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Nonlocal correlation effects due to virtual spin-flip processes in itinerant electron ferromagnets
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We present an ab initio method for electronic structure calculations, which accounts for the interaction of
electrons and magnons in ferromagnets. While it is based on a many-body perturbation theory we approximate
numerically complex quantities with quantities from time-dependent density functional theory. This results
in a simple and affordable algorithm which allows us to consider more complex materials than those usually
studied in this context (3d ferromagnets) while still being able to account for the nonlocality of the self-energy.
Furthermore, our approach allows for a relatively simple way to incorporate self-consistency. Our results are in
a good agreement with experimental and theoretical findings for iron and nickel. Especially the experimental
exchange splitting of nickel is predicted accurately within our theory. Additionally, we study the half-metallic
ferromagnet NiMnSb concerning its nonquasiparticle states appearing in the band gap due to spin-flip excitations.
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I. INTRODUCTION

Even after the discovery of quantum mechanical exchange
interactions as the reason for magnetic ordering, itinerant-
electron magnetism including ferromagnetism of elemental
Fe, Co, and Ni remained a challenging problem for decades
[1–3]. The main issue is a coexistence of band (itinerant) and
atomic (localized) features in the behavior of 3d electrons in
solids, something difficult to combine in a single theory [4].
The density functional theory (DFT), which was for a long
time a method by default for a quantitative description of elec-
tronic properties of solids, was applied to itinerant-electron
magnets with great success [3] but atomiclike features such
as remnants of atomic multiplet structure in some transition
metal compounds were not easy to take into account. The idea
to combine the DFT with the dynamical mean-field theory
(DMFT) [5–8] was an essential step to solve the problem.
Ferromagnetic transition metals were one of the aims of this
approach from the very beginning [7,9,10] and the results
were very promising, especially in the description of their
high-temperature magnetism and in the successful description
of the famous 6-eV satellite in Ni [10]. Furthermore, de-
tailed calculations and comparison with the experimental data
on angle-resolved photoemission [11–14] demonstrated that
whereas the combination of the DFT and the DMFT seems to
be sufficient for a quantitative description of Ni there are still
remaining problems with Fe, despite an essential improve-
ment of the description in the DFT+DMFT in comparison
with the pure DFT approach. In particular, the DMFT be-
ing a local approximation predicts a wave-vector-independent
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renormalization of effective masses with respect to the bare
DFT values. Experimentally, it works quite accurate for Ni, a
bit worse for Co, and not accurate for Fe [14].

Another important group of itinerant-electron ferromag-
nets are weak itinerant ferromagnets such as ZrZn2 [2] and
half-metallic ferromagnets such as several Heusler alloys or
CrO2 [15]. The latter group of materials is especially in-
teresting since for them many-body effects result not only
in a renormalization and damping of electron quasiparticle
spectrum but in appearance of a qualitative new feature, non-
quasiparticle (or spin-polaron) states (NQPS) in a majority
or minority electron energy gap [15–17]. These states were
experimentally found in full Heusler alloy Co2MnSi [18] and
in CrO2 [19]. The DFT+DMFT calculations can successfully
describe NQPS at least at a qualitative level [15,20]. At the
same time, an appropriate quantitative description is possible
only beyond the local approximation for the electron self-
energy and, in particular, it requires a correct description of
the magnon dispersion [16,17].

An important type of many-body effects in itinerant-
electron magnets originates from the interaction of electrons
with bosonic spin-flip excitations, both coherent (magnons)
and incoherent (Stoner particle-hole) excitations [2]. While
there has been a steady progress in understanding the prop-
erties of spin-flip excitations at a model level, only little is
known about microscopic details of their interactions with
the electronic degrees of freedom in specific materials. The
conventional DFT as well as the GW [21,22] do not take
these processes into account. The DFT+DMFT does take
them into account but only in a local approximation whereas
wave-vector dependence of the corresponding contributions
to the electron self-energy can be quite important, as we
discussed above for the case of Fe. At the same time, the
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coupling has been directly experimentally detected [23–26]
and is believed to crucially influence properties of magnetic
materials leading to a number of remarkable phenomena. The
latter include spin-dependent lifetime of excited electronic
states [27] and inelastic electron transport [28]. Consequently,
also the mean-free path of excited electrons is spin dependent
[29–31]. The electron-magnon interaction is also discussed
as the moving force for the formation of Cooper pairs in
certain high-temperature superconductors, in particular in the
pnictide and cuprate families [32–35]. Furthermore, ultrafast
magnetization switching phenomena in solids are believed to
involve the coupling between the electronic and spin degrees
of freedom as well [36,37]. Last but not least, the coupling
of magnons and electrons contributes to the renormalization
of the electronic bands and influences the exchange splitting
[38]. For the particular case of half-metallic ferromagnets, the
effects of the electron-magnon interaction are systematically
reviewed in Ref. [15].

Apart from the DFT+DMFT approach discussed above,
the electron-magnon interaction can be treated within the
many-body perturbation theory (MBPT) [39,40]. The MBPT
relies on a perturbation expansion of the electronic self-
energy based on the general Hedin equations [21]. MBPT
calculations are computationally quite expensive, hence, until
recently only results from simple bulk systems are available
[41,42].

The approach presented in this work is based on the MBPT
but avoids the numerical complexity by approximating some
complex quantities with quantities from the time-dependent
DFT (TDDFT) [43–45], which are much easier to calculate.
This allows to compute the influence of the electron-magnon
interaction on the electronic structure for complex materials
like half-metallic ferromagnets from first principles. This will
allow us to consider NQPS taking into account nonlocality
of the spin-flip contributions to the electron self-energy and
thus going beyond the DFT+DMFT treatment of these states
[15,20]. Most recently, a method similar to ours including
electron-magnon interactions based on MBPT was put forth
[42]. However, while we opted to minimize the numerical
burden of calculations (by using quantities from TDDFT and
hence being able to account for more complex systems), they
also included the GW term in their calculations leading to
clearly improved results for the elemental 3d ferromagnets.
We put forth another physically motivated simplification lead-
ing to a reduced computational cost of our calculations. In
many cases, upon including the interaction, practically the
entire spectral density of spin-flip processes is shifted from
the Stoner energy window into the energy range of spin-
waves [43]. This suggests that, unless the Landau damping
itself is the subject of the investigation, it might be possible
to replace the dynamical susceptibility with its “Heisenberg
counterpart.” We refer to this approach as “magnon-pole ap-
proximation.” Its validity is discussed in detail and proven
later in this paper.

So far, our method is a one-shot method, meaning that
we calculate the electronic structure of the materials in ques-
tion and consequently perform the MBPT-based algorithm
to compute the self-energy representing the influence of the
electron-magnon scattering. Van Schilfgaarde and coauthors
[46] showed with a similar method, combining the DFT and

the GW theories, that the results of this approach can depend
on the starting electronic structure. It is shown in this work
that one should ideally aim to use the results of the MBPT
to construct a self-consistent cycle, making the final result
independent of the starting Green function. Contrary to other
methods based on the MBPT [41,42], our approach offers a
relatively simple way to incorporate a self-consistency. Af-
ter the calculation of the electron-magnon self-energy, the
renormalized Green function can be used to calculate new
Heisenberg exchange parameters utilized in the magnon-pole
approximation. Consequently, a new self-energy can be cal-
culated. The implementation of this numerical scheme is a
current work in progress.

II. THEORY

A. Many-body perturbation theory

Magnons are magnetic excitations, i.e., transitions to an
excited state with a different value of the total spin projection.
We will use this term for both coherent collective excitations
(spin waves) and for incoherent spin-flip electron-hole pairs
known as Stoner excitations [1–3]. Spin waves are transverse
fluctuations of magnetization that may be intuitively under-
stood as a correlated precession of atomic magnetic moments.
In the many-body language they are formed due to the multi-
ple scattering of particle and hole of opposite spin projection
which are described, in a minimal set, as a summation of
ladder diagrams [38,47].

The interaction between magnons and electrons can be for-
mulated in terms of an electron self-energy. Within the Hedin
equations [21] the general expression for the self-energy reads
as

(1)

where the screened interaction W is drawn as wavy line,
the many-body Green function G is represented by a double
line, and the three-leg vertex Γ (drawn as triangle) is defined
through the self-consistent equation

i= + δΣ
δG

i i (2)

with the effective proper two-particle interaction (four-leg
vertex) block given by the functional derivative

δΣαβ (1, 2)

δGμν (4, 3)
. (3)

In the latter expression the italic numbers represent the spatial
and time variable 1 = (x, t ). From now on we consider only
ferromagnetic systems where charge fluctuations are decou-
pled from the transverse spin fluctuations. At the same time,
they are coupled with longitudinal spin fluctuations [48,49]
but we will not consider these processes in this paper. As
long as the fundamental interaction (Coulomb potential in our
case) is spin independent, even in the case of spin-polarized
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systems, the screened interaction W cannot mediate a spin flip.
Moreover, the screened interaction depends only on the charge
part of the vertex function and therefore it is not affected by
the electron-magnon interaction at all. Consequently, the only
way for the electron-magnon scattering to enter the theory is
through the vertex correction in the self-energy relation (1).
We use in our theory the three-leg vertex to first order

i≈ + δΣ
δG

i (4)

The first term in the latter equation, leading to the well-known
GW approximation [21,22], does not involve electron-
magnon scattering. Hence, for the remainder of this work,
only the second term (linear in δΣ

δG ) will be analyzed. As was
shown in a number of preceding works [50,51], δΣ

δG can be
divided into three classes of which only one type (diagrams
reducible in the electron-hole channel) involves the scatter-
ing of an electron with a hole of opposite spin (i.e., involve
magnons). Those diagrams are of the form

+ +

I

I

· · ·
↑ ↓

I

I

I

I

↑ ↓

(5)

where I are irreducible diagrams and the arrows represent the
spin directions. The latter diagrams can be written compactly
using the transverse two-particle correlation function L de-
fined through the Bethe-Salpeter equation

= +
I

L

L

↑ ↓
↑ ↓

.

(6)

This allows to write the electron-magnon self-energy (often
called GT contribution) as

↑

↓

L

I

I
.

(7)

The main drawback of the latter equation is its high numerical
cost, especially for complex systems. Hence, more approxi-
mations are in order. First, I is assumed to be local

Iαβμν (1, 2, 3, 4) ≈ Iααμμ(1, 1, 3, 3)δ(1 − 2)δ(3 − 4). (8)

Similar approximations have been used successfully to
calculate spin-wave spectra [30,38,52]. Second, we also ap-
proximate the extra W in Eq. (11) with I . This leads to
a geometric series which can be summed. Furthermore, we
make one more approximation in the spirit of Ng and Singwi
[50] in starting the summation one term earlier. This allows to
write the self-energy in terms of the susceptibility

Σαβ (1, 2)

≈ iσ i
αηI i j (1, 1, 4, 4)χ jm(4, 6)Imn(6, 6, 2, 2)σ n

η′βGηη′ (1, 2)

(9)

as the susceptibility is given by the contraction of the two-
particle correlation function

χ i j (1, 2) = −iσ i
αβσ i

γ δLαβγ δ (1, 1+, 2+, 2). (10)

In the latter equations we used a summation and integration
convention: Each spatial or time variable (spin index) appear-
ing only on one side of an equation is integrated (summed)
over. The plus as superscript indicates that the time variable is
modified by an infinitesimal ε: 1+ = (x, t + ε).

B. Time-dependent density functional theory

In order to arrive at a feasible computational scheme,
we approximate the complex quantities from the many-body
perturbation theory by quantities from the time-dependent
density functional theory. The proper susceptibility can be
obtained from the linear response TDDFT by means of the
susceptibility Dyson equation [43,48]

χ
i j
TDDFT(x1, x2, E )

= χ
i j
KS(x1, x2, E ) +

∑
m,n

∫∫
d3x3d3x4χ

im
KS(x1, x3, E )

×
(

Kmn
xc (x1, x2, E ) + 2δm0δn0

|x3 − x4|
)

χ
n j
TDDFT(x4, x2, E ),

(11)
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where the Kohn-Sham (KS) susceptibility is given by

χ
i j
KS(x1, x2, E ) =

∑
mn

σ i
αβσ

j
γ δ ( fm − fn)

× φmα (x1)�φnβ (x1)φnγ (x2)�φmδ (x2)

E − (Emα − Enβ ) + iε

(12)

with the Fermi-Dirac function fn of the KS state φnα at the en-
ergy Enα . In practice, the KS susceptibility and the exchange
correlation kernel Kxc are computed interdependently from
each other and, when combined in the susceptibility Dyson
equation, yield slight deviation from the perfect Goldstone
mode due to numerical inaccuracies. In our case, this devia-
tion is of the order of few meV and can be removed (corrected)
completely by imposing a suitable sum rule on Kxc. These
issues were discussed carefully in [43] and [53].

To be fully consistent at this point, one also needs to re-
place I with the exchange-correlation kernel Kxc and replace
the many-body Green function with the KS Green function
used for the calculation of the KS susceptibility [Eq. (12)].
This can be seen by comparison of Eq. (11) with the expres-
sion for the susceptibility derived in the framework of the
MBPT (10) when I is assumed to be local. In this work we
only use the exchange-correlation kernel from the adiabatic
local spin density approximation (ALSDA) [48]. This leads to
the expressions

Σ↑(1, 2) = 2iK+−
xc (1)χ−+

TDDFT(1, 2)K+−
xc (2)G↓(1, 2),

Σ↓(1, 2) = 2iK−+
xc (1)χ+−

TDDFT(1, 2)K−+
xc (2)G↑(1, 2), (13)

which can also be written as

Σ↑(1, 2) = iV−,TDDFT
e−m (1+, 2)G↓(1, 2),

Σ↓(1, 2) = iV+,TDDFT
e−m (1+, 2)G↑(1, 2), (14)

where

V−,TDDFT
e-m (1, 2) = 2K+−

xc (1)χ−+
TDDFT(1, 2)K+−

xc (2),

V+TDDFT
e-m (1, 2) = 2K−+

xc (1)χ+−
TDDFT(1, 2)K−+

xc (2) (15)

represents a magnon mediated effective interaction. Analo-
gous expressions have been derived in several reports using
different theoretical approaches [50,51,54,55]. Finally, the
self-energy is used to renormalize the electronic Green func-
tion obtained from the local density approximation (LDA) by
means of the Dyson equation

Gαβ (1, 2) = G0
αβ (1, 2) + G0

αμ(1, 3)Σμν (3, 4)Gνβ (4, 2)
(16)

with the LDA Green function G0. The computational im-
plementation is outlined in more detail in the Supplemental
Meterial [56]. The use of quantities readily available in the
TDDFT substantially reduces the numerical burden, compar-
ing to analogous expressions involving the screened Coulomb
interaction [30,38,52,57,58] and allows to address large
systems like NiMnSb and in the future two-dimensional het-
erostructures.

In practice, the calculation of the electron-magnon in-
teraction with the TDDFT susceptibility is still problematic
as the susceptibility is needed for an immense number of

energy points. To reduce the number of points the fluctuation-
dissipation theorem can be utilized [47]. After the calculation
the spectral weights

C±
TDDFT(r, r′, k, E ) = iθ (E )[χ±

TDDFT(r, r′, k, E + iε)

−χ±
TDDFT(r′, r, k, E + iε)�] (17)

along a path parallel to the real axis, the TDDFT susceptibility
at arbitrary energies in the complex plane can be calculated
by simple integration of the spectral representation of the
susceptibility

χ±
TDDFT(r, r′, k, E ) =

∫
dE ′

2π

C±(r, r′, k, E ′)
E − E ′ + iε

−
∫

dE ′

2π

C∓(r′, r, k, E ′)
E + E ′ − iε

. (18)

However, due to the high numerical cost of the TDDFT sus-
ceptibility, this approach is only viable for fixed k and energies
close to the Fermi energy. Hence, the magnon-pole approx-
imation (discussed in Sec. II C) was used for all following
results unless otherwise noted.

With the magnon propagator Ve-m playing the role of the
effective interaction, Eq. (14) conveys a compelling physical
picture of the electron-magnon scattering in solids. Electrons
(holes) in a given state can emit a magnon and decay into
another electron (hole) state of opposite spin providing energy
and momentum differences between the initial and the final
particle states are accounted for by this magnon. Furthermore,
due to the prevalence of up-to-down magnon processes over
the down-to-up ones, in strong ferromagnets, effectively, only
down electrons and up holes interact with the spin-flip excita-
tions, respectively losing and gaining energy in this process.
The above observations allow us to justify the deployment of
the TDDFT quantities in the MBPT scheme.

A magnon corresponds to the transverse fluctuations of
the magnetization δm. In the spirit of the TDDFT, these
fluctuations give rise to the fluctuating exchange-correlation
potential (the transverse magnetic field in the case of a
collinear ground state and the ALSDA) while the potential
is given by the exchange-correlation kernel Kxc, such that
δB±

xc = Kxcδm±. We note that the very same relationship
governs calculations of the enhanced susceptibility in the
susceptibility Dyson Eq. (11). Thus, the abstract concept of
electron-magnon scattering is reinterpreted as the interaction
of the electron with the space- and time-dependent fluctu-
ating exchange-correlation field associated with the magnon
[59]. In the case of the TDDFT this field is straightforwardly
given as Kxcδm± where Kxc naturally plays the role of the
interaction vertex in our equations. Recall that equivalent in-
terpretation appears in quantum electrodynamics [60] where
the interaction of an electron and photon can be understood as
the interaction of the electron with the electromagnetic field
corresponding to this photon.

Let us, however, recall that Eqs. (20) are obtained upon
including only the minimal set of diagrams involving scatter-
ing of electron-hole pairs of opposite spins. Therefore, while
the exchange of virtual magnons appears to be a dominating
contribution of spin fluctuations on the band structure in itin-
erant magnets, it is necessarily only an approximate, albeit
compelling, model.
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C. Magnon-pole approximation

While the Kohn-Sham susceptibility [Eq. (12)] consists of
a broad spectrum of spin-flip excitations located at the energy
scale of the exchange splitting, the TDDFT susceptibility
[Eq. (11)] develops new low-energy singularities correspond-
ing to spin waves, i.e., coherent precession of the atomic
magnetic moments. Interestingly, in most cases, practically
the entire spectral density is shifted from the Stoner energy
window into the energy range of the spin waves. This suggests
that, unless the Landau damping itself is the subject of the
investigation, it might be possible to replace the dynamical
susceptibility by its “Heisenberg counterpart“ χH with sin-
gularities located at the undamped spin-wave energies and
spatial dependence corresponding to the rigid tilt of the atomic
magnetic moments μ:

[
χ−1

H

]
i j = (2gμi )

−1

(
zδi j + gμ−1

j Ji j − gδi jμ
−1
j

∑
�

Ji�

)
.

(19)

Here, the exchange interactions J were calculated from the
first-principles magnetic force theorem [61] and the Lande
factor g ≈ 2 was used. The relation between the full expres-
sion for the dynamical susceptibility and its Heisenberg-type
form (19) is discussed in detail in Ref. [48]. We show that
in many cases the use of this Heisenberg-type susceptibility
instead of the TDDFT susceptibility in the expression for the
self-energy changes the results only marginally. At the same
time, as computations of the TDDFT susceptibility are com-
putationally demanding, this “magnon-pole approximation”
results in a relatively inexpensive numerical scheme. We also
note that the magnon-pole approximation is equivalent to the
assumption of a strong ferromagnet. Using this approxima-
tion, the self-energy is given by

Σ↑(1, 2) = iV−
e-m(1+, 2)G↓(1, 2),

Σ↓(1, 2) = iV+
e-m(1+, 2)G↑(1, 2), (20)

where

V−
e-m(1, 2) = 2K+−

xc (1)χ−+
H (1, 2)K+−

xc (2),

V+
e-m(1, 2) = 2K−+

xc (1)χ+−
H (1, 2)K−+

xc (2). (21)

D. Double counting and self-consistency

We conclude this section with a short comment on double
counting which is a typical problem in approaches combining
DFT with more sophisticated methods like the dynamic mean
field theory or the MBPT [12,41]. The problem arises on two
different levels in methods presented in the literature. First,
the introduction of two different MBPT terms can lead to
double counting as discussed in [41]. The authors include
(part of) the GW term [53] for their susceptibility to restore
the correct Goldstone mode and then study the impact of the
electron-magnon interaction with the same diagrams we use
in this work. This leads to double counting if the diagram
of second order in I is included in the calculation of the
electron-magnon scattering self-energy [see the text above
Eq. (13)]. In fact, the second-order term alone is unphysical
as it already includes double counting [41]. To strictly avoid

double counting, one has to start from the third order in I by
subtracting the second-order term from the geometrical series
of ladder diagrams. However, it was shown in [41,42] that
this leads to the violation of the causality manifesting itself
in the wrong sign of the imaginary part of the self-energy.
This, in turn, can be corrected by the inclusion of numerically
expensive GW term itself [42], which, however, does not
contribute to the spin-dependent electron scattering and is not
considered in this work. For the materials studied in this work,
the electron-magnon interaction exerts essentially the same ef-
fect on the electronic structure as in [41] and DMFT methods
[7,11–14]. Hence, the double-counting issue does not seem to
be decisive here. Furthermore, in our case the exclusion of the
second-order term would also lead to a significant increase in
the numerical cost of our scheme (especially in combination
with the magnon-pole approximation discussed in Sec. II C).
Hence, we choose to include the second-order diagram. As
discussed in Sec. II B, the resulting full geometric series of
ladder diagrams corresponds to a compelling physical picture
of an electron interacting with the fluctuating Kohn-Sham
potential associated with the magnon. Concerning the fact that
our scheme is not self-consistent and we take the Kohn-Sham
band structure as the starting point, we find the approximation
physically acceptable.

Second, double counting may arise due to the fact that it is
unknown which many-body effects are already included in the
exchange-correlation potential of the DFT. While the double
counting of the first kind can be taken into account exactly (at
least in principle), this is not the case for the second kind. In
the literature these double-counting issues are often assumed
to be small due to the fact that the DFT potentials are based
upon the homogeneous electron gas which includes only little
correlation effects at the relevant densities [41]. Other pub-
lications utilize a heuristic double-counting correction [12].
In this work we resort to the first option and assume the
double-counting corrections are small enough to neglect them.

Finally, we note that our method is a one-shot scheme, i.e.,
it is not self-consistent. This can cause similar methods to
lead to different results due to slightly different LDA Green
functions as was also recognized when the LDA Green func-
tion was renormalized with the GW term [46]. The obvious
way to overcome this problem is to impose some kind of
self-consistency, which is a work in progress. In our method,
a self-consistent scheme can be constructed by using the cal-
culated self-energy to calculate new interaction parameters J
which are then used to calculate the renormalized Heisenberg
susceptibility, leading to a new self-energy. The implementa-
tion of this scheme is still a work in progress.

III. RESULTS AND DISCUSSION

A. bcc iron

The spectrum of iron under the influence of the electron-
magnon interaction is presented in Figs. 1(a) and 1(b).
Generally, the electron-magnon interaction leads to a broad-
ening of the electron states as well as a renormalization of
the electron energies and the appearance of additional peaks.
Our result agrees qualitatively with recently published results
for iron using an the MBPT method [41,42] and the DMFT
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FIG. 1. Effect of the electron-magnon interaction in bcc iron. (a) Electronic band structure of majority carriers under the influence of the
electron-magnon interaction. The red dots represent the energy levels within the LDA while the blue background indicates the renormalized
spectrum. The slopes of the bands marked with black dots were compared to ARPES measurements in Table I. The renormalized Fermi
energy is represented by the dashed green line. (b) Same as (a) for minority carriers. (c) Comparison of the spectral functions obtained with
(LDA+Ve-m) and without (LDA+VTDDFT

e-m ) the magnon-pole approximation at the � point for minority carriers. (d) Real part of the trace of the
self-energy for different points in the Brillouin zone. (e) Magnonic density of states.

methods [7,11–14]. All of the aforementioned works report
larger broadening for majority-spin carriers, especially around
E = −2 eV across the whole spectrum. In the minority-spin
channel we observe an additional peak at � for E ≈ 0.5 eV,
which does not appear in any of the other works. The spectral
weight of this peak is, however, very small and hence, it might
be due to a slightly different LDA Green function compared
to [41]. It is certainly not caused by the magnon-pole ap-
proximation as will be shown in the following. Regarding
the renormalization of the electronic energies compared to the
LDA solution, our results show the same trend that was found
in [41] and in the GT results of [42]. The different absolute
values are partly due to the magnon-pole approximation and
can also arise due to a slightly different LDA Green functions.
While the majority-spin electrons are shifted to higher ener-
gies, the minority bands remain mostly at the same energies.
Due to the fact that several majority bands cross the LDA
Fermi energy, the renormaliztation is expected to also have

TABLE I. Velocity of quasiparticles v = ∂ε

∂k at the Fermi energy
in bcc iron from the experimental study [63] compared with our
results. The labels next to the direction refer to the points in the
spectrum [Figs. 1(a) and 1(b)].

Experiment [63] (eV Å) Our result (eV Å)
LDA+Ve-m LDA

Spin ↑ �-H (I) 1.12 2.2 2.2
�-N (II) 1.16 1.2 3.5
�-P (III) 1.4 2.3 4.3

an impact on the Fermi energy. The change of the Fermi
energy can be calculated from the renormalized density of
states (DOS) by “filling up” the states until the correct number
of electrons is reached. It needs to be mentioned at this point
that the calculation of the renormalized DOS is only feasible
when the self-energy is assumed to be constant in k, which is
not quite the case for iron as will be discussed in more detail
later. Hence, the resulting changes of the Fermi energy (and
the magnetic moment) for the case of iron should be viewed
as an approximation. The green dashed line in Figs. 1(a) and
1(b) indicates the new Fermi level which lies about 0.27 eV
above the LDA Fermi energy. The magnetic moment per atom
is reduced to μ = 2.05µB giving a slight deviation from the
experimental result of μ ≈ 2.2µB [62] which is accurately
predicted within the LDA. The renormalization of the Fermi
energy and the magnetic moments is significantly higher for
iron than for any other material studied here. It may be specu-
lated that a self-consistent procedure is more important in this
case. Note that the spectrum of spin-up electrons is mostly
affected below the Fermi energy while for spin-down elec-
trons the opposite trend can be observed. This is caused by the
imaginary part of the self-energy being approximately zero
above (below) the Fermi energy for minority- (majority-) spin
carriers. Physically, this asymmetry arises from the extreme
case of a strong ferromagnet at zero temperature. In Fig. 2 all
possible quasiparticle transitions in a strong ferromagnet are
schematically drawn. Above the Fermi energy a minority-spin
electron can decay into a majority-spin state by emitting a
magnon. The opposite process of a majority-spin electron
being excited into a minority state does not occur as it would
need a (e.g., thermally excited) magnon to account for spin
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FIG. 2. Different quasiparticle transitions involving magnons in
a simplified band structure. A collinear magnet without spin-orbit
interaction at low temperatures is considered. As there are no ther-
mally excited magnons, the magnon emission processes dominate. In
the strong ferromagnets, the magnons are mainly associated with the
decrease of the angular momentum (they are, effectively, up-to-down
spin flips). From left to right: A majority electron absorbs a magnon
(blue arrow labeled m) and gets excited into an empty minority-spin
state. A majority hole is excited into a minority hole by emitting a
magnon. A minority hole decays into a majority hole by absorbing a
magnon. A minority electron decays into a majority state and emits
a magnon in the process. At low temperatures, the processes colored
green are dominant while the processes colored red are negligible.
There are further thinkable spin-dependent processes: the emission
and absorption of spin excitations which increase the total spin an-
gular momentum (involving, effectively, down-to-up spin flips). At
low temperatures, they could be emitted by an up electron or down
hole. In the ferromagnets discussed in this paper, these so-called
anti-Stoner processes feature negligible spectral weight and are not
considered.

conservation. The corresponding argumentation applies for
holes below the Fermi energy.

The damping of spin waves through hybridization with
the Stoner continuum is an important mechanism in mate-
rials with itinerant electrons. Especially in iron this effect
was shown to lead to “spin-wave disappearance” [43]. Thus,
although most of the spectral weight of the magnetic spec-
trum lies in the spin-wave region, the assumption of sharp
magnon peaks is generally not fulfilled throughout the Bril-
louin zone. Hence, we study the influence of the magnon-pole
approximation for a small energy range at the � point and
minority carriers, as shown in Fig. 1(c). The LDA result is
compared with the renormalized Green functions computed
within the magnon-pole approximation (LDA+Ve-m) and with
the TDDFT susceptibility (LDA+VTDDFT

e-m ). The previously
discussed peak is visible for both Green functions renor-
malized with the TDDFT susceptibility and its Heisenberg
counterpart. The position of the peaks differs slightly and the
peaks calculated with the TDDFT susceptibility are slightly
broader. However, we conclude that the major effects of the
renormalization are properly included within the magnon-pole
approximation.

Over recent years several experimental studies of the
band structure of iron were conducted [13,14,63]. In all
these studies the effective mass renormalization m�

α

m�
0α

was
measured by means of angle-resolved photoemission spec-
troscopy (ARPES). Using DFT and ARPES quasiparticle

energies, Sanchez-Barriga et al. [13,14] derive an energy de-
pendence of the self-energy from which they calculate the
effective mass renormalization and compare to DMFT results.
They find that in bcc iron the effective mass renormalization
depends strongly on the position in the Brillouin zone. How-
ever, the DMFT cannot account for a k dependence in the
self-energy and hence gives the same result independent of
the position in the BZ. While they show that this is a good
approximation for Ni the situation is different in the case of
Fe. Our results for the trace of the self-energy calculated for
iron [Fig. 1(d)] and nickel [Fig. 3(e)] at different positions
in the BZ show that for nickel the self-energy is practically
constant while for iron a clear dependence on the position
in the BZ can be observed. This is also manifested in the
values for the effective mass renormalization which we find
to vary between 1.54 at the N point and 2.25 at the � point
for the �4 band. Hence, our results confirm that the nonlocal
character of electron correlations in bcc iron is essential for
the proper band structure description. The physical origin of
this difference between Fe and Ni will be discussed below, at
the end of the next subsection. Schaefer et al. [63] compare the
slopes of bands at the Fermi energy instead (i.e., for constant
energy instead of constant k). As reference they use their
own DFT calculations which, although qualitatively similar,
differ from our results. To eliminate the dependence on the
DFT reference we compare the velocity of the renormalized
quasiparticle obtained in [63] directly from the experimental
data (cf. Table I). We calculate the velocity by taking the
derivative of the quasiparticle energy (i.e., the position of the
peak maximum) with respect to k. Apart from point I, the
electron-magnon interaction reduces the quasiparticle velocity
compared to the LDA which leads to a better agreement with
the experimental data.

B. fcc Ni

Nickel is an example of a material not well described by the
LDA [10]. Here, the most prominent features are the missing
satellite peak at 6 eV binding energy, a far too large exchange
splitting and a too broad valence band. These discrepancies
are believed to be a result of many-body effects, which cannot
be described within the LDA, in particular those arising from
the coupling to spin fluctuations. The DFT+DMFT solves
the problem and allows to reach a very good agreement with
the experiment eliminating all three discrepancies [10,11,14].
At the same time, the DMFT takes into account different
kinds the many-body processes. It is instructive to separate the
effects of the electron-magnon interaction, which we will do
here, without local approximation for the electron self-energy.

We find that the 6-eV satellite of Ni is not originated by
coupling to spin-flip excitations. Also, the narrowing of the
valence band width is not a consequence of the electron-
magnon scattering. In fact, the bandwidth is slightly increased
for the renormalized Green function [cf. Figs. 3(a) and 3(d)].
Thus, from these three problems of the LDA, only one,
namely, the overestimate of the spin splitting, is related to
electron-magnon processes and is fully grasped in our ap-
proach.

Generally, the majority-spin bands are strongly damped by
the electron-magnon interaction as can be seen by the blue
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FIG. 3. Effect of the electron-magnon interaction in fcc nickel. (a) Electronic band structure of majority carriers under the influence of the
electron-magnon interaction. The red dots represent the energy levels within the LDA while the blue background indicates the renormalized
spectrum. (b) Same as (a) for minority carriers. (c) Electronic density of states within the LDA and the LDA under the influence of the electron
magnon scattering (LDA+Ve-m). (d) Spectral function at the L point from the LDA and the renormalized Green function. (e) Real part of the
trace of the self-energy for different points in the Brillouin zone. (f) Magnonic density of states.

background in Fig. 3(a) compared to the LDA solution indi-
cated by red filled dots. The minority-spin carriers in contrast
are hardly influenced by the electron-magnon interaction [cf.
Fig. 3(b)]. This is due to the spin asymmetry of the density
of states, as also reported in [41]. We note that the exchange
splitting is strongly reduced by a new peak in the majority-
spin channel appearing throughout the whole spectrum close
to the Fermi energy visible in Figs. 3(a) and 3(d). Our results
for the exchange splitting at the L and X points are in excellent
agreement with ARPES results, as shown in Table II. The
shift of majority electron states towards the Fermi energy as
a consequence of the electron-magnon interaction is reflected
clearly in the DOS, as shown in Fig. 3(c). However, in the
ARPES experiments no additional peak (compared to LDA
results) was found. The reason for this can be seen in Fig. 3(d)
which shows the spectral weight (which is proportional to
the imaginary part of the Green function) at the L point
for the LDA and renormalized Green functions. The LDA
results include a peak at −2.5 eV which is damped by the
strong electron-magnon interaction to such an extent that it
can hardly be identified as a well-defined quasiparticle any
more. Consequently, our results only feature three clear peaks

TABLE II. Comparison of exchange splittings in nickel (in eV)
with the GW T approach [42], the LDA+DMFT [14], and experi-
mental results [64,65].

LDA LDA+Ve-m GW T LDA+DMFT Expt.

L3 0.71 0.31 0.37 ∼0.4 0.31 ± 0.03
X2 0.7 0.23 0.31 ∼0.2

in agreement with the ARPES studies. Similar to iron, a shift
of the majority-spin bands towards higher energies can be
observed in Fig. 3(a). However, here the renormalized bands
are still mostly located below the Fermi energy. Consequently,
the renormalization has practically no effect on the Fermi en-
ergy (it shifts by less than 30 meV) and the magnetic moment
(it decreases by approximately 0.072 µB).

As was already mentioned at the end of the previous sec-
tion, the self-energy in nickel is much less dependent on the
wave vector than in iron, in agreement with the previous con-
clusions based on the comparison of DFT + DMFT data with
the experiment [10,14]. The difference might be associated
to an essential difference of exchange interactions and thus
magnon spectra between bcc Fe and fcc Ni. Already from
the values of the spin-wave stiffness constant it is clear that
magnons in Fe are much softer than in Ni despite the fact
that the magnetic moments of the atoms are almost four times
larger in the former case than in the latter. This is related
with two circumstances. First, Friedel oscillations of exchange
parameters are much more pronounced for Fe than for Ni
[66,67]. The reason for this is that Ni is almost half-metallic,
with almost fully occupied majority-spin band whereas the
Friedel oscillations require metallicity for both spin projec-
tions. Second, the magnetic interactions in Fe are frustrated,
with the ferromagnetic eg electron subsystem and the antifer-
romagnetic t2g-t2g contributions to the exchange parameters
[68]. On the opposite, magnetism of Ni is mostly determined
by the nearest-neighbor ferromagnetic interactions without
any essential competing interaction.

Let us conclude this section with a short comment on
the electron-magnon scattering in the spin-polarized uniform
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FIG. 4. Effect of the electron-magnon interaction in NiMnSb. (a) Electronic density of states within the LDA and the LDA under the
impact of the electron-magnon scattering (LDA+Ve-m). (b) Electronic band structure of minority carriers under the influence of the electron-
magnon interaction. The red dots represent the energy levels within the LDA while the blue background indicates the renormalized spectrum.
(c) Magnonic density of states.

electron gas at densities corresponding to the 3d transition
metals as it can provide us with an additional insight into the
emergence of the magnetic order in these systems. A simple
model of these magnets involves two parabolic bands split by
a uniform exchange-correlation magnetic field Bxc. The Fermi
energy EF and Bxc are chosen such that the charge density
equals to the one of the valence band of a 3d system and
the magnetic moment assumes the corresponding value. This
model yields a qualitatively correct picture of the magnons
in itinerant systems [2] with a magnon band featuring the
Goldstone mode and a quadratic dispersion for small wave
vectors, and interacting with the Stoner continuum. Following
our scheme, also the self-energy arising due to the exchange
of virtual magnons can be computed. It turns out, however,
that its value is much larger than EF and would destroy the
magnetic order, thus yielding a qualitatively incorrect pic-
ture of magnetism in this model. The failure is attributed
to the unrealistically large exchange splitting Bxc, and corre-
spondingly the exchange-correlation kernel Kxc, necessary to
induce the magnetic moment according to the Stoner criterion
(Kxcχ0 = 1). In real 3d transition metals, the emergence of
the magnetic order arises due to the large value of the non-
interacting susceptibility χ0 being in turn proportional to the
large density of states in the partially localized 3d band. Thus,
the real Kxc coupling is small and the self-energy, as expected,
turns out to be a correction to the band structure.

C. NiMnSb

NiMnSb is seen as a prototype example for a half-metallic
ferromagnet (HMF), i.e., it is conducting for one spin di-
rection and a semiconductor for the other [15,69]. In the
case of NiMnSb the LDA density of states near the Fermi
energy is zero for the minority-spin channel as depicted in
Fig. 4(a). Prediction of the half-metallicity in this compound
[69] opened the field of half-metallic ferromagnetism.

The use of the magnon-pole approximation is particu-
larly justified in half-metallic ferromagnets. The gap in the
electronic spectrum at the Fermi level causes the Stoner exci-
tations to emerge at energies much larger than typical for spin
waves. The latter are therefore Stoner undamped and contain
the majority of the spectral weight [15,70].

The emergence of nonquasiparticle states (NQPS) in the
spin gap is a trademark of half-metallic ferromagnets. The
physical picture of such states is that spin-down states directly
above the Fermi energy can be seen as a superposition of
spin-up states and virtual magnons [15,17,20]. Contrary to
quasiparticle states, which arise from the poles of the Green
function, NQPS are caused by its branch cuts [17]. There is
no spectral weight of such states directly at the Fermi energy
but it increases drastically at energy scales of characteristic
magnon frequencies. The spectrum of minority-spin carriers
[cf. Fig. 4(b)] shows a strong broadening of electronic states
above the Fermi energy. Across the whole spectrum a dis-
persionless peak appears approximately 150–300 meV above
the Fermi energy. The magnonic density of states [71,72] [cf.
Fig. 4(c)] confirms a high number of magnon states within
that energy region [the electronic DOS of majority carriers
is approximately constant in the relevant energy window, cf.
Fig. 4(a)] . Note that this density of states looks much simpler
than that for Fe [Fig. 1(e)] and Ni [Fig. 3(f)], with just a few
well-pronounced main peaks. Similar to the case of nickel, the
self-energy of NiMnSb depends only weakly on the position
in the BZ which makes our results quite close to results ob-
tained from the DFT + DMFT [20]. This is a general feature
of the self-energy for most materials as the magnon energies
are small compared to the typical electronic bandwidth. As
we already discussed, bcc Fe seems to be a counterexample.
However, in this case its ferromagnetism is related to eg states
only, and one can assume that instead of the total bandwidth
it is the width of this peak which matters [68,73].

Consequently, the electronic density of states may be
calculated under the assumption that the self-energy is in-
dependent of k, hence lowering the numerical burden of
the calculation. Our results, presented in Fig. 4(a), show a
broadening of the sharp peaks in the DOS caused by the
broadening of the electron states through the electron-magnon
interaction. In addition, a peak in the DOS emerges in the
gap in the minority-spin channel due to the NQPS formation.
Similar to the situation in nickel, the Fermi energy as well
as the magnetic moments of the system remain practically
unchanged through the renormalization (the Fermi energy
increases by 86 meV and the total magnetic moment increases
by 0.001 µB).
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IV. SUMMARY AND OUTLOOK

In this work we presented an ab initio method to account
for the influence of nonlocal correlations due to spin-flip
processes on the electronic structure of ferromagnets. It is
based on the MBPT in the formalism of Hedin [21] but avoids
its main disadvantage, i.e., the high numerical complexity,
as the main quantities used are approximated using TDDFT.
This method gives very similar results to other more complex
methods [41,42] for bcc iron and fcc nickel. Most notably,
the predicted exchange splitting in fcc nickel is closer to the
experimental value than those of other comparable methods.
The lower numerical cost allows to study complex materi-
als as the half-metallic ferromagnet NiMnSb. In the latter
material, the electron-magnon interaction causes the appear-
ance of nonquasiparticle states in the band gap. Contrary to
DMFT, we are able to account for the nonlocality of the self-
energy. Extensions of the theory towards antiferromagnets and

two-dimensional systems as well as the influence of param-
agnons are a current work in progress.
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[38] E. Şaşıoğlu, A. Schindlmayr, C. Friedrich, F. Freimuth, and S.
Blügel, Phys. Rev. B 81, 054434 (2010).

[39] V. P. Zhukov, E. V. Chulkov, and P. M. Echenique, Phys. Rev.
B 72, 155109 (2005).

[40] C. Friedrich, M. C. T. D. Müller, and S. Blügel, Many-body spin
excitations in ferromagnets from first principles, in Handbook
of Materials Modeling : Methods: Theory and Modeling, edited
by W. Andreoni and S. Yip (Springer, Cham, 2019), pp. 1–39.

[41] M. C. T. D. Müller, S. Blügel, and C. Friedrich, Phys. Rev. B
100, 045130 (2019).

[42] D. Nabok, S. Blügel, and C. Friedrich, npj Comput. Mat. 7,
(2021).

[43] P. Buczek, A. Ernst, and L. M. Sandratskii, Phys. Rev. B 84,
174418 (2011).

[44] P. Buczek, A. Ernst, and L. M. Sandratskii, Phys. Rev. Lett. 106,
157204 (2011).

[45] L. M. Sandratskii and P. Buczek, Phys. Rev. B 85, 020406(R)
(2012).

[46] M. van Schilfgaarde, T. Kotani, and S. Faleev, Phys. Rev. Lett.
96, 226402 (2006).

[47] G. Giuliani and G. Vignale, Quantum Theory of the Electron
Liquid (Cambridge University Press, Cambridge, 2005).

[48] M. I. Katsnelson and A. I. Lichtenstein, J. Phys.: Condens.
Matter 16, 7439 (2004).

[49] P. Buczek, N. Buczek, G. Vignale, and A. Ernst, Phys. Rev. B
101, 214420 (2020).

[50] T. K. Ng and K. S. Singwi, Phys. Rev. B 34, 7738 (1986).
[51] G. Vignale and K. S. Singwi, Phys. Rev. B 32, 2156 (1985).
[52] F. Aryasetiawan and K. Karlsson, Phys. Rev. B 60, 7419

(1999).
[53] M. C. T. D. Müller, C. Friedrich, and S. Blügel, Phys. Rev. B

94, 064433 (2016).
[54] B. Schweflinghaus, M. dos Santos Dias, A. T. Costa, and S.

Lounis, Phys. Rev. B 89, 235439 (2014).
[55] J. Bouaziz, F. S. M. Guimarães, and S. Lounis, Nat. Commun.

11, 6112 (2020).

[56] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.107.134410 for details on the computa-
tional implementation.

[57] M. Springer, F. Aryasetiawan, and K. Karlsson, Phys. Rev. Lett.
80, 2389 (1998).

[58] K. Karlsson and F. Aryasetiawan, Phys. Rev. B 62, 3006 (2000).
[59] C. A. Kukkonen and A. W. Overhauser, Phys. Rev. B 20, 550

(1979).
[60] R. P. Feynman, Quantum Electrodynamics (Addison-Wesley,

Boston, 1998).
[61] A. Lichtenstein, M. Katsnelson, V. Antropov, and V. Gubanov,

J. Magn. Magn. Mater. 67, 65 (1987).
[62] D. I. Bardos, J. Appl. Phys. 40, 1371 (1969).
[63] J. Schäfer, M. Hoinkis, E. Rotenberg, P. Blaha, and R. Claessen,

Phys. Rev. B 72, 155115 (2005).
[64] F. J. Himpsel, J. A. Knapp, and D. E. Eastman, Phys. Rev. B 19,

2919 (1979).
[65] R. Raue, H. Hopster, and R. Clauberg, Z. Phys. B: Condens.

Matter 54, 121 (1984).
[66] M. Pajda, J. Kudrnovský, I. Turek, V. Drchal, and P. Bruno,

Phys. Rev. B 64, 174402 (2001).
[67] Y. O. Kvashnin, O. Grånäs, I. Di Marco, M. I. Katsnelson, A. I.

Lichtenstein, and O. Eriksson, Phys. Rev. B 91, 125133 (2015).
[68] Y. O. Kvashnin, R. Cardias, A. Szilva, I. Di Marco, M. I.

Katsnelson, A. I. Lichtenstein, L. Nordström, A. B. Klautau,
and O. Eriksson, Phys. Rev. Lett. 116, 217202 (2016).

[69] R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J.
Buschow, Phys. Rev. Lett. 50, 2024 (1983).

[70] P. Buczek, A. Ernst, P. Bruno, and L. M. Sandratskii, Phys. Rev.
Lett. 102, 247206 (2009).

[71] S. Paischer, P. A. Buczek, N. Buczek, D. Eilmsteiner, and A.
Ernst, Phys. Rev. B 104, 024403 (2021).

[72] S. Paischer, P. A. Buczek, N. Buczek, D. Eilmsteiner, and A.
Ernst, J. Phys.: Condens. Matter 33, 335804 (2021).

[73] V. Y. Irkhin, M. I. Katsnelson, and A. V. Trefilov, J. Phys.:
Condens. Matter 5, 8763 (1993).

134410-11

https://doi.org/10.1103/PhysRevB.81.054434
https://doi.org/10.1103/PhysRevB.72.155109
https://doi.org/10.1103/PhysRevB.100.045130
https://doi.org/10.1038/s41524-021-00649-8
https://doi.org/10.1103/PhysRevB.84.174418
https://doi.org/10.1103/PhysRevLett.106.157204
https://doi.org/10.1103/PhysRevB.85.020406
https://doi.org/10.1103/PhysRevLett.96.226402
https://doi.org/10.1088/0953-8984/16/41/023
https://doi.org/10.1103/PhysRevB.101.214420
https://doi.org/10.1103/PhysRevB.34.7738
https://doi.org/10.1103/PhysRevB.32.2156
https://doi.org/10.1103/PhysRevB.60.7419
https://doi.org/10.1103/PhysRevB.94.064433
https://doi.org/10.1103/PhysRevB.89.235439
https://doi.org/10.1038/s41467-020-19746-1
http://link.aps.org/supplemental/10.1103/PhysRevB.107.134410
https://doi.org/10.1103/PhysRevLett.80.2389
https://doi.org/10.1103/PhysRevB.62.3006
https://doi.org/10.1103/PhysRevB.20.550
https://doi.org/10.1016/0304-8853(87)90721-9
https://doi.org/10.1063/1.1657673
https://doi.org/10.1103/PhysRevB.72.155115
https://doi.org/10.1103/PhysRevB.19.2919
https://doi.org/10.1007/BF01388063
https://doi.org/10.1103/PhysRevB.64.174402
https://doi.org/10.1103/PhysRevB.91.125133
https://doi.org/10.1103/PhysRevLett.116.217202
https://doi.org/10.1103/PhysRevLett.50.2024
https://doi.org/10.1103/PhysRevLett.102.247206
https://doi.org/10.1103/PhysRevB.104.024403
https://doi.org/10.1088/1361-648X/ac0939
https://doi.org/10.1088/0953-8984/5/46/014

