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Magnetic field induced deformation of the spin density wave microphases in Ca3Co2O6
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The frustrated triangular Ising magnet Ca3Co2O6 has long been known for an intriguing combination
of extremely slow spin dynamics and peculiar magnetic orders, such as the evenly spaced nonequilibrium
metamagnetic magnetization steps and the long-wavelength spin density wave (SDW) order, the latter of
which is essentially an emergent crystal of solitons. Recently, an elaborate field-cooling protocol to bypass
the low-field SDW phase was proposed to overcome the extraordinarily long timescale of spin relaxation that
impeded previous experimental studies in equilibrium, which may point to a deep connection between the
low-temperature slow relaxation and the cooling process passing through the low-field SDW phase. As the first
step to elucidate the conjectured connection, we investigate the magnetic field induced deformation of the
SDW state and incommensurate-commensurate transitions, thereby mapping out the equilibrium in-field phase
diagram for a realistic three-dimensional lattice spin model by using Monte Carlo simulations. We also discuss
Ginzburg-Landau theory that includes several umklapp terms as well as an effective sine-Gordon model, which
can qualitatively explain the observed magnetic field induced deformation of the SDW microphases.
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I. INTRODUCTION

Frustrated magnets can have a manifold of nearly degen-
erate low-energy states from which interesting phenomena
may emerge, such as exotic magnetic and nonmagnetic or-
ders, topological order, liquidlike, or even glassy behavior,
and so on, varying from one material to another [1]. Even
a classical system can host unconventional quasiparticles,
such as skyrmions [2], solitons, and monopoles in spin ice
[3–5], and they may crystallize into novel spin textures, such
as skyrmion crystals [6,7] or soliton crystals [8,9]. Such
emergent crystalline states can often be sensitive to external
perturbations, which makes them attractive as potential de-
vices in some cases [10]. They can also provide a platform
to study far-from-equilibrium dynamics due to metastable
states [4,11].

Since the late 1990s [12–15] the frustrated triangular Ising
magnet Ca3Co2O6 (CCO) has long been known for an in-
triguing combination of extremely slow spin dynamics and
peculiar magnetic phases, such as metamagnetic magnetiza-
tion steps and an incommensurate spin-density wave (SDW)
state [16–22], the latter of which can be seen as a soliton
crystal [23]. In CCO, trigonal prismatic Co3+ S = 2 sites form
ferromagnetic Ising chains running along the c axis, whereas
arranged in a triangular lattice on the ab plane coupled by
weak antiferromagnetic interactions (Fig. 1) [24]. Below spin-
freezing temperature TSF � 5 K, CCO exhibits striking evenly
spaced metamagnetic magnetization steps [14], whose origin
has been a subject of long-time debates [14,15,19,25–28].
Interestingly, whereas the step heights are sensitive to protocol
details, such as sweep rate of the external magnetic field, the
transition magnetic fields (�1.2, 2.4, and 3.6 T with addi-
tional steps at higher fields) are rather robust [26]. Although

some theory invoked an analogy with quantum tunneling in
molecular magnets [27], an alternative scenario is that pecu-
liar frustration in CCO causes a nonequilibrium phenomenon
[11]. In the so-called “rigid chain” model [29–34] each fer-
romagnetic chain is replaced by an effective Ising spin on
a two-dimensional antiferromagnetic triangular lattice. Based
on this mapping, it was argued that the metamagnetic transi-
tion steps in CCO may arise from the same kind of degenerate
manifold as in the two-dimensional triangular lattice Ising
model [11].

However, the origin of the slow dynamics can be more
intricate than suggested by the rigid chain picture. More
recently, resonant x-ray [16,17] and neutron spectroscopies
[18–22] revealed the SDW order below TSDW � 25 K, which
has a three-sublattice structure and a very long modulation
wavelength λSDW �103 Å (�102 magnetic sites) along the
c axis. It was found that λSDW increases as temperature
T is lowered and the corresponding relaxation time grows
substantially. Eventually, the system starts to deviate from
equilibrium below T � 13 K [19], which is much higher than
TSF for the appearance of the metamagnetic magnetization
steps. Since the spin chains are not ferromagnetically ordered
in the SDW state, the interpretation of the rigid chain picture
can be more subtle than originally proposed.

Indeed, the SDW phase may hold the key to understand-
ing the peculiar slow dynamics at low temperatures. It was
recently demonstrated that the slow spin dynamics can be
bypassed by an elaborate field-cooling protocol where every
in-field measurement is performed after a separate cooling
in the target magnetic field [35]. Remarkably, the protocol
allowed for reaching the 1/3 magnetization plateau down
to T = 2 K < TSF without being suffered from metastable
states, which was in good agreement with Monte Carlo (MC)
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FIG. 1. (a) Magnetic lattice of CCO with the intrachain coupling
J1 and the interchain couplings J2 and J3, which is superimposed on
the schematic crystal structure with sublattices A, B, and C. (b) An-
other schematic for the magnetic lattice where only those exchange
interactions that connect to the central site are shown to illustrate
them in a concise manner. (c) Effective one-dimensional lattice used
in the mean-field theory (see the text), where an arrow represents a
magnetic moment of a given ab plane.

simulations in equilibrium. Since the SDW order is believed
to disappear and is replaced by a ferrimagnetic state at high
magnetic fields, the new experiment may suggest that the
spin relaxation at low temperatures may be influenced by the
extent to which the system is in the low-field SDW phase
during the cooling. In fact, it is known that the SDW order
is accompanied by short-range order indicative of spin disor-
dering, whose spectral weight increases as T is lowered [36].
This unusual behavior could be due to the combination of the
T -dependent ordering wave vector and the slowness in the
relaxation of the system to follow the variation [19].

The observed SDW state is essentially a soliton crystal as
in the axial next-nearest-neighbor Ising (ANNNI) model [23],
a prototypical model for spontaneous superstructures due
to competition between nearest- and next-nearest-neighbor
Ising interactions in one direction of a square or cubic
lattice [8,9]. The T -dependent change in λSDW [19] cor-
responds to different magnetic microphases [23], similar
to other self-organizing modulated phases in physical and
chemical systems [37]. Thus, CCO may provide a rare in-
tersection where the ANNNI model phenomenology [8,9]
meets out-of-equilibrium physics in a solid-state system with
only short-range interactions. To elucidate this conjecture in
CCO and similar materials, such as Ca3Co2−xMnxO6 [28],
Sr2Ca2CoMn2O9 [38], and Ca3CoRhO6 [39], it is important
to investigate the magnetic field induced deformation of the
SDW state and incommensurate-commensurate (IC-C) tran-
sitions under the condition much closer to equilibrium than
ever reached before. To provide a theoretical guide for such
an experiment, we study an equilibrium in-field phase dia-
gram of a realistic three-dimensional (3D) lattice model for
CCO. We address both model-specific and universal physics
by combining mean-field theory (Sec. III), MC simulations
(Sec. IV), and Ginzburg-Landau (GL) theory (Sec. V).

II. MODEL

In CCO, S = 2 spins have large easy-axis anisotropy [14],
which permits a description by an effective classical Ising

model,

Ĥ =
∑

ν=1–3

∑
〈i j〉ν

Jνσ
z
i σ z

j − h
∑

i

σ z
i , (1)

where σ z
i = ±1, h = gμBSH with g, μB, and H being the g

factor, the Bohr magneton, and a magnetic field, respectively,
and 〈i j〉ν denotes neighboring sites connected by Jν , ν ∈
{1–3}. J1 < 0 is the intrachain ferromagnetic interaction and
J2 (J3) is the antiferromagnetic interchain interaction shifted
by 1/3 (2/3) lattice parameters along the c axis (Fig. 1). An ab
initio study suggested |J1| � J2 � J3 [40] and J1 = −23.9(2)
and J2 + J3 = 2.3(2) K was reported by an NMR experiment,
which further suggested J2 = 1.1 and J3 = 1.2 K to explain
the SDW ordering wave vector [41]. Below, for simplicity, we
assume J2/|J1| = J3/|J1| and denote the ratio by κ; in relation
with CCO, κ � 0.048.

III. MEAN-FIELD THEORY

In CCO, J2 and J3 compete with J1 after a few steps
along a spiral path due to the vertical shifts of the interchain
interactions [42]. This spiral structure is the key to realize
the same kind of geometrical frustration as in the ANNNI
model [8,9] despite the apparent structural differences. We
first briefly discuss a heuristic mean-field theory in zero field
by assuming a ferromagnetic order on each ab plane, which
are separated by 1/3 lattice parameters from each other along
the c axis (Fig. 1) [23]. The mean-field equation for the mag-
netization ml of layer l is

〈ml〉 = tanh βhl , (2)

where hl = −J1(〈ml+3〉 + 〈ml−3〉) − 3J2(〈ml+1〉 + 〈ml−1〉) −
3J3(〈ml+2〉 + 〈ml−2〉). In this quasi-one-dimensional descrip-
tion, J1, J2, and J3 serve as the effective third-, first-,
and second-neighbor interactions, respectively, realizing a
very similar situation as in the prototypical ANNNI model
[Fig. 1(c)]. The reason for assuming an in-plane ferromagnetic
order, even though the interchain interactions J2 and J3 are
much smaller than the intrachain interaction J1, is that the
energy scale associated with the competition between SDW
states with different wavelengths along the c axis can be
even smaller, as will be discussed by using a sine-Gordon
model. In Fig. 2(a), we show the mean-field (κ, T ) phase
diagram, by extending the previous work [23]. Below the
SDW transition temperature TSDW(κ ), the ordering wave-
vector Q = (0, 0, Q3) varies quasicontinuously. Eventually,
there is a lock-in IC-C transition at T = TIC-C, below which
the magnetic unit cell of the mean-field solution is ↑↑↓ or
↓↓↑ for κ < 1 and ↑↑↓↓ for κ > 1 in the effective one-
dimensional description in Fig. 1(c). We find that Q3(κ, T )
changes quasicontinuously over almost the entire phase di-
agram, especially for relatively small κ , corresponding to
numerous microphases of soliton crystals [23]. Meanwhile,
distinct discontinuous changes in Q3(κ, T ) are also seen in the
region with relatively large κ where a few relatively extended
commensurate states are found. However, since the large κ

region has relatively small significance in relation with CCO,
we will not go into details of this case.
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FIG. 2. (a) Mean-field (κ, T ) phase diagram for h = 0, where
κ ≡ J2/|J1| = J3/|J1|. The mean-field ground state is ↑↑↓ or ↓↓↑
(↑↑↓↓) along the c axis for κ < 1 (κ > 1) in the effective one-
dimensional description, the ordering wave vector of which is
Q3/(2π ) = 1 (3/4), respectively. (b) (T , h) phase diagram obtained
by MC simulations for κ = 0.1 based on the data for T � 0.45|J1|.
The T -sweep data for Tc or TIC-C is determined by analyzing the
Binder parameter as a function of T , whereas the field-sweep data
for hc is determined from a peak in χ = dM/dh as a function of h.

IV. MONTE CARLO SIMULATION

A. Setup

Next, to demonstrate the ANNNI-like physics in an unbi-
ased way, we present the results of our MC simulations. We
consider a lattice of size L × L × Lc with periodic boundary
conditions where the total number of spins is Nspin = 3L2Lc.
We combine single-spin updates, intrachain cluster updates
[23], and replica exchanges [43] included every ten MC steps.
Several hundreds of replicas are needed for largest lattices to
maintain a reasonable exchange acceptance rate to guarantee
efficient sampling at low temperatures (e.g., 400 replicas for
8 × 8 × 320 for h � 0.2|J1|). By fixing κ = 0.1 and Lc/L =
40 in most cases shown below, we performed simulations
for 2 × 2 × 80–8 × 8 × 320. Here, although κ = 0.1 is larger

than κ � 0.048 estimated for CCO, no qualitatively different
physics for smaller κ is suggested in our mean-field phase
diagram as long as the SDW order is concerned [Fig. 2(a)].

The aspect ratio Lc/L = 40 is chosen to simulate long-
wavelength SDW states with as little finite-size tension
as possible whereas not making the system excessively
anisotropic to address thermodynamic behaviors in 3D. As
will be discussed by using a GL theory, the ordering wave-
vector Q at T = TSDW is expected to be the minima ±qmin

of the Fourier-transform J (q) of the exchange interactions,
which we find qmin = (0, 0, 2π + ε) with ε ≈ −0.006(2π )
for κ � 0.048 and ε ≈ −0.013(2π ) for κ = 0.1. Because
qmin is very close to the three-sublattice commensurate wave-
vector qcom = (0, 0, 2π ), even a single periodicity of the spin
modulation requires a large number of unit cells along the
c axis. (Here, q = 3qcom = (0, 0, 6π ) is equivalent to q = 0
in our notation, but q = qcom is not.) The minimum size
required to host a single period modulation for κ � 0.048 is
Lmin

c = 2π/|qmin,3 − qcom,3| ≈ 160, which can be a bit prob-
lematic. For κ = 0.1, we find Lmin

c ≈ 80, which is also quite
anisotropic but within the acceptable range. The aspect ratio
Lc/L = 40 is determined on this basis.

B. Modified Binder parameter method

To determine the transition point of a second-order phase
transition into a commensurate ordering, say with a wave-
vector Q, a standard method is to analyze the order param-
eter MQ = N−1

spin

∑
i σ

z
i exp(−iQ · ri ) and the corresponding

Binder parameter UQ = 〈|MQ|4〉/〈|MQ|2〉2 [44]. However, the
possible T -dependent variation as well as incommensurability
of the ordering wave vector poses a challenge in numeri-
cal studies of the ANNNI model and its variants [45–47],
demanding a modified approach. In such a model, a finite-
size system with periodic boundary conditions is expected to
develop a spin correlation whose dominant wave vector is
necessarily commensurate but near the true ordering wave-
vector Q(T ) in the thermodynamic limit. Such an effective
ordering wave-vector Qeff

L (T ) can be detected as a peak in the
finite-size spin structure factor Sq = Nspin(〈|Mq|2〉 − |〈Mq〉|2)
and we expect limL→∞ Qeff

L (T ) = Q(T ). Indeed, the observed
behavior of Qeff

L (T ) shows relatively small variance with re-
spect to L, supporting this expectation (Fig. 3). Based on the
estimate of Qeff

L (T ), we evaluate 〈|MQeff
L (T )|2 and 〈|MQeff

L (T )|4,
thereby

UQeff
L

=
〈∣∣MQeff

L (T )

∣∣4〉
〈∣∣MQeff

L (T )

∣∣2〉2 , (3)

which is a Binder parameter defined at q = Qeff
L (T ). As in the

usual usage of the Binder parameter [44], we look into the
crossing point of UQeff

L (T ) for different system sizes to evaluate
TSDW.

Unlike the conventional approach, however, the wave-
vector q = Qeff

L (T ) associated with the Binder parameter for
one system size can be different from one for another size
in this approach. Furthermore, the wave vector can also be
T dependent. To analyze the effect of a small deviation
of the wave vector from the true (incommensurate) order-
ing wave-vector Q, we review the standard scaling theory
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FIG. 3. T dependence of the third component of the effective ordering wave-vector Qeff
L,3 (upper panels) and specific heat C (lower panels)

obtained by MC simulations for κ = 0.1 and (a) h = 0, (b) h/|J1| = 0.05, and (c) h/|J1| = 0.2. The additional subpeaks in C are considered
as spurious ones (see the text).

for correlation functions [48]. The two-point SDW correla-
tion function G2(r1 − r2) = 〈φc(r1)φc(r2)〉, where φc(r) ∼
σ z(r) e−iQc·r is the coarse-grained SDW order parameter with
the momentum Qc ≡ Q(TSDW), is expected to have the fol-
lowing transformation under the scaling by a factor b,

G2(r, t ) ∼ b−2xSDW G2(b−1r, b1/νt ), (4)

where t = (T − TSDW)/TSDW is the reduced temperature,
xSDW is the scaling dimension of the order parameter, and ν

is the critical exponent of correlation length ξ . It follows that
the correlation function has the universal finite-size scaling
form of

G2(r) ∼ ξ−2xSDW�2(ξ−1r, ξ−1L), (5)

from which we find

〈|Mq|2〉 ∼ 1

N2
spin

〈∣∣∣∣
∫

σ z(r) e−iq·rdr

∣∣∣∣
2
〉

∼ 1

Nspin

∫
G2(r)e−i(q−Qc )·rdr

∼ L−2xSDW2[L(q − Qc), ξ−1L]. (6)

A similar argument can also be made for the
four-point correlation function G4(r1, r2, r3, r4) =
〈φc(r1)φc(r2)φc(r3)φc(r4)〉, leading to

〈|Mq|4〉 ∼ L−4xSDW4[L(q − Qc), ξ−1L]. (7)

Thus, near the critical point T ≈ TSDW, we find that the Binder
parameter associated with the effective ordering wave vector
behaves as

UQeff
L

∼ U
[
L
(
Qeff

L − Qc
)
, ξ−1L

]
. (8)

In the meantime, it is expected UQeff
L

→ 2 (corresponding to
the Gaussian distribution for a one-component complex order
parameter) and UQeff

L
→ 1 in the high- and low-T limits, re-

spectively. In the above discussion, �2, 2, 4, and U are
finite-size scaling functions.

It is reasonable to assume that these scaling functions are
sufficiently isotropic with respect to small |Qeff

L − Qc| with an
appropriate rescaling along the principle axes if needed [48].

In fact, Z2 reflection symmetry along the c axis concerning the
sign of Qeff

L,3 − Q3 is enough for the following discussion. As a
wave vector best approximating the true ordering wave vector
for a given system size L, we expect |Qeff

L − Qc| ∼ O(L−1).
Since, the universal scaling functions can be expected as suf-
ficiently slowly varying near the critical point T ≈ TSDW, the
right-hand side of Eq. (8) is almost a size-independent con-
stant. Therefore, the Binder parameter at the size-dependent
effective ordering wave vectors is expected to exhibit a cross-
ing behavior at around T = TSDW.

In the meantime, to determine TIC-C for the lock-in IC-C
transition into a commensurate phase in low fields, or Tc for a
direct transition into the same phase in high fields, we use the
ordinary the Binder parameter Uqcom

= 〈|Mqcom |4〉/〈|Mqcom |2〉2

at the corresponding commensurate wave-vector q = qcom =
(0, 0, 2π ).

C. Ordering wave vector and the phase diagram

Below, we discuss the details of the phase diagram for
κ = 0.1 [Fig. 2(b)], which is obtained by the simulation for
T � 0.45|J1|. We first focus on the behavior of the ordering
wave vector (Fig. 3). At low fields, we observe that the or-
dering wave-vector Qeff

L = (0, 0, Qeff
L,3) at T = TSDW deviates

slightly, but clearly, from qcom = (0, 0, 2π ). Below TSDW, Qeff
L

slowly drifts towards qcom = (0, 0, 2π ) as further lowering T .
Roughly speaking, the ordering wave vector changes more
rapidly for a larger magnetic field. The observed steplike
behavior of Qeff

L is simply due to the finite-size discretiza-
tion of the wave vector [e.g., �Qeff

L,3/(2π ) = 0.003 125 for
Lc = 320], which also causes spurious peaks in C at wildly
size-dependent temperatures (Fig. 3). Considering the wide
range of the system sizes we investigated, the most natu-
ral interpretation is that the change in the wave vector in
thermodynamic limit, Q(T ) = limL→∞ Qeff

L (T ), is (quasi-)
continuous towards qcom. When Qeff

L (T ) changes from one
value to another as a function of T in a finite-size system,
a disordering effect appears at large distance due to the mis-
match between an ideal wave length and the system size.
The mismatch-induced disordering effect causes a spurious
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FIG. 4. Monte Carlo results of the modified Binder param-
eter UQeff

L
[Eq. (3)] for (a) h/|J1| = 0, (b) h/|J1| = 0.05, and

(c) h/|J1| = 0.2. The insets show enlarged views near T = TSDW.

spiky peak in UQeff
L

(Fig. 4) and interfere with high-precision
determination of TSDW because it also affects the behavior
of UQeff

L
near TSDW, making the trend of the crossing less

systematic. Therefore, we treat the first crossing points of UQeff
L

for (Lc, 2Lc) = (80, 160), (120, 240), and (160, 320) simply
on an equal footing, which nonetheless allows for determining
the transition point of the SDW ordering to the satisfactory
precision, e.g., TSDW/|J1| = 1.407(5), 1.406(1), and 1.41(2)
for h/|J1| = 0, 0.05, and 0.2, respectively (Fig. 4). The esti-
mated TSDW roughly coincides with the highest-T peak in the
specific heat (see Fig. 3).

At low temperatures, the ordering wave vector is pinned
at qcom = (0, 0, 2π ), corresponding to a three-sublattice

ordered phase. At low fields, the low-T phase appears through
a lock-in IC-C transition where the translational symmetry
along the c axis, which is broken in the SDW state, is
restored. By analyzing the behavior of Uqcom , we find that
TIC-C increases rapidly with h (see Fig. 2), e.g., TIC-C/|J1| =
0.52(1), 1.15(3), and 1.397(3) for h/|J1| = 0, 0.05, and 0.2,
respectively. Since TSDW is nearly constant in h, this obser-
vation means that the SDW phase shrinks rather rapidly with
increasing h, and above a magnetic field induced multicrit-
ical point hLP � 0.2|J1| � 0.17hsat, where hsat = 6(J2 + J3)
is the saturation field, no incommensurate phase is found.
The estimated IC-C transition temperatures coincide with the
temperatures at which the finite-size ordering wave vector
reaches Qeff

L = qcom at each field, as expected. Also, 〈|Mqcom |2〉
increases rapidly around the estimated temperatures and be-
comes almost size independent at lower temperatures (Fig. 5).
Although the IC-C transitions studied in the present MC work
tend to exhibit typical features of a first-order transition, such
as the correction in the finite-size transition temperature vary-
ing as ∼1/L3, they may be a spurious behavior caused by
discrete wave vectors in finite-size systems.

For T < TIC-C, the two main candidates for the three-
sublattice order are the FIM state and the PDA state, similar
to the case in triangular lattice antiferromagnetic Ising models
[49–54]. In the FIM state, each spin chain has a ferromagnetic
order and different spin chains takes the three-sublattice ↑↑↓
structure. In the PDA phase, the spin chains in the first and the
second sublattices have a ferromagnetic order with spin-↑ and
spin-↓, respectively, with the spin chains in the third sublattice
disordered. A convenient indicator for a finite-size calculation
is

C6 =
〈
M6

qcom

〉
〈|Mqcom |6〉 , (9)

which takes C6 > 0 (C6 < 0) for the FIM (PDA) state [51].
For h = 0, we confirm the PDA state below TIC-C (Fig. 5). For
h �= 0, we find the FIM state at low T down to h/|J1| = 0.025,
implying that the observed PDA state is extremely fragile
against the magnetic field. The confirmed PDA state in zero
field should be distinguished from the previous claim of the
same state in CCO below �25 K, which has now been known
to be the SDW state [14]. Nevertheless, our result suggests
that the PDA state may be stabilized when the wavelength of
the SDW state goes to infinity in equilibrium. We also mention
that we find no evidence of an additional order-order transition
at low T as reported in CCO [36], at least for T � 0.45|J1|.
The FIM phase in a magnetic field yields the 1/3 magnetiza-
tion plateau [35]. At high fields, we find a direct transition into
the FIM phase without the intervening SDW phase. We find
that the transition is of the first order, which is consistent with
the Z3 symmetry breaking in d = 3, as in the three-state Potts
model [55,56].

V. GINZBURG-LANDAU THEORY

Finally, for a more universal description of the com-
mensurate and incommensurate phases in CCO and similar
materials, we consider a GL theory. As will be shown below,
the theory is essentially in the same form as that for the
ANNNI model [57,58]. Interestingly, however, the GL theory
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FIG. 5. Monte Carlo results of the square of the commensurate order parameter (upper panels) and the C6 indicator to distinguish between
the partially disordered antiferromagnetic (PDA) state (C6 < 0) and the ferrimagnetic (FIM) state (C6 > 0) (lower panels) for (a) h/|J1| = 0,
(b) h/|J1| = 0.05, and (c) h/|J1| = 0.2. The insets show enlarged views of the Binder parameter for the commensurate order parameter near
T = TIC-C.

for ANNNI-like models in magnetic fields [59] has yet been
thoroughly discussed in the literature, despite its experimental
relevance in many contexts.

We use a complex order parameter ψ (r) ∼ e−iqcom·rσ z(r),
qcom = (0, 0, 2π ), which can be formally introduced by using
the Hubbard-Stratonovich transformation. ψ (r) describes the
local three-sublattice order in a coarse-grained way, which
can be either the FIM order or the PDA order depending
on the phase factor. For h = 0, we find the following GL
Hamiltonian:

Hh=0 =
∫

d3r
[

1

2
l|(∇ − iε)ψ (r)|2 + t |ψ (r)|2 + u4|ψ (r)|4

+ u6|ψ (r)|6 + v6[(ψ (r)6 + ψ∗(r)6]

]
, (10)

where t , u4, u6, and v6 are GL coefficients and ε = (0, 0, ε).
A crucial point of the present theory is that the wave-vector
qcom of the local order described by ψ (r) is slightly shifted
from the minima q = ±qmin of the Fourier-transform J (q) of
the exchange interactions in such a way that qmin = qcom + ε.
For this reason, Hh=0 includes the vector potential-like (but
constant) contribution −iε in the gradient term. Hh=0 also
includes the six-order term (v6) as the leading umklapp term,
the order of which is determined by the size of the magnetic
sublattice of the commensurate order and time-reversal sym-
metry; a factor of 3 comes from 3qcom ≡ 0 and time-reversal
symmetry requires another factor of 2.

As is clear from the origin, the gradient term acts as adding
a momentum ε to ψ , in favor of the three-sublattice long-
wavelength SDW state 〈ψ (r)〉 ∼ (const.) × eiε·r. However, on
one hand, although the SDW state appears to benefit from the
exchange energy, the sinusoidal modulation made of localized
Ising-like moments would require an entropy contribution to
the free energy. On the other hand, the commensurate three-
sublattice ordered state, 〈ψ (r)〉 ∼ const., may not appear to
acquire the full energy gain of the exchange interaction but the

state is quite compatible with the Ising anisotropy. In the GL
theory (10), the umklapp term plays the role of the relative en-
tropy contribution related with the Ising anisotropy. Although
the commensurate state may be favored by the umklapp term
by adjusting its constant phase factor, the incommensurate
SDW states generally gain no corresponding contribution
because of the phase cancellation in the integral over the
space. In fact, we could rederive the GL theory in terms of
φc(r) ∼ σ z(r) e−iqmin·r instead of ψ (r) ∼ σ z(r) e−iqcom·r, and
the result is an ordinary φ4

c theory for the one-component
complex order parameter without umklapp terms as long as
qmin is incommensurate. Hence, the key role in the GL theory
(10) is played by the competition between the gradient and
the umklapp terms favoring incommensuration and commen-
suration, respectively. Thus, although somewhat different in
appearance, the Hamiltonian of this system (1) realizes essen-
tially the same situation as in the classic ANNNI model [58].

At T = TSDW, critical fluctuations renders ψ (r) nonzero
with the additional momentum ε, resulting in the SDW state
with the ordering wave-vector Q = qcom + ε = qmin. In other
words, we expect a condensation of the softest mode φc(r) ∼
σ z(r) e−iqmin·r rather than ψ (r) ∼ σ z(r) e−iqcom·r. The SDW
transition breaks the translation symmetry along the c-axis but
the corresponding wavelength is very large and incommen-
surate, suggesting emergent U(1) symmetry for the critical
fluctuation. In the GL theory, the umklapp v6 term has no
effect for the incommensurate SDW state, and the 3D XY uni-
versality class is indeed expected. The observed main peak of
the specific heat, which exhibits a sign of smearing [Fig. 3(a)],
is consistent with the negative exponent α = −0.0146(8) < 0
for the XY universality class [60].

For T < TSDW, the competition between the gradient term
and the umklapp term sets in, which affects the phase fac-
tor of 〈ψ (r)〉, thereby Q(T < TSDW). To see this, we may
write ψ (r) = A(r)eiθ (r) and apply a mean-field decoupling for
the massive amplitude fluctuation (“Higgs”) mode δA(r) =
A(r) − 〈A〉 and the phase mode θ (r) [58]. The result is the
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following sine-Gordon model for θ (r),

H ′
h=0,θ=〈A〉2

∫
d3r

[
1

2
[∇θ (r) − ε]2 + 2〈A〉4v6 cos 6θ (r)

]
.

(11)

The gradient term tends to drift the phase, which can lead to a
plethora of soliton lattices through the competition against the
cosine term [58,61], in good agreement with our mean-field
and MC studies. In the meantime because the order parameter
amplitude 〈A〉 increases as T is lowered below TSDW, the
strength of the cosine term is enhanced. Consequently, the
model at low T is expected to undergo a lock-in transition
eventually. For v6 > 0 (v6 < 0), the phase is locked in at
θ = 2nπ/6 [θ = (2n + 1)π/6] with an integer 0 � n < 6,
corresponding to the FIM (↑↑↓ or ↓↓↑) state and the PDA
state [49–54], respectively. Our mean-field calculation implies
v6 > 0 whereas our unbiased MC simulation suggests v6 < 0
in zero field, though the subtle discrepancy does not require
serious attention as v6 is generated through fluctuations.

For h �= 0, the uniform q = 0 component m(r) is allowed
by symmetry and may be induced by the magnetic field.
Consequently, in addition to v6, a lower-order umklapp term
appears in the GL Hamiltonian. We find

�H0−qcom �
∫

d3r w4m(r)[ψ (r)3 + ψ∗(r)3], (12)

as the leading-order contribution with the new coupling con-
stant w4. The total effective GL Hamiltonian for h �= 0 is

Hh �=0,ψ,m = Hh=0,ψ + Hq=0,m + �H0−qcom, (13)

where Hq=0,m = ∫
d3r[ 1

2 [c∇m(r)]2 + μ2m(r)2 − hm(r)] is
the noninteracting part for m(r) with c > 0 and μ2 > 0 being
the gapped spin-wave parameters near q = 0. By a similar
mean-field decoupling as in the h = 0 case, we find a new
term in the sine-Gordon model,

�H ′
0−qcom,θ = 2w4〈m〉〈A〉3

∫
d3r cos 3θ (r). (14)

The field induced umklapp term has the following con-
sequences. First, because of the reduced symmetry in the
θ space, only a subset of the FIM states is favored by
�H ′

0−qcom,θ among the three-sublattice ordered states. De-
pending on the sign of w4, the favored states are ↑↑↓ or
↓↓↑, each of which is threefold degenerate, although ↑↑↓
is naturally anticipated for h > 0. Second, as the prefactor
is ∝〈A〉3 as opposed to ∝〈A〉6 in zero field, the strength of
the field induced umklapp term is expected to grow faster
for T < TSDW. Moreover, since the prefactor is ∝〈m〉, we
expect that this trend is further enhanced for larger h. There-
fore, the region of the incommensurate SDW microphases
is expected to become narrower for larger h, in excellent
agreement with our MC results (Fig. 2). Third, considering
that our MC simulation shows the PDA state at h = 0 be-
low TIC-C, the zero- and the field induced umklapp terms
(∼cos 6θ, cos 3θ , respectively) must compete against each
other in the present system. The competition opens a pos-
sibility of a kind of mixed phase below TIC-C, though our
MC results shows no evidence down to an extremely low
field, h/|J1| = 0.025. Finally, near T = TSDW, the present GL

theory suggests the condensation of the softest mode φc(r) ∼
σ z(r) e−iqmin·r rather than ψ (r) ∼ σ z(r) e−iqcom·r at the SDW
transition, as in the case of zero magnetic field. Hence, we
expect the emergent U (1) symmetry at T = TSDW also for
h �= 0 because umklapp terms disappear from the GL the-
ory in terms of the incommensurate critical mode φc. The
theory, thus, predicts Q(T = TSDW) = qmin for any magnetic
field, which is indeed consistent with our MC results at low
magnetic fields. However, the simulation closer to the mag-
netic field-induced multicritical point hLP � 0.2|J1| might
point to a deviation from this behavior, suggesting that
Q(T = TSDW) approaches towards qcom for the larger systems
we investigated [Fig. 3(c)]. This observation may be an indi-
cation that the multicritical point is a Lifshitz point induced
by a magnetic field.

VI. SUMMARY AND OUTLOOK

To summarize, we presented the magnetic phase dia-
gram in equilibrium of the 3D spin model for the frus-
trated quasi-one-dimensional triangular Ising antiferromagnet
Ca3Co2O6. We identified the region of incommensurate SDW
microphases in a magnetic field (Fig. 2). We found the defor-
mation of SDW microphases as a function of T , characterized
by the temperature dependence of the ordering wave-vector
Q(T ), which occurs much more rapidly in a magnetic field
than in zero field (Fig. 3). The deformation eventually leads
to the IC-C transition into the PDA (FIM) state for h = 0
(h �= 0). Between the PDA and the FIM phases, there may be
a mixed phase in an extremely low-field regime, although not
confirmed in this paper. The GL theory we derived includes
different symmetry-allowed umklapp terms for h = 0 and
h �= 0. The GL theory allowed for further deriving an effective
sine-Gordon model that provides a qualitative explanation of
the observed magnetic field induced deformation of the SDW
microphases. Moreover, these effective theories demonstrate
that the present system can be seen as an incarnation of the
classic ANNNI model [58], despite different appearance of
the lattice structure and the more complicated network of the
exchange interactions.

Finally, we discuss the relation between the theoretical
phase diagram in this paper and the previous experiments. As
mentioned in the Introduction, the material is known for the
intriguing combination of the slow relaxation phenomena and
the long-wavelength SDW order. As the recent field-cooling
study suggested [35], the slow relaxation at low temperature
may be greatly influenced by the cooling process passing
through the low-field SDW phase at intermediate tempera-
ture. To verify the conjectured relation experimentally, the
challenge is that experiments under equilibrium conditions
are known to be notoriously difficult for Ca3Co2O6. For ex-
ample, resonant x-ray experiments reported a field induced
IC-C transition at 5 K [17], which is unfortunately most likely
nonequilibrium because the temperature is too low. However,
at intermediate temperatures above TSF, there are some ex-
periments that seem to capture the desired physics of the
field induced deformation of the SDW phase and the IC-C
transition. For example, μSR measurements at 20 K reported
a magnetic field induced phase transition at around 0.4 T [62].
Although the original interpretation of the result suggested
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a PDA-FIM transition, the obtained phase boundary is very
similar to the SDW-FIM transition line shown in the present
paper. Since the SDW phase was not confirmed back then, it is
quite possible that the anomaly in the μSR experiment is the
sign of the IC-C transition induced by the magnetic field. We
also note that a similar phase diagram was obtained also by
weak anomaly in the magnetic entropy change [63]. We, thus,
believe that further experiments studying the field induced
IC-C transition in Ca3Co2O6, such as neutron scattering and
other spectroscopies focusing on the low-field regime, will
be very promising, especially when combined with the re-
cently proposed field-cooling protocol [35]. Such experiments

may provide further insights in the peculiar slow dynamics
and out-of-equilibrium behaviors in Ca3Co2O6 and related
materials.
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