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Nonlinear response of the Kitaev honeycomb lattice model in a weak magnetic field
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We investigate the nonlinear response of the Kitaev honeycomb lattice model in a weak magnetic field using
the theory of two-dimensional (2D) coherent spectroscopy. We observe that at the isotropic point in the non-
Abelian phase of this model, the nonlinear spectrum in the 2D frequency domain consists of sharp signals
that originate from the flux excitations and Majorana bound states. Signatures of different flux excitations can
be clearly observed in this spectrum, such that one can observe evidences of flux states with 4-adjacent, 2-
nonadjacent, and 4-far-separated fluxes, which are not visible in linear response spectroscopy such as neutron
scattering experiments. Moreover, in the Abelian phase we perceive that the spectrum in the frequency domain
is composed of streak signals. These signals, as in the nonlinear response of the pure Kitaev model, represent
a distinct signature of itinerant Majorana fermions. However, deep in the Abelian phase whenever a Kitaev
exchange coupling is much stronger than the others, the streak signals are weakened and only single sharp spots
are seen in the response, which resembles the dispersionless response of the conventional toric code.
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I. INTRODUCTION

In a quantum spin liquid (QSL) [1–11], quantum fluctu-
ations overcome the conventional magnetic orders even at
very low temperature. Accordingly, the description of QSL
state falls beyond the framework of the traditional description
of magnetic phases. Novel concepts such as emergent gauge
fields, fractional spin excitations, and practical potential for
the realization of reliable quantum memories have kept the
study of QSL as an important topic since the introduction
of QSL by Anderson in 1973 [12]. In the search for QSL
phases, the Kitaev honeycomb lattice model (KM) [13] with
the exact QSL ground state has opened a promising route to
realize a QSL phase in real materials [14–21]. According to
Kitaev’s parton construction, where each spin on the lattice
is replaced by four Majorana fermions, the bond-dependent
Ising interactions of the initial Hamiltonian are turned to the
hopping Hamiltonian of Majorana fermions in the presence of
emergent Z2 gauge fields. Applying a weak magnetic field on
KM, the gapless excitations become gapped and the system
is effectively described by the Kitaev model in the presence
of three spins interacting term, which we call the extended
Kitaev honeycomb lattice model (EKM) for short that is still
exactly solvable [13]. The applied magnetic field enhances the
phase diagram of EKM to show both Abelian and non-Abelian
gapped phases. In the non-Abelian phase, the presence of any
2n gauge fluxes imposes n Majorana bound states within the
gap, which are fingerprints of the non-Abelian anyons in this
model [13,22].

The signature of fractional excitations in the Kitaev QSL
state has been exhibited with a broad continuum observed
by the conventional dynamical probes [23–30]. Merely the
observation of continuum spectrum in the QSL candidate ma-
terials [31–39] does not determine without ambiguity whether
the continuum is due to fractionalized excitations or damp-
ing of usual quasiparticles or other linewidth broadening

mechanisms. Duo to the presence of strong geometrical frus-
tration or competing interactions in such materials, the broad
continuum response may have a completely different ori-
gin from the physics of quantum spin liquids [40]. Hence,
introducing new probes and approaches to extract further
information and getting clear identifications of fractional ex-
citations is of utmost importance in this area of research.
In this respect, the study of nonlinear responses using the
two-dimensional coherent spectroscopy (2DCS) [41–49] can
provide clear signatures of fractional excitations [50]. Re-
cent study on the 2DCS of Kitaev model shows distinct
signatures of matter Majorana fermions and gauge field ex-
citations in the form of diagonal streak signals and their
intercepts in 2D frequency domain, respectively [51]. Ac-
cording to this technique, one can reveal distinguishable
spectroscopic characteristics of different types of gapped spin
liquids [52], signatures of interactions in many-body quan-
tum systems [53–58], and extract different relaxation times
in quantum systems with quenched disorders [59]. Very re-
cently the 2DCS of one-dimensional Ising model has been
investigated by implementing matrix-product state numerical
simulations [60,61]. Nonlinear responses of KM in the con-
text of high-harmonic generation (HHG) have been studied
theoretically [62] and anomalous behavior of the Kitaev spin-
liquid candidate α-RuCl3 for static nonlinear susceptibilities
has also been reported [63]. It has been shown that the any-
onic statistic of quasiparticles can be revealed by nonlinear
pump-probe spectroscopy [64]. Moreover, within nonlinear
responses, the system is driven to higher excited states, so
more states are involved and one can extract further informa-
tion about the system.

In this paper we investigate the extended Kitaev model to
shed more light on its low-energy properties as a QSL and
answer few questions: What are the differences between KM
and EKM in terms of nonlinear response of 2DCS? How
the anyons and flux excitations show up in the nonlinear
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spectrum of EKM both in its Abelian and non-Abelian
phases? In this respect, we explain the nonlinear magnetic
susceptibility in terms of 2DCS in Sec. II. Moreover, to ex-
plicitly determine the physical and unphysical states in the
Kitaev’s parton construction, we consider the labeling of spins
and periodic boundary conditions introduced in Ref. [65] and
find the relevant physical states of EKM in Sec. III. We present
our numerical results in Sec. IV, where the driving pulses and
the recorded magnetization have the same polarization. In the
latter section, we explain that the diagonal and off-diagonal
streak signals, which exist in the response of the pure KM
at the isotropic point [51], are no longer dominant in the
EKM (where they appear with a tiny strength), instead there
exist sharp signals due to the in-gap bound states, which have
large contribution to the response. We also observe signatures
of different configurations of the flux states, such that some
flux states with 4-adjacent, 2-nonadjacent, and 4-far-separated
fluxes which are not visible in the linear response, manifest
their contribution in the nonlinear response. These are new
signatures of the non-Abelian anyons that can be detected by
2DCS technique. Moreover, we inspect the cause of two dif-
ferent responses in the Abelian phase of EKM. We conclude
and discuss about our findings in Sec. V.

II. TWO-DIMENSIONAL NONLINEAR SPECTROSCOPY

The definition and mathematical expression of the non-
linear magnetic susceptibility are given in this section. The
sample is imposed to two linearly polarized magnetic im-
pulses in directions êα and êβ with τ1 time delay, i.e., B(t ) =
Bαδ(t )êα + Bβδ(t − τ1)êβ . After the second pulse we wait
a time interval τ2 when the magnetization in γ direction
is measured, Mγ

αβ (τ1 + τ2). In order to eliminate the linear
contributions in the response, two separate experiments are
performed with a single pulse Bα or Bβ to measure the magne-
tizations Mγ

α (τ1 + τ2) or Mγ

β (τ1 + τ2). Finally, the nonlinear
response Mγ

NL is extracted by removing the linear magnetiza-
tions:

Mγ

NL(τ1 + τ2) = Mγ

αβ (τ1 + τ2) − Mγ
α (τ1 + τ2)

− Mγ

β (τ1 + τ2). (1)

We assume that the system is prepared in its ground state and
the magnetization of ground state is zero, which is the case for
QSLs. The weak magnetic field is coupled to the magnetiza-
tion Ĥp = −B(t ) · M̂, which is considered in the framework of
perturbation theory [51]. Hence, the nonlinear magnetization
is obtained as follows:

Mγ

NL(τ1 + τ2)/2N = BαBβχ
(2),γ
βα (τ2, τ1)

+ BβBαBαχ
(3),γ
βαα (τ2, τ1, 0)

+ BβBβBαχ
(3),γ
ββα (τ2, 0, τ1) + O(B4),

(2)

where N is number of unit cells. The nth-order susceptibility
is obtained from the (n + 1)-points correlation functions

χ
(2),γ
βα (τ2, τ1) = −1

N

2∑
l=1

Re
[
Q(l ),γ

βα (τ2, τ1)
]
, (3)

where

Q(1),γ
βα (τ2, τ1) = 〈

M̂γ
I (τ1 + τ2)M̂β

I (τ1)M̂α
I (0)

〉
,

Q(2),γ
βα (τ2, τ1) = −〈

M̂β
I (τ1)M̂γ

I (τ1 + τ2)M̂α
I (0)

〉
, (4)

and

χ
(3),γ
βαα (τ2, τ1, 0) = 1

N

4∑
l=1

Im
[
R(l ),γ

βαα (τ2, τ1, 0)
]
, (5)

χ
(3),γ
ββα (τ2, 0, τ1) = 1

N

4∑
l=1

Im
[
R(l ),γ

ββα (τ2, 0, τ1)
]
, (6)

in which

R(1),γ
βηα (t3, t2, t1) = 〈

M̂η
I (t1)M̂β

I (t1 + t2)M̂γ

I (t1 + t2 + t3)M̂α
I (0)

〉
,

R(2),γ
βηα (t3, t2, t1) = 〈

M̂α
I (0)M̂β

I (t1 + t2)M̂γ
I (t1 + t2 + t3)M̂η

I (t1)
〉
,

R(3),γ
βηα (t3, t2, t1) = 〈

M̂α
I (0)M̂η

I (t1)M̂γ

I (t1 + t2 + t3)M̂β
I (t1 + t2)

〉
,

R(4),γ
βηα (t3, t2, t1) = 〈

M̂γ
I (t1 + t2 + t3)M̂β

I (t1 + t2)M̂η
I (t1)M̂α

I (0)
〉
,

(7)

where η = α or β and the subscript I means the magnetization
is calculated in the interaction picture. As we expect from the
sequence of the magnetic impulses and the recorded signal
after them, in the interaction picture the magnetizations M̂ (α)

I ,
M̂ (β )

I , and M̂ (γ )
I always appear at times (0), (t1 + t2), and (t1 +

t2 + t3), respectively.

III. MODEL

The extended Kitaev model describes spin- 1
2 degrees of

freedom on the honeycomb lattice that are composed of the
pure Kitaev terms along with three spin interactions. This
model is an effective theory, which is obtained by a perturba-
tive expansion [13], to explain the effect of a weak magnetic
field on Kitaev model:

HEK = −
∑
〈i j〉α

Jασ̂ α
i σ̂ α

j − K
∑

〈ik〉α,〈k j〉β
γ⊥α,β

σ̂ α
i σ̂

γ

k σ̂
β
j . (8)

In the last term the two bonds 〈ik〉α and 〈k j〉β share the
common site k. Following Ref. [65], we will consider the
same labeling of spins and boundary conditions for the lattice,
that is a honeycomb lattice with periodic boundary conditions
in the direction of two base vectors L1e1 and L2e2 + Me1

[see Fig. 1(a)]. In this geometry, the number of unit cells is
N = L1L2.

For each plaquette p [Fig. 1(a)], the product of spins sitting
on the corners is a constant of motion: Ŵp = σ̂ x

1 σ̂
y
2 σ̂ z

3 σ̂ x
4 σ̂

y
5 σ̂ z

6 ,
which commutes with Hamiltonian and with other plaquette
operators [Ŵp,Ŵp′] = 0. Using the Kitaev parton construc-
tion, each spin is constructed with four Majorana fermions,
the three static b̂x

i , b̂y
i , and b̂z

i and the dynamic ĉi as
follows [13]:

σ̂ α
i = ib̂α

i ĉi, α = x, y, z. (9)
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FIG. 1. (a) The honeycomb lattice with L1 = L2 = 3 and M =
0 according to the explanations in the main text, where μ (μ′, μ′′)
labels the unit cells (dashed parallelogram). The red links in direction
Liei denote the successive terms σ̂

α〈i j〉
i σ̂

α〈i j〉
j in the topological loop

operator ŴLi which also is sketched in (b) for clear observation.

Using this representation we can rewrite the Hamiltonian
(HEK) in terms of Majorana fermions,

HEK({ui j}) = i

2

∑
〈i j〉α

Jα û〈i j〉α ĉiĉ j

− i

2
K

∑
〈ik〉α,〈 jk〉β

γ⊥α,β

εαγβ û〈ik〉α û〈 jk〉β ĉiĉ j,

û〈i j〉α = ib̂α
i b̂α

j , (10)

where εαγβ is the Levi-Civita symbol. Since [ĤEK, û〈i j〉α ] =
0 and [û〈i j〉α , û〈i j〉β ] = 0, for a given set of the bond vari-
ables {u〈i j〉α = ±1}, the Hamiltonian is reduced to a hopping
problem of Majorana fermions, which can be solved exactly.
ui j is an emergent Z2 gauge field, which makes the Hilbert
space to be factorized into gauge |G〉 and matter |M〉 sec-
tors. The physics of the spin Hamiltonian HEK is determined
by the flux configurations {Wp = ∏

〈i j〉∈∂ p ui j}, where different
gauge (bond) configurations {ui j} could give the same flux
configuration. At a fixed flux sector the Hamiltonian takes the
following compact form [26]:

HEK = i

2

(
ĉT

A ĉT
B

)( F M
−MT −G

)(
ĉA

ĉB

)
, (11)

where ĉA (B) is the column vector of all matter Majorana
fermions on A (B) sublattice. M is the first-neighbor hopping
matrix, while F and G are the second-neighbor hopping ma-
trices. In order to diagonalize HEK({ui j}) in each flux sector,
we introduce complex gauge and matter fermions that act on
matter and gauge sectors, respectively [23]:

f̂μz = 1
2 (ĉμA + iĉμB), χ̂μz = 1

2

(
b̂z

μA − ib̂z
μB

)
,

χ̂μy = 1
2 (b̂y

μA − ib̂y
μ′B), χ̂μx = 1

2

(
b̂x

μA − ib̂x
μ′′B

)
. (12)

According to our notation, μ labels the unit cells and μa, a =
x, y, z, indicates the x/y/z bond in that unit cell, which are

shown in Fig. 1(a). The gauge configuration {ui j} is deter-
mined by the occupation number of gauge fermions using the
relation û〈i j〉α = 1 − 2χ̂

†
〈i j〉α χ̂〈i j〉α . Hence, the Hamiltonian in

each flux sector in terms of complex fermions ( f̂ ) takes this
form [26]:

HEK = 1

2
( f̂ † f̂ )

(
h �

�† −h∗

)(
f̂
f̂ †

)
, (13)

where

h = (MT + M ) + i(F − G), h† = h

� = (MT − M ) + i(F + G), �T = −�. (14)

Using the Bogoliubov transformation U , as has been de-
scribed in Refs. [26,66], the final Hamiltonian is diagonalized
as

HEK =
∑

n

εnâ†
nân − 1

2

∑
n

εn, (15)

where (
â
â†

)
= U

(
f̂
f̂ †

)
. (16)

Here, εn � 0 is the matter excitation energy and â†
n (ân) is the

canonical fermionic creation (annihilation) operator. The last
term in Eq. (15),

E = −1

2

∑
n

εn, (17)

is the ground-state energy (i.e., without matter excitations) in
each flux sector.

A. Projection operator and the physical states

Representation of a spin with four Majorana operators has
doubled the dimension of Hilbert space on each site of lattice
[8]. Therefore, not all states in the extended Hilbert space
(HEK) belong to the original physical spin Hilbert space. The
states in the extended Hilbert space can be classified into
physical and unphysical states by introducing the projection
operator P̂ [13]:

P̂ =
2N∏
i=1

(
1 + D̂i

2

)
, with D̂i = b̂x

i b̂y
i b̂

z
i ĉi,

|�phys〉 = P̂|�u〉. (18)

Within a straightforward calculation we find that the pro-
jection operator can be written in the form [67,68]

P̂ = ŜP̂0,

P̂0 = 1 + D̂

2
, (19)

where D̂ = ∏2N
i=1 D̂i and Ŝ sums symmetrically over all

gauge-equivalent {ui j} configurations. For physical (unphys-
ical) states we have D = +1 (−1). It has been shown that the
operator D̂ depends on the following values and parities [65]:

D̂ = (−1)θ det(Qu)π̂χ π̂a, (20)
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where θ = L1 + L2 + M(L1 − M ) and Qu is obtained by di-
agonalizing the Hamiltonian (see Appendix A). Moreover, π̂χ

and π̂a are the number parity of bond and matter fermions.

B. Physical ground state

The Wilson loop operator Ŵ� associated with any closed
loop � on the lattice is a constant of motion for the Hamilto-
nian (8) [13,69]:

Ŵ� = σ̂
α〈i j〉
i σ̂

α〈i j〉
j σ̂

α〈 jk〉
j σ̂

α〈 jk〉
k . . . σ̂

α〈li〉
l σ̂

α〈li〉
i , (21)

where {i, j, k, . . . , l} refer to the sites on the loop and α〈i j〉 =
x, y, z shows the type of connecting link 〈i j〉α , i.e., the Wilson
loop is the product of x/y/z–Ising interactions on x/y/z links
of the loop. The flux (plaquette) operator Ŵp is an elementary
closed-loop operator such that any contractible closed-loop
operator Ŵ� on a torus can be constructed by multiplying a
sequence of Ŵp. On a torus (2D lattice with periodic bound-
ary conditions), there are two noncontractible (topological)
closed-loop operators that can not be construed by the product
of plaquette operators. For example, in a system with the
boundary condition M = 0, these loop operators are ŴL1 and
ŴL2 as shown with the red links in Figs. 1(a) and 1(b). The
eigenvalues of these operators are l1 = ±1 and l2 = ±1. So,
for any flux configuration {Wp}, there are four topologically
inequivalent states, namely, |{Wp}, l1, l2〉.

According to the Lieb’s theorem [70], we look for the
physical ground state (D = +1), in the 0-flux sector {Wp =
+1,∀ p}. For simplicity, we consider a system with L1 = L2

being an even number and M = 0. Four topologically inequiv-
alent states for the 0-flux sector can be constructed with the
following gauge configurations:

|{Wp = +1},+1,+1〉 = Ŝ|G〉|M′++〉,
|{Wp = +1},+1,−1〉 = Ŝg+−(χ̂†)|G〉|M′+−〉,
|{Wp = +1},−1,+1〉 = Ŝg−+(χ̂†)|G〉|M′−+〉,
|{Wp = +1},−1,−1〉 = Ŝg−−(χ̂†)|G〉|M′−−〉, (22)

where |G〉 is the vacuum for the complex gauge fermions
defined by the standard gauge configuration {ui j = +1} and
|M++〉 is the vacuum for matter fermions in this gauge
configuration. The operator gl1l2 (χ̂†) is the product of cre-
ation operators for complex gauge fermions which construct
the gauge configuration with a specific topological label
(l1, l2) and |Ml1l2〉 is the vacuum for matter fermions in
the aforementioned gauge configuration gll l2 (χ̂†)|G〉. The
prime on the matter state |M′l1l2〉 indicates that this state
may have matter excitations, which depend on the factor
(−1)θ det(Qu)π̂χ defined in Eq. (20). We have plotted the
value of (−1)θ det(Qu)π̂χ versus K in Fig. 2 for the gauge
configurations defined in Eq. (22) at the isotropic point Jx =
Jy = Jz = 1. According to Eq. (20) and Fig. 2, to reach a
physical state with D = +1 the state with topological label
(+1,+1) must have an odd parity for matter excitations,
while the other topological ground states have zero matter
excitation. Based on our numerical evidences, we expect that
for all even and odd values of the geometric parameters L1,

FIG. 2. The value of (−1)θ det(Qu)π̂χ versus K for the four
topological distinct states introduced in Eq. (22) labeled by (l1, l2).
The exchange couplings are in the non-Abelian phase with Jx = Jy =
Jz = 1 for a periodic system of L1 = L2 = 56, M = 0.

L2, and M, the odd-parity constraint for physical states with
label (+1,+1) in the 0-flux sector holds in the entire area
of non-Abelian phase of the extended Kitaev model, similar
to the pure Kitaev model [71]. Accordingly, the states in
Eq. (22) with minimum energy must have the following matter
configurations:

|M′++〉 = â†
1|M++〉,

|M′+−〉 = |M+−〉,
|M′−+〉 = |M−+〉,
|M′−−〉 = |M−−〉. (23)

It means the energy of |{Wp = +1},+1,+1〉 is E (0) + ε
(0)
1 ,

while the energy of the other three states is E (0), which is
given by Eq. (17) within the 0-flux sectors and ε

(0)
1 is the

first matter excitation in the same flux sector. Given ε
(0)
1 > 0

for any finite and nonzero value of K , the energy of the 0-
flux state with the label (+1,+1) is higher by the fermionic
gap than the other three states in the ground-state manifold.
Therefore, the topological ground state in the non-Abelian
phase of the extended model is threefold degenerate as defined
in Eq. (23) in agreement with the results presented in Ref.
[72] using the Jordan-Wigner–type transformation. It has to
be mentioned that in Ref. [72] the transformation is in the
original Hilbert space of the model and there are no unphys-
ical degrees of freedom. Moreover, the non-Abelian phase
supports three types of quasiparticles, namely, vacuum, Ising
anyons, and fermions. Hence, in the framework of topological
quantum field theory the ground state on a torus has threefold
degeneracy [73]. In the Abelian phase of the model, we ob-
served that for even values of L1 and L2 with M = 0, the factor
(−1)θ det(Qu)π̂χ is always equal to +1 for all topologically
inequivalent states, i.e., in this case, |M′++〉 = |M++〉, and
the ground-state subspace is composed of four degenerate
states.

In order to calculate the nonlinear response of the system
in the Abelian and non-Abelian phases, we can choose any
state from the ground-state manifold because for 2DCS as
a local probe, topologically inequivalent ground states are
indistinguishable.
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IV. NONLINEAR RESPONSE

The two-dimensional nonlinear susceptibilities introduced
in Eq. (2) are calculated for the extended Kitaev model at
polarization (α, β, γ ) = (z, z, z). For the mentioned polariza-
tion, the second-order susceptibility is exactly zero because
by insertion of the resolution identity in the correlation func-
tions Q(l ),γ

βα , the overlap of flux sectors of the intermediate
states vanishes [51]. We have used the few matter fermion
approach, specifically the single matter fermion approxima-
tion [24], which shows that the dynamical structure factor for
small K’s within this approximation gives almost the same
results as the exact Pfaffian approach. To elaborate on this,
it suffices to insert the resolution of identity into R(1),γ

βηα cor-
relation functions. For example, consider R(1),z

zzz (τ2, τ1, 0) =
R(2),z

zzz (τ2, τ1, 0)
.= R(1,2),z

zzz (τ2, τ1, 0):

R(1,2),z
zzz (τ2, τ1, 0) = 〈

M̂z
I (0)1M̂z

I (τ1)1M̂z
I (τ1 + τ2)1M̂z

I (0)
〉

=
∑
μνλρ

∑
PQR

〈G|Ẑμ|P〉〈P|Ẑν |Q〉〈Q|Ẑλ|R〉

× 〈R|Ẑρ |G〉ei[EPτ1+EQτ2−ER (τ1+τ2 )], (24)

where Ẑμ = σ̂ z
μA + σ̂ z

μB is the sum of the Pauli z matrix of the
two spins on the μth cell. Moreover, |G〉 is the ground state,
|P〉, |Q〉, and |R〉 represent an eigenstate of the Hamiltonian.
The matrix elements appearing in Eq. (24) are the same for
other R(1),z

zzz functions, which differ only in the phase factor.
The eigenstates with different flux sectors are orthogonal to
each other, hence, the matrix elements in Eq. (24) are nonzero
only for the four Ẑμ operators with the following sequence of
indices: ẐmẐnẐnẐm, ẐmẐnẐmẐn, and ẐmẐmẐnẐn. The last case,
in the single matter approximation, produces a term which
grows linearly with the system size. However, according to
Eq. (2), the nonlinear susceptibilities are independent of the
system size, hence, we exclude this contribution [51]. The two
former cases result in the following matrix elements:

∑
μν

〈G|Ẑμ|Pμ〉〈Pμ|Ẑν |Qμν〉〈Qμν |Ẑν |Rμ〉〈Rμ|Ẑμ|G〉,
∑
μν

〈G|Ẑν |Pν〉〈Pν |Ẑμ|Qμν〉〈Qμν |Ẑν |Rμ〉〈Rμ|Ẑμ|G〉. (25)

According to the single matter approximation we choose the
states in Eq. (25) as follows:

|G〉 = Ŝg+−(χ̂†)|G〉|M+−〉,
|Rμ〉 = Ŝχ̂†

μz
g+−(χ̂†)â

†
r |G〉|M+−

μ 〉 (2-flux state),

|Qμν〉 = Ŝχ̂†
μz

χ̂†
νz

g+−(χ̂†)|G〉|M+−
μν 〉 (2- or 4-flux state),

(26)

where â
†
r denotes a fermion creation operator in the 2-flux

state |Rμ〉 and |M+−
μ 〉, |M+−

μν 〉 are the vacuum for matter
fermions. In our calculations, we consider the state with
topological label (+1,−1) for the ground state of nonlinear
response in the Abelian and non-Abelian phases.

A. Results

The Fourier transform of two-dimensional nonlinear mag-
netic susceptibilities, χ (3),z

zzz (ω2, ω1, 0) and χ (3),z
zzz (ω2, 0, ω1),

are shown in Fig. 3 for a system with (33 × 33) unit cells,
Jx = Jy = Jz = J = 1 and K = 0.2. We use the fast Fourier
transformation to obtain the Fourier spectrum from time do-
main [74]. In the non-Abelian phase of the model, the energy
of a flux state depends on the distance between its vortices
[22,75]; accordingly the states |Q1μ〉 in the nonlinear response
can be classified into three classes: 4-adjacent, 2-nonadjacent,
4-far-separated, as depicted in the middle panel of Fig. 3.
By considering the contribution of states in each of these
classes individually, we can determine the origin of sharp
peaks in the observed response. The origin of each peak in
the response in terms of the mentioned classes is indicated
by the corresponding arrows in the middle panel of Fig. 3. A
black arrow pointing to a spot in response stipulates the origin
of that signal comes only from the mentioned excitations,
while the dashed arrow indicates an excitation which has the
main contributions to the signal. The observation of peaks
corresponding to flux sectors with 4-adjacent, 2-nonadjacent,
and 4-far-separated fluxes is a new signature of flux excita-
tions that does not appear in the linear responses. Due to
the fact that the extended model has a gapped spectrum, a
system with (33 × 33) unit cells is large enough to reach the
thermodynamic limit for K = 0.2. The finite-size effects are
discussed in the Appendix (see Fig. 7), where we present
the difference between physical responses in Fourier space
for different system sizes. As the system size increases to
L = 33, the aforementioned difference becomes almost zero,
which convinces us to reach enough large system sizes. The
three energy scales �1, �2, and δ can be extracted from the
nonlinear response, as depicted in Fig. 3,

�1 = (E (4-far) − E (0) ) − (E (2-nonadj) − E (0) )

= E (4-far) − E (2-nonadj),

�2 = E (4-adj) − E (0),

δ = (
ε

(2)
1 + E (2) − E (0)

) − (
E (4-far) − E (2) − ε

(2)
1

) ≈ 2ε
(2)
1 ,

(27)

where E (4-adj), E (2-nonadj), and E (4-far) are the ground-state
energy of the flux states depicted in the middle of Fig. 3.
Moreover, ε

(2)
1 is the in-gap energy of two-adjacent flux

state. For the considered parameters in Fig. 3 we obtain
(�1,�2, δ) = (0.434, 0.894, 0.758). The signature of an in-
gap bound state δ can be also detected in the linear response as
a sharp peak in the dynamical spin structure factor [26], while
�1 and �2 are new signature of flux states of the non-Abelian
anyons, which appear only in the nonlinear responses.

We have also obtained the nonlinear response of the
Abelian phase. The Fourier transform of the third-order sus-
ceptibilities for the Abelian phase is presented in Fig. 4. In all
plots of Fig. 4 we keep Jx = 1 and K = 0.2, the couplings in
Figs. 4(a) and 4(b) are J = Jy = Jz = 0.3 and the system has
N = 44 × 44 unit cells, while in Figs. 4(c) and 4(d) we have
J = Jy = Jz = 0.05 and N = 28 × 28 unit cells.

We observe weak diagonal signals (the first and third quad-
rants) and strong shifted diagonal signals (the second and
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FIG. 3. Two-dimensional nonlinear response in frequency domain at the isotropic point (Jx = Jy = Jz = 1) in the non-Abelian phase with
K = 0.2. (a) χ (3),z

zzz (ω2, ω1, 0). (b) χ (3),z
zzz (ω2, 0, ω1). The dashed arrow indicates that the main contribution to the signal magnitude comes from

the corresponding flux states. The solid arrows indicate that the signal comes only from the corresponding states. The black dots in the (4-far)
class in the middle panel mean that the flux separation is equal or more than two plaquettes. The maximum signal peak is normalized to 10.

fourth quadrants) in Fig. 4(b) for J = 0.3 in χ (3),z
zzz (ω2, 0, ω1).

The diagonal signals come from the R(4),z
zzz (ω2, 0, ω1) ex-

pression, in which there are two delta functions with peak
frequencies:

ω1 = E0 − E2 − ε(2)
r , ω2 = E0 − E2 − ε(2)

p , (28)

where ε
(2)
r/p are the matter excitations in the 2-flux state

|R〉/|P〉. Whenever |R〉 = |P〉, there is a constructive interfer-
ence for matrix elements [51], which leads to the diagonal
signal (nonrephasing signal) ω1 = ω2. Moreover, the expres-
sion R(2,3),z

zzz (ω2, 0, ω1) is responsible for the shifted diagonal
signals, which contains two peaks at

ω1 = E2 − E0 + ε(2)
p , ω2 = E4 − E2 − ε(2)

r . (29)

This leads to the strong streak signal (rephasing signal) ω1 +
ω2 = E4 − E0 for |R〉 = |P〉 due to constructive interference.
This signal intercepts ω2 axis at E4 − E0.

However, in Fig. 4(d), at J = 0.05 the diagonal signal does
not show up and the shifted diagonal signal is very weak,
where only sharp spots appear in the responses. To investigate

this difference, we examine the absolute value of 〈Rμ|Ẑμ|G〉
as a relevant matrix element to the nonlinear response versus
J within the single matter approximation, for the three excited
states labeled by r = 1, 2, 3. The excited states are expressed

by |R(r)
μ 〉 = Ŝχ̂†

μz
g+−(χ̂†)â

†
r |G〉|Mμ

+−〉 as given in Eq. (26).
A simple expression for this matrix element is given in
Appendix B. Figure 5(a) shows the first matter eigenvalue ε

(0)
1

in the 0-flux state |G〉 as well as |〈R(r)
μ |Ẑμ|G〉| for r = 1, 2, 3

corresponding to the lowest excitation modes ¯̂a†
1, ¯̂a†

2, and ¯̂a†
3 in

the two-flux state |R(r)
1 〉 and their corresponding eigenvalues

ε
(2)
1 , ε

(2)
2 , and ε

(2)
3 . The coupling J in Fig. 5(a) varies from 0

to 1, which is shown by the dotted white path in Fig. 5(b). We
anticipate that in the Abelian phase for K = 0.2, the diagonal
and shifted diagonal signals to appear in the range 0.1 < J <

0.5 because low-energy excitation modes have almost equal
contributions to the response, which leads to a continuum of
spots. However, for 0 < J < 0.1, the excitation mode r = 1
has the dominant matrix element compared with the other
excitation modes. Hence, the main contribution comes from
r = 1 and, as a result, we only observe sharp spot in the

FIG. 4. Two-dimensional nonlinear susceptibilities in frequency domain at an anisotropic point in the Abelian phase with K = 0.2. (a)
χ (3),z

zzz (ω2, ω1, 0) and (b) χ (3),z
zzz (ω2, 0, ω1) with Jx = 1, Jy = Jz = 0.3. (c) χ (3),z

zzz (ω2, ω1, 0) and (d) χ (3),z
zzz (ω2, 0, ω1) with Jx = 1, Jy = Jz = 0.05.

In (b) and (d) the shifted diagonal signals intercept ω1 and ω2 axes at |E4 − E0| = 0.276 and 0.125, respectively. The magnitude of the
maximum peak of susceptibility in all plots is normalized to 10.
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FIG. 5. (a) The evolution path versus J for the lowest eigenvalue
in the 0-flux sector (ε(0)

1 ), 2-adjacent flux sector (ε(2)
r ), and the ma-

trix element |〈R(r)
μ=1|Ẑμ=1|G〉| for the three lowest excitation modes

r = 1, 2, 3 in the two-flux state |R(r)
1 〉. By increasing the size of

the system, the fermionic gap ε
(0)
1 is closed at the phase transition

point J = 0.5 in (a). These presented data come from a system with
L1 = L2 = 56, M = 0. (b) The phase diagram of extended Kitaev
model in the plane Jx + Jy + Jz = const, where the dotted white line
shows the evolution path of part (a).

response function. According to Fig. 5(a), we anticipate that
in the non-Abelian phase for K = 0.2 and J > 0.6, the pattern
of nonlinear spectrum is formed by sharp spots, similar to
what we see in Fig. 3 for the isotropic case. We have plotted
the nonlinear response along the white path of Fig. 5(b) for
several values of J in Fig. 8 of Appendix D, which justifies
our statement. For details, see Appendix D.

The presence and absence of streak signals in the nonlinear
response of the Abelian phase of EKM can also be understood
in terms of an effective theory where Jx 
 Jy, Jz, K . Deep
in the Abelian phase [close to the corners of the triangle in
Fig. 5(b)], the effective Hamiltonian of EKM is the Kitaev
toric code, where the first nonzero term appears in the second-
order perturbation theory (see Appendix E). The toric code
has sharp charge (e) and flux (m) excitations without any
dispersion. Therefore, it is reasonable to observe sharp peaks
in the nonlinear response of Figs. 4(c) and 4(d). However, by
digressing from the toric code limit (away from the corners),

the excitations become dispersed and the streak signals appear
as discussed earlier and presented in Figs. 4(a) and 4(b).

V. DISCUSSIONS AND CONCLUSIONS

We numerically studied the nonlinear response of extended
Kitaev model in its Abelian and non-Abelian phases by us-
ing two-dimensional coherent spectroscopy. The numerical
computations are restricted to finite systems with periodic
boundary conditions with the lattice geometry, which has been
introduced in Ref. [65] in order to explicitly determine the
physical and unphysical states of the Kitaev solution. This is
important because physical quantities must be calculated in
the physical subspace.

The nonlinear response of the pure Kitaev model at the
isotropic point [51] has diagonal and shifted-diagonal streak
signals in the 2D frequency space ω1-ω2; however, in the
extended Kitaev model, these streak signals are very weak
and practically no longer exist, where only sharp spots are
seen in the response. The sharp spots are only due to flux
excitations and in-gap bound states. Away from the triangu-
lar phase boundary in the non-Abelian phase including the
isotropic point of the extended Kitaev model we expect similar
sharp spots in the nonlinear response. Distinct signatures of
different flux excitations can be discerned within the nonlinear
spectroscopic approach. These features of flux excitations can
not be observed in the linear response.

In the Abelian phase, distinct signatures of fractionalized
quasiparticles appear in the nonlinear response. For two sets of
parameters Jy = Jz = 0.3 and Jy = Jz = 0.05 with Jx = 1 and
K = 0.2, we obtain relatively different nonlinear responses.
In the former case, there are strong streak signals which are
signatures of dynamical Majorana fermions (ĉi) in addition
to their ω1 and ω2 intercepts as indications of nondynamical
Majorana fermions (b̂x

i , b̂y
i , b̂z

i ). While in the latter case, where
one of the Kitaev exchange couplings is much stronger than
the others, the streak signals are very weak and only sharp
spots show up. The mentioned sharp spots are signature of an
effective behavior in terms of conventional toric code. It looks
like a crossover between two different dynamical responses in
the Abelian phase.

The general form of our presented results is similar to the
nonlinear spectroscopic fingerprints of gapped spin liquids,
which have been reported in Ref. [52]. The difference stems
from the fact that in the EKM there are two types of excita-
tions, flux excitations (similar to e and m excitations in toric
code model) and matter excitations that change energy scales
and shift the sharp spots in the responses. If we ignore the
matter excitations in our calculations, for instance discarding
ε

(2)
r/p in Eq. (29), we will obtain the same responses as in Ref.

[52]. It has to be stressed that the time-reversal symmetry is
broken in EKM in contrast to the models considered in Ref.
[52].

The nonlinear responses presented in this work may be
applicable to Kitaev quantum spin-liquid candidates in weak
magnetic fields. We did not take into account the effect of
finite temperature, disorders, and interactions that could be

134404-7



M. KAZEM NEGAHDARI AND ABDOLLAH LANGARI PHYSICAL REVIEW B 107, 134404 (2023)

relevant to explain experimental results, which are proposed
for future works.
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APPENDIX A: THE QU MATRIX

In order to specify the physical and unphysical states by
determining the sign of the D in Eq. (20), we first construct
the Qu matrix. This is achieved by using the Bogoliubov trans-
formation U that diagonalizes the Hamiltonian in Eq. (13) as
follows:

U

(
h �

−�∗ −h∗

)
U † =

(
ε 0
0 −ε

)
,U

(
f̂
f̂ †

)
=

(
â
â†

)

�⇒ Ĥu =
∑

n

εnâ†
nân − 1

2

∑
n

εn,

(A1)

where ε is a diagonal matrix with entries εn � 0. Because â
and â† are Hermitian conjugates of each other, the matrix U
can be generally written as

U =
(

X ∗ Y ∗
Y X

)
. (A2)

The matrix U can be derived from eigenvectors of the Hamil-
tonian. Suppose that V n is an eigenvector of the Hamiltonian
with eigenvalue εn,

V n =
(

xn

yn

)
, (A3)

where xn and yn are N-dimensional column vectors. Due to the
particle-hole symmetry �Ĥu�

−1 = −Ĥu, Wn = �Vn is also
an eigenvector for the Hamiltonian with the eigenvalue −εn,

W n = �V n = (τxK )V n =
(

0 1
1 0

)
V n∗ =

(
yn∗

xn∗

)
. (A4)

Using the fact that the eigenvectors of Ĥu are the column
vectors of U −1, we have

U −1 =
(

x1 x2 . . . xN y1∗
y2∗

. . . yN ∗

y1 y2 . . . yN x1∗
x2∗

. . . xN ∗
)

.

(A5)

Since U is a unitary matrix, the matrices X and Y in (A2) are
given as follows:

X = (x1 x2 . . . xN )T , Y = (y1y2 . . .yN )T . (A6)

The physical and unphysical states are determined by specify-
ing the sign of D̂ operator D̂ = (−1)θ det(Qu)π̂χ π̂a, where

π̂χ = π̂χx π̂χy π̂χz ,

π̂χα
=

N−1∏
μ=0

(1 − 2χ̂†
μα

χ̂μα
) =

N−1∏
μ=0

ib̂α
μAb̂α

μB =
∏
μ

ûμα
,

π̂a =
N−1∏
k=0

(1 − 2â†
k âk ) = (−1)

∑
k â†

k âk , (A7)

and Qu is an orthogonal transformation defined in Ref. [65] as
given below,

(b̂′
1, b̂′′

1, b̂′
2, b̂′′

2, . . . , b̂′
N , b̂′′

N ) = (ĉ1, ĉ2, ĉ3, . . . , ĉN )Qu, (A8)

where b̂′ and b̂′′ are fermion operators that are related to the
canonical fermion operators according to the relations

âk = 1

2
(b̂′

k + ib̂′′
k ), â†

k = 1

2
(b̂′

k − ib̂′′
k )

�⇒
(

â
â†

)
= 1

2

(
1 i
1 −i

)(
b̂′

b̂′′

)
. (A9)

To find the Qu matrix, we need to find the transformation
between b̂′/b̂′′ and ĉA/ĉB fermion operators. First, we use
Eqs. (12) and (16),(

â
â†

)
= U

(
f̂
f̂ †

)
,

(
f̂
f̂ †

)
= 1

2

(
1 i
1 −i

)(
ĉA

ĉB

)

�⇒
(

â
â†

)
= 1

2
U

(
1 i
1 −i

)(
ĉA

ĉB

)
. (A10)

Then, we take into account Eqs. (A9) and (A10), which lead
to (

b̂′

b̂′′

)
= Q′

u

(
ĉA

ĉB

)
, Q′

u =
(

Re[A] Im[B]
− Im[A] Re[B]

)
, (A11)

where A = X + Y and B = X − Y . According to the labeling
of fermion operators within each unit cell we have

(
ĉA

ĉB

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ĉ2

ĉ4
...

ĉ2N

ĉ1

ĉ3
...

ĉ2N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Rc

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ĉ1

ĉ2

ĉ3

ĉ4
...
...
...

ĉ2N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Rc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 . . . 0 0 0
0 0 0 1 0 . . . 0 0 0

...

0 0 0 0 0 . . . 0 0 1
1 0 0 0 0 . . . 0 0 0
0 0 1 0 0 . . . 0 0 0

...

0 0 0 0 0 . . . 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2N×2N

,

(A12)
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FIG. 6. Gauge configuration for two degenerate ground states with different topological labels for a finite system with L1 = L2 = 4 and
M = 0. (a), (b) Show the gauge configuration that we adopted for g+−(χ̂ †)|G〉 and g−+(χ̂ †)|G〉, respectively. The black string links represent
the topological loop operators WL1 and WL2 , which are reduced to the product of u′

i js on these links in a fixed gauge configuration. The red links
show the position of links, where ui j = −1.

(
b̂′

b̂′′

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b̂′
1

b̂′
2
...

b̂′
N

b̂′′
1

b̂′′
2
...

b̂′′
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Rb

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b̂′
1

b̂′′
1

b̂′
2

b̂′′
2
...
...

b̂′
N

b̂′′
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Rb =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 . . . 0 0 0
0 0 1 0 0 . . . 0 0 0

...

0 0 0 0 0 . . . 0 1 0
0 1 0 0 0 . . . 0 0 0
0 0 0 1 0 . . . 0 0 0

...

0 0 0 0 0 . . . 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2N×2N

. (A13)

Finally, using Eqs. (A11), (A12), and (A13), we arrive at the
desired relation

(b̂′
1, b̂′′

1, . . . , b̂′
N , b̂′′

N ) = (ĉ1, ĉ2, ĉ3, . . . , ĉ2N )
[
R−1

b Q′
uRc

]T

�⇒ Qu = [
R−1

b Q′
uRc

]T
. (A14)

With this important matrix we can find the parity π̂c =∏N
μ=1 iĉμAĉμB in terms of the parity of canonical matter

fermions [65]:

π̂c = det(Qu)π̂a. (A15)

APPENDIX B: GAUGE CONFIGURATIONS, MATRIX
ELEMENTS, AND R(l ),z

zzz CORRELATION FUNCTIONS

According to Sec. III B, the ground state |G〉 in the non-
Abelian phase has a threefold degeneracy on a torus with
topological labels (+1,−1), (−1,+1), and (−1,−1). Fig-
ures 6(a) and 6(b) show the gauge configurations g+−(χ̂†)|G〉
and g−+(χ̂†)|G〉 for a finite system; designed by red links
u〈i j〉α = −1. The gauge configuration g−−(χ̂†)|G〉 is obtained
by taking into account the gauge configurations presented

in Figs. 6(a) and 6(b), simultaneously, i.e., g−−(χ̂†) =
g+−(χ̂†)g−+(χ̂†).

To calculate the matrix elements in the correlation func-
tions R(l ),z

zzz , it is necessary to find the relation between the
matter ground states of different flux sectors. Let |MF1〉 and
|MF2〉 be the ground states of flux sectors F1 and F2, respec-
tively. Creation and annihilation operators in each sector are
given as follows:

(
âF1

â†
F1

)
=

(
X ∗

F1
Y ∗

F1

YF1 XF1

)(
f̂
f̂ †

)
,

(
âF2

â†
F2

)
=

(
X ∗

F2
Y ∗

F2

YF2 XF2

)(
f̂
f̂ †

)
,

(B1)

which are related to each other by the transformation

(
âF2

â†
F2

)
=

(
X∗

F2,F1
Y∗

F2,F1

YF2,F1 XF2,F1

)(
âF1

â†
F1

)
,

(X∗
F2,F1

Y∗
F2,F1

YF2,F1 XF2,F1

)

=
(

X ∗
F2

X T
F1

+ Y ∗
F2

Y T
F1

X ∗
F2

Y †
F2

+ Y ∗
F2

X †
F1

XF2Y
T

F1
+ YF2 X T

F1
XF2 X †

F1
+ YF2Y

†
F1

)
. (B2)
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According to Refs. [26,66], the two ground states obey the
relation

|MF2〉 =
√∣∣ det

(
XF2,F1

)∣∣e− 1
2 â†

F1
FF2 ,F1 â†

F1 |MF1〉,
FF2,F1 = X∗−1

F2,F1
Y∗

F2,F1
. (B3)

Moreover, we need to write Ẑμ in terms of gauge and matter
Majorana fermions

Ẑμ = σ̂ z
μA + σ̂ z

μB = ib̂μAĉμA + ib̂μBĉμB = χ̂†
μz

(iĉμA + ĉμB)

+ χ̂μz (iĉμA − ĉμB). (B4)

We present the details of calculations of the matrix ele-
ments that we need to obtain the response in the Abelian and
non-Abelian phases. With the gauge configurations that we
adopted for the ground states in these phases, the matrix ele-
ments will have the same structures and relations. Therefore,
we focus on the states in Eq. (26). For simplicity, we ignore
the index +− on these states. The matrix element 〈Pμ|Ẑμ|G〉
in the matter sector is reduced as

〈Pμ|Ẑμ|G〉 = 〈Mμ|âr (iĉμA + ĉμB)|M〉. (B5)

By using Eqs. (A10) and (B2), we write these operators in
terms of the canonical matter fermions in the 0-flux sector,

iĉμA + ĉμB = 2i
[
Y T

μsâs + X †
μsâ

†
s

]
,

âr = X∗
μ,rr′ âr′ +Y∗

μ,rr′ â†
r′ . (B6)

Therefore,

〈Pμ|Ẑμ|G〉 = 2i
√| det(Xμ)|X †

μs 〈M|
[
1 − 1

2
ânF †

μ,nmâm + · · ·
]

× [X∗
μ,rr′ âr′ +Y∗

μ,rr′ â†
r′ ]|M〉,

= 2i
√| det(Xμ)|X †

μs

[
X†

μ + 1

2
(F ∗

μY†
μ − F †

μY†
μ)

]
sr

,

(B7)

and according to Eqs. (B2) and (B3), Fμ = X∗−1
μ Y∗

μ, Xμ =
XμX † + YμY †, andYμ = XμY T + YμX T . With the implemen-
tation of the identity F ∗

μY†
μ − F †

μY†
μ = 2(X−1

μ − X†
μ), we

arrive at the simple relation

〈Pμ|Ẑμ|G〉 = 2i
√| det(Xμ)|[X †X−1

μ ]μr . (B8)

By performing similar steps, we get

〈Rν |Ẑμ|Qμν〉 = 2i
√| det(Xν,μν )| [Y †

μνX−1
ν,μν]μr,

where Xν,μν = XνX †
μν + YνY †

μν. (B9)

The existence of translational invariance in the zero-flux
state |G〉 in the Abelian and non-Abelian phases allows us
to replace

∑
μν by N

∑
μ =1 δν,1 in Eq. (25). Finally, as an

example, one can arrive at the following summation for
R(1,2),z

zzz (τ2, τ1, 0):

R(1,2),z
zzz (τ2, τ1, 0) = N

∑
ν =1

ei[E (1ν )−E2]τ2

{
N∑

p=1

eiε(1)
p )τ1〈G|Ẑ1|P1〉〈P1|Ẑν |Q1ν〉

N∑
r=1

e−iε(1)
r (τ1+τ2 )〈Q1ν |Ẑν |R1〉〈R1|Ẑ1|G〉

+
N∑

p=1

eiε(ν)
r τ1〈G|Ẑν |Pν〉〈Pν |Ẑ1|Q1ν〉

N∑
r=1

e−iε(1)
r (τ1+τ2 )〈Q1ν |Ẑν |R1〉〈R1|Ẑ1|G〉

}
, (B10)

where E (1ν) and E2 are values of Eq. (17) for the state |Q1ν〉
and 2-flux state |P1〉, |Pν〉, |R1〉.

APPENDIX C: FINITE-SIZE EFFECTS

Here, we show that the finite-size effects in the nonlin-
ear responses are weak and a system size of 33 × 33 unit
cells (2178 spins) represent a reasonable result for the non-
linear susceptibilities in the thermodynamic limit. The top
row of Fig. 7 shows the difference value of the normal-
ized susceptibility χ (3),z

zzz (ω2, ω1, 0; L) for two different sizes.
Figure 7(a) represents the difference χ (3),z

zzz (ω2, ω1, 0; L =
15) − χ (3),z

zzz (ω2, ω1, 0; L = 7) and similar results have been
plotted in Fig. 7(b) for L = 27, 15 and Fig. 7(c) for L =
33, 27. The color bar shows a decrease in the absolute value
as the size increases, which justifies our claim. Similar val-
ues have been plotted in the bottom row of Fig. 7 for
χ (3),z

zzz (ω2, 0, ω1; L), where Fig. 7(d) shows the results for L =
15, 7, 7(e) for L = 27, 15, and 7(f) for L = 33, 27. The weak
finite-size effect is expected since the underlying system is
gapped.

APPENDIX D: RESPONSE FUNCTION VERSUS
EXCHANGE COUPLING

In order to further confirm our statement about the pres-
ence or absence of the streak signals in the Abelian phase of
our model (cf. the last part of Sec. IV A), we have plotted
the nonlinear susceptibility in Fig. 8 for several values of J
along the white path shown in Fig. 5(b). In these plots, J =
Jy

Jx
= Jz

Jx
and K = 0.2, the top panel shows χ (3),z

zzz (ω2, ω1, 0)
and the bottom panel represents χ (3),z

zzz (ω2, 0, ω1).It has to
be mentioned that the plots in Fig. 8 represent unnormal-
ized data that are indicated by their corresponding color bar,
which shows the evolution of the response function with
respect to J . The plots for J = 0.05 show sharp spots re-
vealing the contribution from a single excitation, while the
plots for J = 0.25, 0.45 represent streak signals of several
excitation modes. For the finite size of the underlying lat-
tice L1 = L2 = 28, the plots of J = 0.65 show the crossover
from the streak signals to sharp peaks of the flux excita-
tions in non-Abelian phase, where the latter become obvious
for J = 0.85.
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FIG. 7. The difference between susceptibilities at two different finite sizes of system at the isotropic point with K = 0.2. The top row shows
the results χ (3),z

zzz (ω2, ω1, 0; L2) − χ (3),z
zzz (ω2, ω1, 0; L1), for (a) L2 = 15, L1 = 7, (b) L2 = 27, L1 = 15 and (c) L2 = 33, L1 = 27. As the size of

the system is increased the difference of susceptibility at two successive sizes is reduced strongly. The bottom row exhibits similar results for
χ (3),z

zzz (ω2, 0, ω1; L2) − χ (3),z
zzz (ω2, 0, ω1; L1), where L2 and L1 are, respectively, (d) 15, 7, (e) 27, 15, and (f) 33, 27. Some streak signals can be

seen in the above plots. Although these signals are present in the response of Fig. 3 they are so weak that are revealed only by subtracting the
response at two successive system sizes.

APPENDIX E: EFFECTIVE HAMILTONIAN

Let us consider an extreme limit and assume Jx = Jy =
K = 0 in the EKM. For Jz > 0, the spin configurations in

which two spins on the z link are aligned up or down (| ↑↑〉
or | ↓↓〉) form the degenerate ground-state subspace with the
energy E0 = −NJz. The two-dimensional ground-state sub-

FIG. 8. The top and bottom panels show susceptibilities χ (3),z
zzz (ω2, ω1, 0) and χ (3),z

zzz (ω2, 0, ω1), respectively. They are unnormalized 2D
nonlinear response for several values of J = 0.05, 0.25, 0.45, 0.65, 0.85 along the white path of Fig. 5(b). In all plots the lattice geometry is
L1 = L2 = 28 and M = 0.
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FIG. 9. The strong links of EKM form an effective lattice in the large-Jz limit (Jz 
 Jx, Jy, K). (a) The large-z links are shown graphically
with thick gray bonds and T α

i
′s are Kitaev exchange interactions. (b) The gray circles represent the effective spins on the effective square lattice

constructed with the dashed lines. (c) The act of effective Pauli operators on an effective spin is shown schematically.

space (on each z link) can be considered as an effective spin
| ⇑〉 or | ⇓〉 on the lattice, which is shown in Fig. 9(b). The
effective Pauli matrices act on the effective spins as sketched
in Fig. 9(c). For nonzero values of Jx, Jy, and K , and in a
perturbative regime where Jx, Jy, K � Jz, the Hamiltonian of
the system is written as H = H0 + V ,

H0 = −Jz

∑
i∈z links

T z
i ,

V = −Jx

∑
i∈x links

T x
i − Jy

∑
i∈y links

T y
i − K

∑
〈ik〉α,〈k j〉β

γ⊥α,β

σ̂ α
i σ̂

γ

k σ̂
β
j ,

(E1)

where T α
i = σ̂ α

k σ̂ α
j . The three-spin interactions can also be

written in terms of T α
i

′s. For instance, consider the plaquette
p1 in Fig. 9(a), where all possible three-spin interactions are
expressed in the following,

− K
(
σ̂ x

1 σ̂ z
2 σ̂

y
3 + σ̂

y
2 σ̂ x

3 σ̂ z
4 + σ̂ z

3 σ̂
y
4 σ̂ x

5 + σ̂ x
4 σ̂ z

5 σ̂
y
6 + σ̂

y
5 σ̂ x

6 σ̂ z
1

+ σ̂ z
6 σ̂

y
1 σ̂ x

2

)
= iK

([
T x

1 T y
2

] + [
T y

2 T z
R

] + [
T z

R T x
3

] + [
T x

3 T y
4

]
+ [

T y
4 T z

L

] + [
T z

L T x
1

])
, (E2)

where we used the square brackets to indicate the distinction
between three-spin interaction terms and the interactions in
the first and second terms of V . Suppose that P0 and Q0 are the
projection operators onto the ground-state subspace and ex-
cited states of H0, respectively. By using the Brillouin-Wigner
perturbation approach the effective Hamiltonian of the system
with energy E ≈ E0 is

Heff = P0H0P0 + P0V P0 + P0V G′
0V P0 + P0V G′

0V G′
0V P0

+ · · · , (E3)

where G′
0 = 1

E0−H0
Q0 is the Green’s function.

The nth order of perturbation term (H (n)
eff ) along with some

of the interaction terms are given in the following,

H (1)
eff = 0, (E4)

H (2)
eff = const − K2

2Jz

∑
i

Qpi ;

[
T x

1 T y
2

][
T x

3 T y
4

]
and

[
T x

3 T y
4

][
T x

1 T y
2

]
, (E5)

H (3)
eff = const −

(
JxK2

4J2
z

+ JyK2

4J2
z

) ∑
i

Qpi ;

[
T x

3 T y
4

][
T y

2 T z
R

]
T x

1 , . . . , (E6)

H (4)
eff = const −

(
K4 + J2

x K2 + J2
y K2 + J2

x J2
y

16J3
z

) ∑
i

Qpi ;

[
T y

4 T z
L

][
T z

R T x
3

][
T y

2 T z
R

][
T z

L T x
1

]
,
[
T y

4 T z
L

][
T y

2 T z
R

]
× T x

3 T x
1 , T y

4 T x
3 T y

2 T x
1 , . . . , (E7)

where, for example, Qp1 = σ̂ z
2 σ̂ z

5 (σ̂ x
1 σ̂

y
6 )(σ̂ y

3 σ̂ x
4 ) will be equal

to τ̂ z
upτ̂

z
downτ̂

y
leftτ̂

y
right in terms of the effective Pauli matrices

on the plaquette p1 as shown in Fig. 9(b) [13]. Unlike the
pure KM, the first nonzero term in the perturbation expansion
appears at the second order since the three-spin interactions of
the EKM are made up of two Kitaev interactions (E2). With
an appropriate unitary transformation, Heff in terms of Q′

pis is
transformed into the Kitaev toric code [13].
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