABILITY OF THE RESULTS

The system of normalized units used throughout this pa-
per and listed in Table I seems to be universal and can be
employed for various materials. In the main text, we present
many effects (such as the various types of SRT) that occur
for specific sets of h, Q, Dex, and dex values. However, the
same set of reduced parameters can be realized for different
materials, providing different values of Ms, Aex, and γ . Using
the same set of h, Q, Dex, and dex values, we simulated the
dispersion relations for YIG and Co to obtain identical results.
In particular, the thickness dex = 11.9 that corresponds to
d = 200 nm for YIG can also be realized in a 38.1-nm-thick
Co film; dex = 0.624, corresponding to d = 2 nm for Co, can
be realized in a 10.5-nm-thick YIG film. On the other hand,
Dex = 0.246 corresponds to D = 1 mJ/m2 in Co or 53.3μJ2

in YIG. Typical material parameters are usually within some
limited range of a few orders of magnitude (for example,
typical values of lex are of the order of 100–101 nm [49]).
Nevertheless, as a test, we checked our formalism for ab-
solutely fictitious material, with Ms = 1 A/m, Aex = 1 J/m,
and γ = 1 rad/T/s, and providing appropriate scaling of the
other quantities, we yielded identical results, both in statics
and dynamics.
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