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Spin-textured neutron beams with orbital angular momentum
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We present a rigorous theoretical framework underpinning the technique of spin-echo modulated small-angle
neutron scattering (SEMSANS), and show how the technique can be extended in order to generate spin-textured
neutron beams with orbital angular momentum (OAM) via birefringent neutron spin-polarization devices known
as magnetic Wollaston prisms. Neutron OAM beams are mathematically characterized by a “cork-screw” phase
singularity ei�φ about the propagation axis where � is the OAM quantum number. To understand the precise
relationship between the emergent OAM state and the variety of spin textures realized by various setups, we have
developed a path-integral approach that in the interferometric limit makes a judicious use of magnetic Snell’s
law. We show that our proposed technique produces a complex two-dimensional pattern of spin-OAM entangled
states which may be useful as a probe of quantum magnetic materials. We compare our path-integral approach to
the well-known single-path Larmor precession model and present a pedagogical derivation of magnetic Snell’s
law of refraction for both massive and massless particles based on Maupertuis’s action principle.
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I. INTRODUCTION

Spin texture is the emergent property of a physical system
in which the system’s spin is nontrivially coupled with its
other dynamical degrees of freedom, such as the position,
momentum, or orbital angular momentum (OAM); such a
correlation between the spin and OAM degrees of freedom
is called a spin-orbit coupling. These intricate correlations
(often leading to entanglement) between the spin and the
other degrees of freedom are responsible for a rich variety
of thermodynamic phases of matter in which, for example,
skyrmions and merons may materialize [1], thus providing a
basic platform for future applications in spintronics.

While conventional probes provide indirect signatures of
topological excitations, spin-textured beams of particles with
specific spin-orbit couplings (e.g., those with definite states
of OAM) are strongly desired because they may act as direct
probes of the target’s topology [2]. Beams with OAM have
been experimentally produced with photons [3–7], electrons
[8–10], positrons [11], and atoms [12] (see Refs. [13–16]
for some thorough reviews of OAM beams). The generation
of neutron OAM has been reported experimentally and/or
proposed theoretically using macroscopic spiral phase plates
[17], quadrupolar magnetic fields [18,19], room-temperature
triangular electromagnetic coils [20], forked diffraction grat-
ings [21], polarized helium-3 [22], aluminium prisms in a
nested loop interferometer [23], and strong static electric
fields via the relativistic Schwinger interaction [24]. How-
ever, it remains an experimental and technological challenge
to definitely demonstrate the production of OAM in neutron
beams: the usual optical methods do not work for a variety
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of reasons, primarily due to the weak interaction of neutrons
with matter [25]. See Refs. [26,27] for discussions on some
previous demonstrations of neutron OAM.

In this work, we propose a method of generating spin-
textured neutron beams, which carry OAM by using magnetic
Wollaston prisms (MWPs), devices that act as polarizing
neutron beam splitters [28] (optical Wollaston prisms were
used to generate photon OAM beams in Refs. [6,7]). With
the additional flexibility of tuning the various length scales
[29,30] associated to these spin textures, our beams have the
potential to become useful probes of microscopic correlations
in quantum materials.

An OAM state of a neutron is described by a phase ei�φ ,
where φ is the azimuthal angle about the axis of propagation
and � ∈ Z is the OAM quantum number. This azimuthal phase
leads to a number of interesting consequences. Firstly, the
azimuthal component of the probability current Jφ is nonzero:
for concreteness, in cylindrical coordinates (r, φ, z) we find

Jφ = h̄

m
Im(ψ∗∇ψ ) · φ̂ = h̄

mr
[Im( f ∗∂φ f ) + �| f |2], (1)

where m is the mass of the neutron, Im(·) denotes the imagi-
nary component, ψ = f (r, φ, z)ei�φ is the total wave function,
and ∗ signifies complex conjugation. When f �= f (φ) as
in the case of a paraxial beam (which can be written in
Laguerre-Gauss modes [3]), the azimuthal current is directly
proportional to the OAM quantum number. Therefore, we
expect some nonzero scattering signatures into channels that
emerge from the interaction between the neutron’s OAM and
the sample’s chiral structures or dynamics; for example, such
an off-axis current could cause superkicks, which are en-
hanced scattering events from processes that are kinematically
forbidden for beams without OAM [31]. See Ref. [32] for a
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discussion of the subtle physical properties of OAM states and
the interaction of OAM states with matter. Secondly, a neutron
in a pure OAM state must have intensity singularity along the
axis that defines its direction of travel to preserve the single
valueness of the wave function; because of this property the
phase ei�φ is generally referred to as a phase singularity.

In this paper, we investigate the preparation and propa-
gation of a spin-textured neutron beam, and show how the
spin texture relates to the OAM content of the beam. Neu-
tron beams with tunable OAM offer a unique opportunity to
observe quantum interference that is otherwise inaccessible in
the traditional treatment of plane-wave scattering [33]. In ad-
dition, the OAM distinguishable subsystem could in principle
be entangled with the other degrees of freedom of the neutron,
such as its path, spin, or energy. This expansion of available
probe subsystems enhances the idea of exploiting the advan-
tages of quantum metrology and sensing by observing unique
scattering signatures from entangled matter, as discussed in
previous work for the spin-path entanglement case [34].

We also show how the uniform magnetic field regions
produced by MWPs generate spin-textured neutron beams.
Specifically, we propose to use multiple pairs of MWPs in the
spin echo modulated small angle neutron scattering (SEM-
SANS) configuration (see Sec. II). Previous work carried out
a theoretical analysis of neutron interferometers based on
MWPs to test the violation of Bell-type contextual inequalities
[35], but that analysis is not sufficient to describe the SEM-
SANS setup: we must extend that result to include situations
where the entangled neutron beam can be focused on desired
spatial planes by precisely tuning the magnetic fields inside
the MWPs.

Starting from a path-integral representation of the dy-
namics in Sec. II, we approximate the neutron’s full time
evolution using the interferometric limit, in which we only
consider the two dominating spin-correlated classical paths.
We explicitly show that this limit preserves unitarity in Ap-
pendix A. Our theoretical framework includes both the kinetic
and potential energy contributions to the neutron’s overall
accumulated phase, which stands in stark contrast with the
standard single-path Larmor precession approximation where
only the potential energy along a single neutron path con-
tributes to the accumulated phase. Essentially, the single-path
approximation neglects all refractive effects of the neutron
trajectory. On the other hand, the path integral in the two-path
interferometric limit includes the inequivalent refraction of
the two spin states of a spin-1/2 particle when subject to a
sharp boundary between regions of magnetic field (for justi-
fication and discussion of the single-path approximation, see
Ref. [36]). This difference in refraction angle is epitomized by
the known magnetic Snell’s law, which can be derived gener-
ically for any particle including neutrons from a relativistic
action principle, as shown in Appendix B. The kinematics
and ray geometry for focused beams in the SEMSANS con-
figuration are described for various configurations of pairs of
MWPs in Sec. III; higher order contributions are provided
in Appendix C. In Sec. IV, we develop the interferometric
quantum dynamics of SEMSANS. Central to our derivation is
an expansion over the refraction and beam divergence angles,
which clarifies how the usual single-path Larmor precession
approach can be recovered as the lowest-order expansion of

FIG. 1. (a) Perspective view of a magnetic Wollaston prism
(MWP). Two high-temperature superconducting (HTS) films are not
shown (front and side films). (b) Top-down plan view of a MWP.
The incident superposition state |↑x 〉+|↓x 〉√

2
(purple path) is coherently

refracted in two separate directions (orange and blue path) at the
interface between the two magnetic field (±Bx) regions. The outgo-
ing neutron is in a mode-entangled (i.e., intraparticle-entangled) state
between the path and spin subsystems.

our calculation. More importantly, we highlight the refractive
corrections that are missed by the single-path method. Finally,
after developing the mathematical formalism to characterize
MWP pairs, we explain in Sec. V how to combine the prisms
to generate a variety of spin textures and OAM. We show in
Sec. V C that our MWP setup can produce regions on the
detector where the � = 0,±1 OAM states dominate in the
OAM density.

II. MAGNETIC WOLLASTON PRISMS

A. Working principles of SEMSANS

A MWP consists of two uniform triangular prisms contain-
ing oppositely directed magnetic fields as shown in Fig. 1.
High-temperature superconducting (HTS) wire coils wound
around soft iron pole pieces generate a magnetic field of up
to 150 mT in each triangular region. HTS films encapsulate
the device, and a similar film separates the two triangular
field regions; these films contain the naturally diverging mag-
netic field, producing a relatively homogeneous magnetic field
with sharp boundaries. Two MWPs separated by an additional
rectangular region of magnetic field form a MWP pair. The
magnetic field strength and orientation can be independently
tuned in each triangular field region as well as in the inter-
posed rectangular region. The MWP acts like a polarizing
beam splitter as long as the incoming neutron is not polarized
parallel or antiparallel to the field direction inside the MWP.
That is, each MWP is a spin-path entangler that transver-
sally separates the incoming neutron into two outgoing path
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FIG. 2. Plan view of the neutron paths through a pair of MWPs; each prism is labeled with a subscript i = 1, 2. The rays in each subdiagram
represent the semiclassical evolution of a single (representative) incoming neutron ray, characterized by a single plane wave component
of the individual neutron’s wave packet. The spatial extent of the neutron wave packet is determined by the transverse and longitudinal
intrinsic coherence lengths (not shown). (a) The parallelogram geometry without beam divergence, (b) the parallelogram geometry with beam
divergence, and (c) the triangular geometry with beam divergence. The interferometric limit is represented by the fact that we can individually
trace the correlated paths of the |↑x〉 and |↓x〉 spin states (blue and red lines). The origin of the coordinate system is taken to be the center
of the first MWP as indicated by the red dot in each subfigure. The hypotenuse superconducting film of each MWP is assumed to be at
45◦ relative to the side film, and a and δ12 are respectively the edge length of each MWP and the distance between the outside edges of
the two MWPs. The distances between the focusing point and centers of the MWPs are denoted L1 and L2. The incoming spin state is
defined as |ψ s

in〉 = cos(θin/2)|↑z〉 + eiφin sin(θin/2)|↓z〉. To O[α2
i , αiϕ, ϕ2], the refraction at the orthogonal MWP boundaries is inconsequential

to the final results obtained in Secs. III and IV; thus for the sake of clarity, these deflection angles are omitted in the diagram. Finally,
we note that the beam divergence ϕ and deflection angles αiσ , σ = ↑, ↓, in this diagram are greatly magnified compared to experimental
values.

states, each labeled by a particular spin state [35]. This mode
entanglement (i.e., intraparticle-entanglement) has been ex-
perimentally demonstrated for neutrons by measurements of
Bell-like contextuality inequalities with its concomitant vio-
lations [29,30,37–39].

MWPs are often used in spin echo small angle neutron scat-
tering (SESANS) and SEMSANS. In SESANS, a MWP pair
(the first arm) splits the neutron state into two parallel path
states that impinge on the sample; the distance between the
mode-entangled spin-path states is called the entanglement
length ξ (also called the spin echo length). The entanglement
length when in the SESANS focusing condition (all field
magnitudes equal) is given by

ξSE = m|μ|λ2

π2h̄2 B|L1 − L2|, (2)

where λ is the wavelength of the neutron; B the magnetic
field magnitude in each triangular field region; |L1 − L2| the

distance between MWPs (see Fig. 2); and μ = γμN < 0 the
magnetic moment of the neutron, with μN = eh̄/(2mp) being
the usual nuclear magneton, mp the mass of the proton, and
γ = −1.913, half the g-factor of a free neutron. After the
sample, another set of prisms (the second arm) recombines the
two path states and the depolarization of the measured signal
gives the density-density correlation function of the sample
[40,41]. This configuration was described as a quantum circuit
in our previous work [35] which treated the MWPs as black
boxes, without considering the detailed dynamics of each
MWP, which is an acceptable approximation for describing
the SESANS configuration (see Sec. II B). The SESANS setup
is the neutronic analog of an optical Mach-Zehnder interfer-
ometer [42].

In SEMSANS, only a single MWP pair is required (the
sample is placed after the prism pair). However, unlike in
SESANS, the detailed dynamics cannot be ignored since the
second arm is no longer in perfect echo with the first, meaning
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that the two spin states will spatially interfere, thus generating
a pattern of interference fringes on the detector. This spatial
interference pattern from each single neutron is on the order of
the size of the wave packet. However, the interference pattern
observed at the detector is indeed macroscopic as the few
centimeter-width beam is made up of many such mutually
incoherent neutrons.

Usually, the two path states are focused in space at the
detector plane, although the states can also be focused at
any point after the second prism. The SEMSANS focusing
condition is achieved by choosing

B1L1 = B2L2, (3)

where B1, B2 � 0 are the field magnitudes in the first and sec-
ond MWPs, and L1, L2 are the distances between the first and
second MWPs to the detector, respectively. The entanglement
length in SEMSANS is a function of the distance Ls between
the detector and the position of the neutron after exiting the
second MWP:

ξSEM = m|μ|λ2

π2h̄2 |B1 − B2|Ls, (4)

where |B1 − B2| is the difference between the magnetic field
magnitudes in the first and second prism [43]. We note that
the entanglement length, ξSEM = (λ/p)Ls, is inversely pro-
portional to the fringe period p on the detector

p = π2h̄2

m|μ|λ|B1 − B2| . (5)

The fringe pattern of the modulated neutron intensity is
the fundamental observable in a SEMSANS experiment: the
change of the amplitude of the fringe pattern due to scattering
from the sample is enhanced when the entanglement length
is close to the correlation length of the sample. More specif-
ically, the ratio of the fringe amplitude of the scattered and
unscattered beam gives the sample’s correlation function [44].
SEMSANS has already successfully measured the correlation
functions of many materials [45–47]. Both SEMSANS and
the closely related technique of grating interferometry are
examples of a neutronic Talbot-Lau interferometer, which has
both x-ray [48] and molecular [49] counterparts.

In the familiar single-path Larmor precession model, the
beam must be phase-focused to observe the intensity fringes:
each neutron measured at some pixel on the detector could
have taken a slightly different path through the instrument
due to the beam divergence and finite-sized source, so each
neutron measured at that pixel will have a slightly different
Larmor phase, which will result in a decrease of the fringe
visibility. We can improve the contrast of the signal (i.e.,
“focus” the measured fringe pattern on the detector) by re-
moving the beam divergence dependence in the Larmor phase
(at least to first order) with a certain choice of fields in the
MWPs [43]. This type of focusing involves an incoherent
ensemble of many neutrons. However, a single neutron must
also be geometrically focused such that the two separated
path states overlap at the detector; this type of focusing is
intrinsically different, as it involves the rays of the two cor-
related spin states of a single neutron. Geometric focusing is
a single-particle requirement that is similar to the photonic
ray-optics notion of focusing. Previously, it was assumed that

FIG. 3. The schematic for magnetic Snell’s law. Two scenarios
for the spin states are shown, with the red and blue lines denoting the
|↑x〉 and |↓x〉 states, respectively. Note that the deflection angles ασ

carry a sign indicating whether the deflection is towards (ασ < 0) or
away (ασ > 0) from the normal to the boundary.

the geometric focusing condition should agree with the phase
focusing condition, but as we will show later, this assumption,
which lies at the heart of the single-path Larmor precession
approximation, is only true to first order in neutron deflection
angle; see Fig. 3 and Eq. (17) for the definition of the spin-
dependent deflection angle.

Both SESANS and SEMSANS are methods of generating
a high-fidelity, structured beam of mode-entangled neutrons.
This work develops the mathematical framework that de-
scribes the spin-texturing and OAM state that can be produced
using extensions of the SEMSANS technique with focused
MWPs.

B. Path-integral in the interferometric limit

A mathematical framework appropriate for SEMSANS
must incorporate the possibility that a neutron may inter-
fere with itself at arbitrary spatial positions, depending on
specific experimental parameters. We will apply the usual
path-integral formalism to model SEMSANS (for a pedagog-
ical treatment of the path-integral, see Ref. [50]). A quantum
treatment of SESANS utilizing a finite-dimensional Hilbert
space of path and spin modes was developed previously [35],
but that treatment is insufficient to describe the spatial self-
interference aspect of SEMSANS. However, the full quantum
mechanical treatment involving an infinite number of paths
is still unnecessary due to the smallness of the neutron’s
transverse intrinsic coherence length compared to the trans-
verse dimensions of the MWPs (roughly 4 × 4 cm) and the
width of the neutron beam (typically 0.5–4 cm). Under these
conditions the phase imparted on a single neutron by the
MWPs is approximately constant across the neutron wave
packet.

The transverse and longitudinal intrinsic coherence lengths
are parameters that determine the size of an individual
neutron’s wave packet (e.g., the full width half maximum of
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a Gaussian wave packet). Shull originally reported a lower
bound of 21 microns for the transverse intrinsic coherence
length [51], which agrees with the result of 24 microns in
the measurement of diffraction from phase gratings in the
near-normal transmission geometry [52]. A recent experiment
in neutron reflectometry in the specular geometry has reported
an intrinsic coherence length of about 1 micron, but as dis-
cussed by the authors, this unexpectedly small result is most
likely due to the surface curvature of the grating samples [53].
Other experiments that measured the diffraction pattern from
a grating [54], a single-crystal Bragg prism [55], and a Fresnel
zone plate [56] report the transverse intrinsic coherence length
to be on the order of 100 microns.

On the other hand, experiments in traditional neutron inter-
ferometry have reported much smaller transverse coherence
lengths on the order of a few micrometers or less [57,58].
One would expect that the exact size and shape of the neu-
tron’s wave packet would depend on the specific method of
neutron preparation and its interaction with the various optical
elements (for example, the mosaicity of the crystal monochro-
mator or the shape and size of the neutron guides). However,
this discrepancy between the two sets of experimental data
could be resolved by separating the effects of beam coherence
and intrinsic coherence on the visibility of the experimentally
observed interference fringes.

As is well-known in classical optics, a totally incoherent
extended source of radiation can develop coherence after
propagation, an effect that is mathematically described by
the van Cittert-Zernike (VCZ) theorem, which in the far-field
form of the theorem relates the degree of coherence to the
Fourier transform of the intensity [59]. The VCZ theorem
has also been extended to matter waves, including neutrons
[60,61]. While the intrinsic coherence length is defined as
the characteristic size of the neutron wave packet, the beam
coherence is a measure of the spontaneous VCZ-like coher-
ence; in a simple single-slit geometry with uniform aperture
illumination by a completely incoherent source, the transverse
beam coherence length βt is defined as βt = d/(ka), where d
is the distance between the slit and the point of measurement
on the axis of propagation, k the magnitude of the neutron
wavevector, and a the width of the slit [62,63]. Therefore, the
intrinsic coherence can be loosely described as a “quantum”
effect, while the beam coherence could be considered more
“classical” in nature. However, this same effect that produces
coherence classically could also “enfeeble” the much larger
intrinsic coherence length associated with the size of the wave
packet, making the experimentally measured coherence length
appear much smaller than the intrinsic coherence length of
the neutron [64–66]. The general relationship between beam
and intrinsic coherence is more complicated, as the degree
of measured coherence can actually increase with increasing
classical uncertainty (i.e., a smaller beam coherence length),
a phenomena reminiscent of stochastic resonance [67].

As an aside, under the assumption of a stationary beam
(i.e., the beam is time-independent, so the density matrix
commutes with the Hamiltonian), it is not possible in general
to experimentally distinguish between a beam of plane waves
or a beam of wave packets if both ensembles overall have
the same energy spectra and uncertainties [68]. Results in
Ref. [68] do not apply if the observable that the experimenter

chooses to measure does not commute with the momentum
operator, or if other information about the initial preparation
of the wave packet beyond the spectra is known [69]. Al-
ternatively, one can consider a time-dependent, nonstationary
process, to measure the intrinsic coherence lengths [70], or
treat the scattering process using “energy-gated wave packets”
as described in Ref. [71]. Therefore, it is possible in principle
to decouple the effects of both the intrinsic and beam coher-
ence from an experimental measurement.

Although beam coherence is important experimentally, the
beam coherence has no effect on the final results of the
following quantum mechanical calculations as these results
apply to the mode-entangled states of a single neutron. How-
ever, one could calculate the beam coherence of our OAM
beam for a given experimental configuration as we report the
action of our proposed MWP setup on an incident neutron
with arbitrary initial wavelength, position, divergence, and
polarization. The primary limitation on the size of the beam
coherence is the neutron flux: βt is inversely proportional
to the beam-defining slit width, so a larger beam coher-
ence length requires a longer count time to attain reasonable
statistics.

Regardless of the outcome of the experimental discrepancy
of the size of the transverse intrinsic coherence length, our fol-
lowing theoretical results would still apply as the calculation
only assumes that the intrinsic coherence length is nonzero.
The necessity of this requirement is a subtle point: as we will
show later, taking into account the wave-packet nature of the
neutron is crucial in the path-integral in order to consistently
include the contributions from both the kinetic and potential
terms in the Hamiltonian in Eq. (7). Our calculation assumes
that the incoming state has sufficiently large coherence lengths
to observe interference fringes; we discuss these assumptions
in more detail in Sec. IV.

One can then consider an interferometric limit, where the
neutron spin-path states are constrained to the paths geomet-
rically determined by refraction; this limit is analogous to
the geometrical optics limit for photon beams. The interfer-
ometric limit is similar to what is called the “semiclassical
ray-tracing” approach used in Ref. [72], where each spin state
is treated as a separate plane wave, both of which propagate
independently through the magnetic field configuration. For a
general discussion of the duality between plane waves and ray
optics for matter waves including neutrons, see Refs. [73,74].
The interferometric limit amounts to a two-path approxima-
tion in which the spatial subsystem of a single neutron has
two available internal spin states; each path corresponds to
the classical trajectory taken by the eigenstate of the spin
subspace in the magnetic field (i.e., parallel and antiparallel
to the field). This two correlated-path regime is widely used
in traditional neutron interferometry where the neutron spin
states are separated by centimeters [75], while the separation
in our beams ranges from nanometers to microns [29,30].
We also assume pure transmission with no reflection in the
interferometric limit; although there is a very small reflec-
tion amplitude at the magnetic-field boundaries, the reflection
amplitude is heavily suppressed by the fact that the Zeeman
energy is much smaller than the neutron’s kinetic energy. We
show that the quantum mechanical nature of the neutron is
preserved even in the interferometric limit.
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Without loss of generality, we assume that the prisms’
magnetic fields are either aligned or antialigned along the x
axis, and that the neutron travels in the yz plane (see Fig. 2).
We split the time evolution operator into two stages, corre-
sponding to when the neutron is in each triangular field region.
The total time evolution operator for a single MWP is

Û MWP
x = Û ±

x Û ∓
x , (6)

where Û ±
x are time evolution operators in the corresponding

triangular field regions of the MWP, and the superscripts
designates the field’s orientation along the x axis. The Hamil-
tonians in each region are

Ĥ± = �p2

2m
− μ̂ · �B± = �p2

2m
∓ μσ̂xBx, (7)

where �p is the momentum of the neutron, Bx > 0 is the field
magnitude, σ̂x is the x Pauli operator with eigenvectors |σx〉,
and the symbol σ is an element of {↑,↓}. Explicitly, the time
evolution operators are

Û ±
x = exp

(
− i

h̄

∫ to

ti

dt Ĥ±
)

, (8)

where ti is the entrance time (incoming) and to is the exit time
(outgoing).

We now derive the time evolution operator for a single
triangular field region; without loss of generality, we take
�B+ = Bxx̂ with Bx constant and drop the superscript. A gen-
eral expression for Ûx can be written in the basis of the
incoming position state |�ri〉 and outgoing position states |�ro〉:

Ûx =
∫
R3

d�rid�ro

∑
σ=↑,↓

Aσ (�ro, �ri )|σx〉〈σx| ⊗ |�ro〉〈�ri|, (9)

where the cross terms such as |↑x〉〈↓x| vanish since |σx〉 with
σ ∈ {↑,↓} are the eigenstates of the Hamiltonian in Eq. (7).
Equation (9) has the path-integral interpretation that an out-
going neutron at position �ro has contributions Aσ from all
possible incoming states at �ri. The position states |�ri〉 and
|�ro〉 in Eq. (9) are respectively the incoming and outgoing
positions of an individual neutron’s wave-packet component.
The amplitudes Aσ are given by the matrix elements

Aσ (�ro, �ri ) = 〈�ro|〈σx|Ûx|σx〉|�ri〉

= 〈�ro| exp

(
− i

h̄

∫ to

ti

dt

( �p2

2m
− μσ Bx

))
|�ri〉,

(10)

where μ↑ = −|μ| and μ↓ = |μ|. To connect the fully
quantum-mechanical expression of Aσ to the interferometric
limit, we express the amplitude using the standard path-
integral formalism:

Aσ (�ro, �ri ) =
∫ �ro

�ri

Dr exp

(
i

h̄

∫ to

ti

dt Lσ (�r, �̇r)

)
, (11)

where Lσ is the Lagrangian for each spin state

Lσ (�r, �̇r) = 1
2 m�̇r 2 + μσ Bx, (12)

which is a quadratic function of �̇r. The measure Dr denotes
that the integral is taken over all possible paths from �ri to �ro.

The transition amplitude Aσ (�ro, �ri ) can be evaluated exactly to
yield

Aσ (�ro, �ri ) = N exp

(
i
m(�ro − �ri )

2

2h̄(to − ti )
− i�L,σ (to, ti )

)
,

with normalization N = (
m

i2π h̄(to−ti )

)1/2
and a magnetic-field

dependent phase

�L,σ (to, ti ) = −1

h̄

∫ to

ti

dt μσ Bx. (13)

The magnetic phase can be shown to reduce to the well-known
Larmor phase in the single-path approximation (for example,
see Ref. [36]). The amplitude for any path consists of a phase
and a normalization factor weighting the contribution of each
path. Instead of integrating over all possible neutron trajecto-
ries from �ri to �ro in Eq. (9), we will employ the interferometric
limit, a type of semiclassical approximation, which only con-
siders the two dominating and correlated paths for each of
the two spin states |σx〉. In physical terms, the interferometric
limit accounts for neutron refraction (but not reflection) at the
boundaries defined by the magnetic field discontinuities.

In reality, the amplitudes corresponding to the appropriate
classical paths from �ri to �rσ (�ri ) will dominate over the others
paths in the integral, with �rσ (�ri) determined from geomet-
ric considerations analogous to ray optics. This assumption
amounts to constraining the path integral to classical paths
�rσ (�ri) (straight lines in space-time neglecting gravity) for each
spin state. Mathematically, this approximation is equivalent
to inserting N−1δ(�ro − �rσ (�ri )) into Eq. (9), where N−1 is
the appropriate normalization factor that sets the magnitude
of the amplitude along the classical path to unity. Taking
this classical path constraint into account, the time evolution
operator of Eq. (9) simplifies to

Ûx =
∫
R3

d�ri

∑
σ=↑,↓

Aσ,cl(�rσ , �ri )|σx〉〈σx| ⊗ |�rσ (�ri)〉〈�ri|, (14)

with amplitudes along the classical paths Aσ,cl given by

Aσ,cl(�rσ , �ri ) = exp

(
i

[
�kσ · (�rσ − �ri )

2
− �L,σ (to, ti )

])
. (15)

Here we have defined the classical wave vector of each neu-
tron spin state as h̄�kσ = m( �rσ −�ri

to−ti
) = m�vσ , with �vσ being the

spin-orientation dependent classical velocity; this simplifica-
tion is possible because the Zeeman energy is constant inside
each triangular region. Notice that the amplitude Aσ,cl com-
prises both a kinetic phase term (i.e., the �kσ dependent phase)
and the magnetic field phase term. For more discussion on the
kinetic phase, see Appendix A.

In Eq. (15), we made use of the classical path and kinemat-
ics to express amplitudes in terms of spatial coordinates �rσ and
�ri. In the path-integral representation, it is implied that both
initial time ti and final time to are identical for the opposite-
spin paths. To determine these phases for the amplitudes in
Eq. (15), we must account for ray geometry and neutron kine-
matics (conservation of energy across boundaries) as shown
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in the next section. Finally, we note that the interferometric
limit preserves unitarity; for a proof, see Appendix A.

C. Magnetic Snell’s Law: Refraction

We now consider how discontinuous field boundaries affect
the neutron classical spin paths. As shown in Fig. 3, when
the neutron crosses the boundary of a field region, the corre-
sponding classical paths of the two spin states are refracted by
angles related by

sin θoσ = vi

voσ
sin θi =

(
1 + 2μσ (Bo + Bi )

mv2
iσ

)− 1
2

sin θi, (16)

where θi and θoσ are respectively the incoming and outgoing
angles of each spin state, Bo + Bi (with Bo, Bi � 0) is the field
discontinuity across the boundary, and viσ and voσ are respec-
tively the incoming and outgoing speed of the corresponding
spin state. For simplicity, we take the initial speed and angle
for both states to be the same. Following the standard defini-
tion, the refraction angles θoσ are defined relative to the normal
to the boundary between the two field regions.

This formula is the magnetic extension of Snell’s law in
the nonrelativistic limit; it can be derived from the variational
principle of least action subject to conservation of energy (see
Appendix B). Due to the smallness of the Zeeman energy
compared to the kinetic energy in the current generation of
MWPs, one can expand Eq. (16) in terms of the (small) de-
flection angle ασ = θoσ − θi from the incoming direction, and
so sin(θi + ασ ) ≈ sin θi + ασ cos θi. Therefore, we find that

ασ ≈ −μσ (Bo + Bi )

mv2
iσ

tan θi. (17)

III. KINEMATICS AND GEOMETRY FOR FOCUSED
BEAMS IN SEMSANS

As a neutron enters a triangular region with a different
field strength, its speed and magnetic Zeeman energy both
change due to the conservation of total energy (i.e., kinetic
plus potential). The neutron’s magnetic-field dependent speed
is given by

v±
iσ =

√
v2

0 + 2μσ B±
i

m
≈

(
1 ± μσ Bi

mv2
0

)
v0, (18)

where v0 is the initial speed of the neutron before entering the
MWP, the subscript i denotes which MWP is being consid-
ered, and the superscript ± denotes the corresponding field di-
rection where we have used the convention that Bi = |B±

i |�0.
Notice that Eq. (18) implies that the neutron’s two spin
states have different speeds. The underlying assumption in the
derivation of the SEMSANS quantum operator in Sec. IV is
that a neutron starting at t = ti will spread over a finite-size
region in space in the longitudinal (transverse) direction; this
spread is usually referred to as the longitudinal (transverse)
intrinsic coherence length. Hence, it is assumed that there are
points within the initial intrinsic quantum coherence volume,
corresponding to opposite spin projections, that will simulta-
neously arrive at the detector and interfere [50].

We will now consider the MWP arrangements displayed
in Fig. 2. We refer to the setup shown in Figs. 2(a) and 2(b)
as the parallelogram geometry and Fig. 2(c) as the triangular
geometry. At the hypotenuse interface inside a single MWP,
the neutron is refracted due to the discontinuity in magnetic
field direction [see Fig. 2(a)]. The two spin states diverge into
an upper and lower path, deviating from the angle π/4 by
±αiσ . According to the magnetic Snell’s law, Eq. (16), the
deflection angles of the two spin states at the first and second
interfaces are given respectively by

α1σ = − μσ (2B1)

m(v−
1 )2

tan
π

4

≈ − 2μσ B1

mv2
0

+ O
[(

μB1

mv2
0

)2
]
, (19)

α2σ = − μσ (−2B2)

m(v+
2 )2

tan

(
π

4
+ α1σ

)

≈2μσ B2

mv2
0

+ O
[(

μ

m

)2 B1B2

(v−
1 )2(v+

2 )2

]
, (20)

where for now we are assuming no beam divergence, ϕ = 0,
corresponding to the situation in Fig. 2(a); this assumption
implies that θi = π/4 at the first MWP hypotenuse interface.

In the subsequent calculation, we assume that the deflec-
tion angles at the boundaries are small, thus tan αiσ ≈ αiσ .
Because the only difference between the angles αi↑ and αi↓
is their sign, it is convenient to state results of our calculation
in terms of the magnitude of the angle, which we denote as

αi = |αiσ |. (21)

In the parallelogram geometry, when the incoming neutron
enters the first MWP with a divergence angle ϕ �= 0 in the yz
plane as shown in Fig. 2(b), the two spin paths are deflected
with angles

γ0σ =
(

1 + μσ B1

mv2
0

)
ϕ =

(
1 − α1σ

2

)
ϕ. (22)

The deflection angles at the first and second hypotenuse inter-
faces in the case of a divergent beam now become

γ1σ = − μσ (2B1)

m(v−
1 )2

tan

(
π

4
+ γ0σ

)
, (23)

γ2σ = μσ (2B2)

m(v+
2 )2

tan

(
π

4
+ γ0σ + γ1σ

)
. (24)

Hence, the angles that the two spin states make with the z
axis at the two hypotenuse interfaces are given respectively
by γ0σ + γ1σ and γ0σ + γ1σ + γ2σ .

To obtain focusing of the two spin paths in the triangular
geometry, the magnetic field orientations in the second MWP
need to be chosen as is indicated in Fig. 2(c). Furthermore,
since the refraction at field boundaries depends only on the
field discontinuity across the boundaries, the previous Eq. (24)
for the deflection angles γ2σ are changed to

γ2σ = −μσ (2B2)

m(v−
2 )2

tan
[π

4
− (γ0σ + γ1σ )

]
. (25)
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Now we are ready to derive the geometric focusing condition
for the SEMSANS configuration in the interferometric limit
for both MWP configurations.

A. Parallelogram geometry

We start by considering two MWPs of side length a sep-
arated by a distance δ12 with hypotenuse interfaces parallel
to each other as is shown in Fig. 2(a). For parallel incoming
rays (i.e., ϕ = 0), the incident angle θi for both spin states as
the neutron enters the first MWP is zero; thus no refraction
occurs, which leads to

y1σ = z1σ = y0, (26)

where (y0, z0) are the coordinates where the neutron enters the
first MWP and (y1σ , z1σ ) for σ ∈ {↑,↓} are the coordinates of
the two spin states at the first MWP hypotenuse (see Fig. 2).

To determine where the two spin states arrive at the second
MWP’s hypotenuse interface (y2σ , z2σ ), we set up the equa-
tions of lines with origin at the center of the first MWP. Thus
we need to solve the set of linear equations

y2σ − y1σ = tan α1σ (z2σ − y1σ ), (27)

y2σ = z2σ − a − δ12. (28)

Doing so, we find

y2σ = y0 + (a + δ12 − y0) tan α1σ

1 − tan α1σ

, (29)

z2σ = y0(1 − tan α1σ ) + a + δ12

1 − tan α1σ

. (30)

We have ignored the refraction as the neutron leaves the first
MWP and enters the second MWP because these refractive
corrections are of order α2

i .
To obtain the position where the two spin states’ paths fo-

cus on the detector, we establish the geometrical equations for
the two spin state paths after the hypotenuse interface of the
second MWP

y f − y2σ = tan (α1σ + α2σ )(z f − z2σ ). (31)

To second order in αi, we obtain the following result for the
focusing position (y f , z f ):

y f ≈ y0, (32)

z f ≈ y0 − (a + δ12)
α2

α1 − α2
. (33)

This result is equivalent to the focusing condition derived
by the single-path Larmor precession approximation given in
Eq. (3) by identifying z f − y0 = L1 and a + δ12 = L1 − L2;
in other words, the phase and geometric focusing conditions
are equivalent to first order in deflection angle. An important
physical consequence of Eq. (33) is that the two spin states

are spatially focused on a diagonal plane parallel to the two
hypotenuse interfaces. Finally, because the neutron beam is
only refracted in the yz plane, we have

x f ≈ x0. (34)

We can combine the geometry above and kinematics to
calculate the total time t f σ the neutron spin state starting
at (x0, y0,−a/2) with initial speed v0 takes to arrive at the
focusing plane. Using the time of flight tσ = Lσ /vσ , where Lσ

is the distance traveled by the spin state at a constant speed
vσ , one obtains to O[α2

i ]

t f σ = a(α1σ − 3α2σ ) − 2α2σ δ12

2v0(α1σ − α2σ )

− y0(α1σ − α2σ )(α1σ − α2σ − 1)

v0(α1σ − α2σ )
. (35)

We now extend our calculation to include beam divergence.
Generically, the neutron beam will have divergence angles
in both the yz plane (which we call ϕ) and the xz plane;
however, as shown in previous section, because our setup
of MWPs in Fig. 2(b) only changes the neutron trajectory
in the yz plane, it is sufficient to only consider the angle ϕ.
Calculations of (yiσ , ziσ ) can be carried out straightforwardly,
as in the previous section, with the additional consideration
of refraction happening at boundaries of the MWPs, since
we want corrections to O[α2

i , αiϕ, ϕ2]. We find the focusing
position (y f , z f ) to be

y f ≈ y0 + ϕ

(
y0 + a

2
− (a + δ12)

α2

α1 − α2

)
, (36)

z f ≈ y0 − (a + δ12)
α2

α1 − α2

+ ϕ

(
a

2
+ 2y0 − (a + δ12)

α2

α1 − α2

)
, (37)

where the coordinate y0 of the incoming neutron can be deter-
mined from the focusing position:

y0 ≈ y f − ϕ

(
y f + a

2
− (a + δ12)

B2

B1 − B2

)
. (38)

Including beam divergence, the time the neutron takes to
arrive at the focusing plane to O[α2

i , αiϕ, ϕ2] is

t f σ = a(ϕ + 1)(α1σ − 3α2σ ) − 2α2σ (ϕ + 1)δ12

2v0(α1σ − α2σ )

+ y0(α1σ − α2σ )(α1σ − α2σ − 2ϕ − 1)

v0(α1σ − α2σ )
. (39)

B. Triangular geometry

It is straightforward to carry out calculations in the same
spirit as in the previous section to obtain the following for the
focusing position (y f , z f ):

y f ≈ y0 + ϕ

(
a(α1 − 3α2)

2(α1 − α2)
− δ12α2

α1 − α2
+ y0(α1 + α2)

α1 − α2

)
, (40)

z f ≈ y0
α1 + α2

α1 − α2
− (a + δ12)α2

α1 − α2
+ ϕ

(
a
(
α2

1 + 6α1α2 − 3α2
2

)
2(α1 − α2)2

+ δ12α2(3α1 − α2)

(α1 − α2)2
+ 2y0

(
α2

1 − 4α1α2 + α2
2

)
(α1 − α2)2

)
. (41)
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Interestingly, the focusing plane for the triangular geometry
is different than for the parallelogram geometry, as the slope
is defined by the relative strength of the magnetic fields and
is no longer always at 45◦. We also note that if one neglects
the beam divergence ϕ and the initial position of the incoming
neutron y0, we obtain the focusing condition in Eq. (3) similar
to the parallelogram case; for a discussion of the difference
between the focusing conditions, see Sec. IV. Solving for neu-

tron’s incoming position y0 in terms of the focused position y f ,
we obtain

y0 ≈ y f − ϕ

(
a(B1 − 3B2)

2(B1 − B2)
− δ12B2

B1 − B2
+ y0(B1 + B2)

B1 − B2

)
.

(42)

The time the neutron takes to arrive at the focusing plane to
O[α2

i , αiϕ, ϕ2] is

t f σ = a(α1σ − 3α2σ )

2v0(α1σ − α2σ )
+ α2σ δ12

v0(α2σ − α1σ )
+ y0

(
α1σ + α2σ − (α1σ − α2σ )2

)
v0(α1σ − α2σ )

+ ϕ

⎛
⎝a

( 4α2
1σ

(α1σ −α2σ )2 − 3
)

2v0
+ α2σ δ12(3α1σ − α2σ )

v0(α1σ − α2σ )2
+ 2y0

(
α2

1σ − 4α1σ α2σ + α2
2σ

)
v0(α1σ − α2σ )2

⎞
⎠. (43)

IV. THE INTERFEROMETRIC QUANTUM
MECHANICS OF SEMSANS

In this section, we establish the full unitary time evolu-
tion operator in the interferometric limit corresponding to the
MWP configurations displayed in Fig. 2. It is important to
note that the process analyzed so far involves the interference
of the two coherent spin states of a single neutron. In reality,
an important origin of beam divergence is due to thermal
fluctuations present in the neutron source. Hence, we need to
derive operators for each divergence angle ϕ and take into
account the distribution of these divergence angles via the
density matrix of the incoming neutron beam.

We can generically cast our operator at the exit of the
second MWP in the form

Ûν =
∫
R3

d�r0

∑
σ=↑,↓

Aσ,cl(�r0)|σν〉〈σν | ⊗ |�r2oσ (�r0)〉〈�r0|,

where ν ∈ {x, y} and |�r2oσ (�r)〉〈�r| is defined as

|�r2oσ (�r)〉〈�r| = |x〉〈x| ⊗ |y2oσ (z2o)〉〈y| ⊗ |z2o〉〈z|. (44)

The coordinates �r2oσ = (x, y2oσ , z2o) are those where the spin
states exit the second MWP. Notice that Ûx does not affect
the neutron trajectory in the x coordinate as shown in previ-
ous section. Similarly, for Ûy, the SEMSANS operator with
fields aligned along the y axis, the neutron trajectory in the y
coordinate is unaffected. Hence, the actions of Ûy and Ûx are
independent of each other in terms of their geometrical paths.

Furthermore, from the previous geometric considerations,
we see that the two spin paths also propagate freely in regions
without magnetic fields, namely between the first and second
MWPs and from the second MWP to the focusing point �r f .
Therefore, there are additional operators Ûf in these two re-
gions associated with this free propagation, which are given
by Eq. (14) with B = 0. As �r f is the same for both spin states,
the overall action of Û P,T

x on the neutron state arriving at the
focusing detector results in a tensor product between its spatial
and spin components which can be written as

Û P,T
ν =

∫
R3

d�r0 Û P,T
ν,spin(�r0) ⊗ |�r f (�r0)〉〈�r0|, (45)

where the superscripts P and T refer to the parallelogram and
triangular SEMSANS setups, respectively, and

Û P,T
ν,spin(�r0) =

∑
σ=↑,↓

Aσ,cl(�r0)|σν〉〈σν |. (46)

Hereafter, we will omit writing the spatial components since
they will be factored out when focused. From the geometrical
results of previous section and the operator form of the MWP
triangular fields in Eq. (14), it is straightforward to obtain
Û MWP

iν explicitly for the parallelogram setup

Û MWP
1ν = Û +

1νÛ −
1ν, Û MWP

2ν = Û −
2νÛ +

2ν, (47)

as well as for the triangular setup

Û MWP
1ν = Û +

1νÛ −
1ν, Û MWP

2ν = Û +
2νÛ −

2ν . (48)

For the parallelogram setup without beam divergence
shown in Fig. 2(a), the operator for a pair of MWPs up to
terms O[α2

i ] is

Û P, No Div
x =Ûf (�r2o, �r f )Û MWP

2x Û f (�r1o, �r2i )Û
MWP
1x Û f (�rbσ , �r0)

= eiζ (cos φP, No Div + i sin φP, No Div σ̂x ), (49)

where �r1o and �r2i are the coordinates where the neutron exits
the first MWP and enters the second MWP, respectively, and
ζ is a global phase. The original positions �rbσ of the two spin
states are assumed to be within the initial quantum coherence
volume; in other words, we are assuming that both initial spin
states are within the Fresnel zone [50]. We must introduce
�rbσ in order to impose the constraint that the two spin states
interfering at the focusing plane have the same initial time ti
and final time to in the path-integral formalism. Effectively, the
free propagation operator Ûf (�rbσ , �r0) evolves the faster spin
state during this longitudinal delay. The resulting phase spatial
variation φP, No Div generated by our SEMSANS setup is

φ
P, No Div
f = 2|μ|(B1 − B2)y0

v0 h̄
. (50)

Note that the incoming neutron state is a wave packet, and the
relative spatial phase variation φP, No Div is the phase difference
between two longitudinally separated plane wave components
that contribute to the incoming wave packet. Particularly, we
assume that the distance �z0 between the two initial spin
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states is within the “longitudinal coherence length” of the
incoming wave packet, which is given by the longitudinal
intrinsic coherence length.

Similarly, we can also find the operator for the paral-
lelogram and triangular geometries with beam divergence.
The general structure of these operators is similar to that of
Eq. (49), with the only changes being the overall unobservable
phase and the corresponding phase spatial variations, which
up to terms O[α2

i , αiϕ, ϕ2] are

φ
P, Div
f = 2|μ|(B1 − B2)(1 + ϕ)y0

v0h̄

+ |μ|(B1a − B2(3a + 2δ12))ϕ

v0 h̄
, (51)

φ
T, Div
f = 2|μ|(B1 − B2)y0

v0h̄
+ 2|μ|(B1 + B2)y0ϕ

v0h̄

+ |μ|(B1a − B2(3a + 2δ12))ϕ

v0 h̄
. (52)

For nondivergent beams, we know from geometric con-
sideration that y0 ≈ y f . Moreover, for divergent beams, our
unitary operators can be expressed entirely in terms of the
focused positions y f by making use of Eqs. (38) and (42):

φP, Div(y f ) = φT, Div(y f ) = 2|μ|(B1 − B2)

v0 h̄
y f

= φP, No Div(y f ). (53)

Surprisingly, the spatial variations of phase induced by the
SEMSANS operator are the same for both geometries at the
focusing plane: the only difference between the geometries
is the angle of the focusing plane. This spatial variation is
simply proportional to the y coordinate from the center of the
focusing plane; we should then expect a robust interference
pattern on the focusing plane since there is no blurring effect
coming from averaging over the beam divergence ϕ. Here, the
initial longitudinal spatial separation

�z0 = v0(t f ↑ − t f ↓) = 2y f (α2 − α1) (54)

is assumed to be smaller than the neutron’s longitudinal in-
trinsic coherence length (notice there is no initial separation
required at the center of the focusing plane). One may be able
to estimate the longitudinal coherence length by measuring
the dampening of the interference fringes.

So far, we have only considered neutron detection at the fo-
cusing plane defined as the plane where the two rays intersect
after propagating through a pair of MWPs. It is important to
account for the general case where the detector position is ar-
bitrary (see Fig. 4). Because the corresponding measurement
would then not be taken at the focusing plane, the neutron
state at the point of detection is not a result of interference
between the two spin states originating from the same initial
point (x0, y0) as considered above. To formalize this idea,
notice that the focusing condition of the two spin states is
cemented in the previous section via the operator Ûf (�ro2σ , �r f ).
We now introduce the new operator used to described the free
propagation after the second MWP:

Ûd = Ûf (�r2o, �r), (55)

FIG. 4. Diagram of the usual detection scheme, where the red
ray representing the state |↑x〉 interferes at a point on the detector
plane (red dashed line) with the blue ray representing the state |↓x〉
which starts at a different initial position. Both sets of red and blue
rays originate from a single neutron with a finite intrinsic coherence
volume. Traditionally, the detector plane in experimental setups is
parallel to the xy plane. Two rays with same spin states never interfere
with each other because they are always parallel to and thus will not
intersect.

where �r = (x, y, z) is an arbitrary position. Since a MWP with
a field oriented in the ±x direction does not alter the trajectory
in the x direction, we will omit writing the x coordinate. In the
usual experimental setup, the detector is situated at a plane
parallel to the exterior edge of the MWPs a distance z away
from the center of the first MWP. In order to determine the
two spin paths contributing to the interference at the detector,
we need to solve for �r0σ in the two equations that describe the
two neutron spin paths past the second MWP:

y − y2σ (y0σ ) = tan (γ0σ + γ1σ + γ2σ )[z − z2σ (y0σ )]. (56)

Formally, the operator can be easily written down similar to
Eq. (45), but with the modified position of the detector:

Ûx =
∑

σ=↑,↓

∫
R3

d�r0σ Aσ (�r0σ )|σx〉〈σx| ⊗ |�r〉〈�r0σ |, (57)

where �r0σ are the initial neutron positions which can be obtain
by inverting Eq. (31) for the desired geometry.

The structure of these defocused operators is still similar
to Eq. (49). This result reflects our interferometric limit con-
sideration for the point of detection where there are two spin
paths intersecting and thus, our operator always lives on the
space of a two-level spin system. For the parallelogram case
without beam divergence, we get

φP, No Div = 2|μ|(B1 − B2)y

v0 h̄
. (58)

Notice that due to the constraint on the classical path, we have
expressed the spatially varying phase φP, No Div in terms of the
general final position of the neutron �r.

For an initial neutron with divergence angle ϕ, the spatial
phase variations in the parallelogram geometry φP, Div and in
the triangular geometry φT, Div are given by

φP, Div = 2|μ|(B1 − B2)(1 + ϕ)y

v0 h̄

− 2|μ|(B1L1 − B2L2)ϕ

v0 h̄
, (59)

φT, Div = 2|μ|(B1 − B2)y

v0 h̄
+ 2|μ|(B1 + B2)yϕ

v0 h̄

− 2|μ|(B1L1 − B2L2)ϕ

v0 h̄
, (60)
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FIG. 5. Schematic of an array of two pairs of MWPs described by Ûpair , with each pair in the parallelogram SEMSANS configuration. These
rays show the action of this configuration on a single representative neutron ray; the incoming ray represents a single plane wave component
of an individual neutron’s wave packet. The spatial extent of the neutron wave packet is determined by the transverse and longitudinal intrinsic
coherence lengths (not shown). The magnetic fields Bi, with i = 1, 2, 3, and 4, are chosen according to the focusing condition of each pair,
namely, B1L1 = B2L2 and B3L3 = B4L4. The red and green points denote the coordinate origin and the focusing point of the original ray,
respectively. Before entering the third MWP, the red (blue) arrow denotes the state |↑x〉 (|↓x〉). As they enter the third MWP, since the magnetic
field direction is now −ŷ, the rays are split again into |↑y〉 (red) and |↓y〉 (blue) in the xz plane, as indicated by the double line in the last MWP
pair.

where we have used the following equation that relates the
arbitrarily chosen detector position z to the previously defined
distances L1 and L2:

B1L1 − B2L2 = z(B1 − B2) + (a + δ12)B2. (61)

There are two important differences between the expres-
sions (59) and (60) and Eq. (53). On one hand, in Eq. (59),
there is an extra term proportional to the divergence angle ϕ,
independent of the y coordinate. Because rays with different
beam divergence are mutually incoherent, this variation in
ϕ results in an overall blurring of the interference pattern.
However, for both geometries, we can cancel the purely ϕ-
dependent term by applying the focusing condition of Eq. (3).
Interestingly, as discussed previously in Sec. II, this phase
focusing requirement is equivalent to the geometrical fo-
cusing condition only when ϕ = 0. However, the geometric
and phase focusing conditions are different when considering
ϕ �= 0. The difference between the proper detector position
according to the geometric and phase focusing conditions
is proportional to ϕ. With a realistic value of ϕ ≈ 1◦, the
numerical correction to the phase from the ϕ term in Eq. (37)
would be of order 10−2, which corresponds to a difference in
focusing plane of roughly 1 mm.

On the other hand, to produce the observable interference
pattern that is due to the spatially varying phase described
in Eqs. (59) and (60), the two opposite-spin initial points in
the intrinsic coherence volume must be displaced not only
longitudinally, as in (54), but also transversally. Again, this
requirement implies that we are assuming that the incoming
neutron state is a wave packet whose size is determined by the
transverse and longitudinal intrinsic coherence lengths. The
two spin states that will eventually interfere at the detector
must originate from the same wave packet (i.e., within the
same intrinsic coherence volume), as the neutrons that form
the macroscopic beam are all mutually incoherent. The re-
quired initial transverse displacement �y0 between the two

spin states interfering at an arbitrary point �r = (x, y, z) is
given by

�y0 = y0↑ − y0↓
= 2[(y − z)(α1 − α2) − (a + δ12)α2]. (62)

Hence, one can in principle estimate both the longitudinal and
transverse coherence intrinsic lengths of the neutron.

V. GENERATING SPIN TEXTURES AND ORBITAL
ANGULAR MOMENTUM

We now discuss the experimental protocol required to im-
part various spin textures and OAM densities to the incident
neutron beam using pairs of MWPs in the SEMSANS con-
figuration, an example of which is diagramed in Fig. 5. First,
we rephrase our previous results for arbitrary magnetic field
direction. In the interferometric limit, the general structure of
the (spin part of the) unitary operator representing a pair of
MWPs with both field setups in the SEMSANS configurations
has the spatial phase variations form of Eqs. (59) and (60). We
can generalize this form to the case where the magnetic fields
in the pair of MWPs point along an arbitrary direction n̂. Up
to an overall phase, we find

Û P,T
n̂ = cos φP,T(n⊥) + i sin φP,T(n⊥)σ̂n̂, (63)

where n̂⊥ = v̂ × n̂ with v̂ being the beam propagation di-
rection, and n⊥ is the coordinate measured along the n̂⊥
direction. We assume that the detector is a vertical plane
and placed at the position such that B1L1 = B2L2. Thus the
phase spatial variations can be generalized in a similar way:
to O[α2

i , αiϕn̂, ϕ
2
n̂ ], we obtain

φP,T
f (n⊥) = κP,T

n̂ n⊥, (64)
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where κP,T
n̂ is found from Eqs. (59) and (60) for both the

parallel and triangular geometry to be

κP
n̂ = 2|μ|�Bn̂(1 + ϕ)

v0 h̄
, (65)

κT
n̂ = 2|μ|�Bn̂

v0h̄
+ 2|μ|Bn̂ ϕ

v0h̄
, (66)

where �Bn̂ = B1 − B2 � 0 or �Bn̂ = B3 − B4 � 0 is the dif-
ference in the magnitude of the magnetic field in a single
MWP pair, and Bn̂ = B1 + B2 or Bn̂ = B3 + B4. As an aside,
when concatenating two pairs of MWPs in the SEMSANS
configurations with orthogonal magnetic field orientations,
one needs to use the general expressions for the phase spatial
variation shown in Eqs. (59) and (60). This requirement is

due to each pair of MWPs having a different geometric focus-
ing plane; therefore, there is no common geometric focusing
plane.

We now consider the specific case where the field orienta-
tions of the two pairs of MWPs are perpendicular to each other
in the xy plane (see Fig. 5). Without any loss of generality, let
us take the beam direction to be in the z direction (v̂ = ẑ) and
the first MWP pair to have the field orientated in the x direc-
tion (n̂1 = x̂, n1⊥ = y), which implies that the field direction
in the second pair is in the y direction (n̂2 = ŷ, n2⊥ = −x).
The minus sign in n2⊥ is necessary due to the cross product
that defines n̂2⊥. The effective (i.e., spin part only) unitary
operator, in the interferometric limit, can then be represented
by the two by two matrix

Ûpair,spin = ÛyÛx =
(

cos κxx cos κyy − i sin κxx sin κyy − sin κxx cos κyy + i cos κxx sin κyy

sin κxx cos κyy + i cos κxx sin κyy cos κxx cos κyy + i sin κxx sin κyy

)
, (67)

where κx and κy denote, respectively, the phase gradient im-
parted by the second (B3, B4 fields) and first (B1, B2 fields)
pair of MWPs, and we have omitted the superscripts P, T.
For the rest of this section, we will assume that both pairs
of MWPs share the same �Bn̂ leading to κx = κy = κ . This
choice of κx and κy is only possible for the parallelogram
geometry because for the triangular case, one must fix not only
the difference between the magnetic fields but also their sum.
This choice for κ can be satisfied by a new focusing condition
that extends Eq. (3) to apply to two pairs of MWPs, which is
given by the following set of equations:

B2 = B1
L1

L2
, (68a)

B3 = B1
L4(L1 − L2)

L2(L3 − L4)
, (68b)

B4 = B1
L3(L1 − L2)

L2(L3 − L4)
, (68c)

where B1 is chosen to achieve the desired spin texture period
and the various distances Li for i = 1, 2, 3, and 4 are the dis-
tances between the midpoint of each MWP and the focusing
plane as shown in Fig. 5. The spin texture period in both the x
and y directions is still given by Eq. (5).

A. Spin texture

It is enlightening to consider the effect of Ûpair, Eq. (67),
on an arbitrary incident neutron spin state. The action of such
an operator on an incoming neutron pure state creates intricate
spin textures that manifest in the measurement of the neutron
spin polarization. For a generic initial polarization state given
by |ψ s

in〉 = cos(θin/2) |↑z〉 + eiφin sin(θin/2) |↓z〉, which can be
represented by the column vector

∣∣ψ s
in

〉 =
(

cos θin
2

eiφin sin θin
2

)
, (69)

one obtains the following experimentally observable pattern:

〈ψ s|σ̂x|ψ s〉 = sin θin cos φin cos 2κx + sin 2κx(cos θin cos 2κy − sin θin sin φin sin 2κy), (70a)

〈ψ s|σ̂y|ψ s〉 = sin θin sin φin cos 2κy + cos θin sin 2κy, (70b)

〈ψ s|σ̂z|ψ s〉 = − sin θin cos φin sin 2κx + cos 2κx(cos θin cos 2κy − sin θin sin φin sin 2κy), (70c)

where we defined |ψ s〉 = Ûpair,spin |ψ s
in〉. See Fig. 6 for exam-

ples of some spin textures. Due to the intrinsic periodicities in
the longitudinal component of the polarization pattern, a state
generated at the detector such as that of φin = π/2 in Fig. 6 is
called a checkerboard state.

If one is to use these spin-textured beams to probe a target
whose magnetic correlation length is smaller than the one
defined by the spin texture period, the fundamental scattering
would not differ from that of an untextured neutron beam.
However, in the opposite limit when the period of the spin
texture is equal to or smaller than the magnetic correlation
length, one must use the full quantum-mechanical description
after the action of Ûpair in Eq. (67) to compute the scattering

cross section. These spin textured beams may be useful for
measuring mesoscopic magnetically ordered systems, such as
skyrmions; for example, we would expect a scattering reso-
nance when the period of the spin texture equals the period of
the skyrmion, analogous to the neutron wavelength in diffrac-
tion.

The magnetic fields of presently available MWPs are lim-
ited to about 150 mT by the maximum current of around
50 A that can be carried by their superconducting coils. The
period of the spin textures that can be produced depends on the
magnitude of the magnetic fields as well as on the distances
between prisms and the neutron wavelength [see Eq. (5)].
SEMSANS experiments to date have produced intensity
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FIG. 6. Checkerboard spin textures 〈�σ (x, y)〉 plotted in units of r0 = v0 h̄/(2|μ|�B), with a minimum r0 of roughly 50 microns (see
Sec. V A). Note that r0 is inversely proportional to both the neutron wavelength and the magnetic field magnitude. The azimuthal initial spin
state angle φin is varied while θin = π/2 is held constant, which ensures that the incident neutron polarization is in the xy plane. The color
represents the magnitude of the longitudinal component ẑ of the polarization, and arrows its transverse component (xy plane); the length of the
arrows is scaled to the magnitude of the transverse projection. Only the unit cell is shown.

oscillations with a minimum period of about 150 microns
[76]. If we choose L1 = 1.3 m, L2 = 0.9 m, L3 = 0.7 m,
and L4 = 0.3 m in Fig. 5 and Eq. (68), and a maximum
magnetic field of 150 mT in the second prism (which has the

largest field due to the focusing condition), the period of the
spin textures shown in Fig. 6, which scales inversely with the
neutron wavelength, is 145 microns for a neutron wavelength
of 1 nm. The spin texture period can also be reduced by a
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factor of two by doubling the number of MWPs used, although such a setup would increase the length of the beamline
required.

B. Momentum-spin entanglement

In this section and the following, we will focus on the nature of the quantum correlations generated by the action of our
operator Ûpair. To better understand the nature of the entanglement realized by Ûpair, it is instructive to consider again both
the spin and spatial components, and to express the neutron state in momentum space. Since our operator does not affect the
propagation of the neutron along the z direction after the neutron has exited the last MWP, we only focus on the transverse xy
plane by making use of the completeness relation for |�k⊥〉 where �k⊥ = (kx, ky), with spatial coordinate representation 〈�r⊥|�k⊥〉 =

1
2π h̄ exp(i�k⊥ · �r⊥). Expressing the operator in the momentum representation yields

Ûpair =
∫
R3

d�r0d�k⊥d�k0⊥Ûpair,spin(�r)|�k⊥〉〈�k⊥|�r〉〈�r0|�k0⊥〉〈�k0⊥| =
∫
R

dz0d�k⊥d�k0⊥Ûpair,spin(�k⊥ − �k0⊥)|�k⊥〉〈�k0⊥| ⊗ |z〉〈z0|, (71)

where we made use of �r⊥ ≈ �r0⊥ and |�r 〉 = |�r⊥〉 ⊗ |z〉, and the integrals in �k⊥ and �k0⊥ are over R2. We must return to writing
the full operator Ûpair with the explicit position-dependence for the sake of clarity when obtaining the Fourier transform of Ûpair.
Thus the momentum space representation of Ûpair,spin can be represented by the matrix

Ûpair,spin(�k⊥ − �k0⊥)

= 1

(2π h̄)2

∫
R2

d�r⊥Ûpair,spin(�r⊥)e−i(�k⊥−�k0⊥)·�r⊥

= 1

2
√

2

(
ei π

4 (δ+xδ+y + δ−xδ−y) + e−i π
4 (δ−xδ+y + δ+xδ−y) ei π

4 (δ−xδ−y − δ+xδ+y) + e−i π
4 (δ+xδ−y − δ−xδ+y)

e−i π
4 (δ−xδ−y − δ+xδ+y) + ei π

4 (δ+xδ−y − δ−xδ+y) e−i π
4 (δ+xδ+y + δ−xδ−y) + ei π

4 (δ−xδ+y + δ+xδ−y)

)
, (72)

where we have used the short-hand notation δ±ν = δ[κ ± (kν − k0ν )] for ν ∈ {x, y} for the Dirac delta function. Because �k0 and
�k can be interpreted respectively as the incoming and outgoing wavevectors, the parameter κ can be interpreted as the transverse
wavevector transfer.

Next, we consider the action of the operator Ûpair given in Eq. (71) on an incoming plane wave polarized along its direction
of motion, such that the incoming state has no transverse momentum, i.e., �k0⊥ = (0, 0). The incoming state can then be written
as |�in〉 = e−iE0ti/h̄|↑z〉 ⊗ |k0z〉, where ti is some initial time, with E0 being the initial total energy of the neutron. Therefore, we
have

Ûpair|�in〉 = 1

2
√

2

(
ei π

4 (|�κ+
⊥〉 + | − �κ+

⊥〉) + e−i π
4 (|�κ−

⊥〉 + | − �κ−
⊥〉)

e−i π
4 (|�κ+

⊥〉 − | − �κ+
⊥〉) − ei π

4 (|�κ−
⊥〉 − | − �κ−

⊥〉)

) ∫
R

dz0 exp

(
i
k0z(z − z0)

2

)
1√
2π h̄

exp

(
i
k0zz0

2

)
|z〉

= 1

2
√

2

(
ei π

4 (|�κ+
⊥〉 + | − �κ+

⊥〉) + e−i π
4 (|�κ−

⊥〉 + | − �κ−
⊥〉)

e−i π
4 (|�κ+

⊥〉 − | − �κ+
⊥〉) − ei π

4 (|�κ−
⊥〉 − | − �κ−

⊥〉)

) ∫
R

dz exp

(
i
k0zz

2

)
1√
2π h̄

|z〉, (73)

where we have changed the integration variable from z0 to
z due to constraints from the classical path, while �κ±

⊥ =
(κx,±κy) and in our setup we typically consider κx = κy = κ .
Because we are using semiclassical kinematics to express
all time dependence in terms of spatial coordinates, the ex-
plicit time dependence is encoded in the wavevector and
spatial coordinates. In this form, we can see that Ûpair imparts
transverse momenta to the initial state, which means that we
can no longer write the outgoing state of the neutron as an
unentangled state with respect to the tensor product decom-
position Hs ⊗ H�k of the spin and momentum subsystems.
Hence, the action of Ûpair can be thought of as an entangler
of spin and the transverse momentum of the distinguishable
subsystems. This point is crucial in understanding the novel
scattering signatures of the OAM beams generated by our
array of pairs of MWPs: even if the incoming state has no
transverse momentum, the resulting outgoing beam displays
quantum correlations between the transverse momenta and
spin.

C. Orbital angular momentum

The inherent periodicity in the spatial coordinates x and
y is manifest in Eq. (67). We now show how the generated
spin textures are coupled to the orbital motion of the neutron;
specifically, there are some special points at the detector plane
where the operator Ûpair locally imparts quantized OAM to the
beam. Hence, our proposed setup also generates a rich and
complex structure of spin-orbit entangled states.

Generally, the coordinates of these special points take the
form

(xm, yn) =
(

mπ

κ
,

nπ

κ

)
, (74)

where m and n are either integers or half-odd integers. It is
convenient to switch to polar coordinates (r, φ), where x −
xm = r cos φ and y − yn = r sin φ are defined with respect to
the origin (xm, yn), and expand Ûpair around these points to
O[κ2r2]. We also omit the overall global phase for the sake of
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simplicity. The expansion ∀(m, n) ∈ Z yields

lim
x→xm
y→yn

Ûpair,spin = 1 + κr(l̂+σ̂− − l̂−σ̂+), (75)

where σ̂± = (σ̂x ± σ̂y)/2 are the usual spin-1/2 ladder opera-
tors and l̂± = e±iφ are the OAM ladder operators.

When m and n are half-odd integers (i.e., m + n ∈ Z), then
the action of Ûpair,spin is given by

lim
x→xm
y→yn

Ûpair,spin = σ̂z + κr(l̂+σ̂+ + l̂−σ̂−). (76)

Finally, whenever m ∈ Z and n is a half-odd integer or vice
versa (i.e., m + n is a half-odd integer), we obtain

lim
x→xm
y→yn

Ûpair,spin = iσ̂y + κr

2
[(l̂+ + l̂−) + (l̂+ − l̂−)σ̂z]. (77)

All three of these families of special points on the focusing
plane will host a spin-orbit state with OAM quantum num-
ber � = −1, 0, 1, with the specific OAM state determined by
the initial neutron spin polarization. Similar expansions were
found in previous work [4,19,20].

To connect the OAM content of the beam to the spin
texture, one can define the OAM density �L of the final state
|ψd〉 = Ûpair|ψin〉 as

�L(�r) = ψ∗
d (�r)�Lψd(�r), (78)

where the OAM operator �L = (�r − zd) × �p is defined with
respect to an origin shifted along the z axis to be at the center
of the general detector plane. Here, we have defined the initial
state as a plane wave that propagates along the z direction as

|ψin〉 = e−iE0ti/h̄
∣∣ψ s

in

〉 ⊗ |k0z〉
= e−iE0ti/h̄(cos(θin/2) |↑z〉 + eiφin sin(θin/2) |↓z〉)

⊗ |k0z〉, (79)

where, again, ti is some initial time, E0 the initial energy of
the neutron, and k0z the initial wavevector of the neutron.
Calculating the OAM density, we find

Lx(�r) = k0zy + κy

1 + ϕ
(cos θin sin 2κy + sin θin(cos φin + sin φin cos 2κy)), (80a)

Ly(�r) = −k0zx − κx

1 + ϕ
(cos θin sin 2κy + sin θin(cos φin + sin φin cos 2κy)), (80b)

Lz(�r) = κ (y cos θin sin 2κy + sin θin(y sin φin cos 2κy + x cos φin)). (80c)

We plot a few examples of some OAM textures in Fig. 7.

VI. OUTLOOK AND CONCLUSIONS

While neutron beams are successfully utilized as indirect
probes of many exotic phases of matter, such as quantum
spin liquids and magnetic skyrmion lattices [77,78], or as
test particles to investigate fundamental physical phenomena
including gravity and dark matter [79], a creative endeavor
lies in producing arbitrary neutron states. In this work, we
have presented an experimental protocol to generate neutron
beams with spin textures that couple to the neutron’s orbital
motion and impart OAM to the beam. The setup involves
two pairs of MWPs whose magnetic fields and relative po-
sitions and orientations can be chosen to generate a variety of
complex structures and, therefore, could extend the analysis
of quantum magnetic materials with exotic spin structures,
such as chiral magnets [80,81]. The range of length scales
that can be probed by the current generation of MWPs extend
down to around 100 microns, which is a limit determined
by the maximal magnetic field that can be contained by the
superconducting films.

We have also presented a systematic theoretical investiga-
tion from quantum mechanical first principles of a SEMSANS
setup of MWPs. Starting from a path-integral representation
of the unitary time evolution operator, a simplification is
introduced by invoking the interferometric limit where the
refraction of the neutron at magnetic field boundaries is taken
into account by defining two opposite-spin correlated trajecto-
ries that interfere at the detector. Our approach is reminiscent

of the connection between wave and geometric optics. An
important consequence of the refractive effects on the two
opposite-spin paths is the appearance of geometric focusing of
these two states. Specifically, we have highlighted that there
is an inherent assumption that the longitudinal and transverse
coherence coherence lengths are larger than the spatial separa-
tion of the neutron’s two spin states for such an interferometric
limit to remain valid. Furthermore, we have shown that in
addition to the usual magnetic-field dependent phase consid-
ered previously, there is a phase contribution coming from the
kinetic-energy. However, under the assumption that the final
position �r f and time t f of the neutron’s opposite-spin rays
coincide at the detection plane given that those rays started
at the same initial time ti at different initial positions �riσ

(within the quantum coherence volume of the neutron), the
kinetic contribution to the phase cancels out. In this way, our
formalism should allow the measurement of the transverse
and longitudinal intrinsic coherence lengths of the neutron by
measuring the distance (relative to the center of the detection
plane) at which the interference fringes fade away. Finally,
we concluded that the phase focusing condition described
by Eq. (3), derived from the single-path Larmor precession
model, agrees with our geometric focusing condition to lowest
order in αi.

To describe the OAM states generated by MWPs, we de-
rived the quantum operator of our proposed SEMSANS setup,
where the magnetic field directions in the two pairs of MWPs
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FIG. 7. Checkerboard OAM textures 〈�L(x, y)〉 plotted in units of r0 = v0 h̄/(2|μ|�B), with a minimum r0 of roughly 50 microns (see
Sec. V A). Note that r0 is inversely proportional to both the neutron wavelength and the magnetic field magnitude. The azimuthal initial spin
state angle φin is varied while θin = π/2 is held constant, which ensures that the incident neutron polarization is in the xy plane. The color
corresponds to the longitudinal component ẑ of the OAM density and arrows its transverse component (xy plane); the length of the arrows is
scaled to the magnitude of the transverse projection. We only include the OAM terms imparted by our setup, namely the terms proportional to
κ in Eqs. (80).
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are perpendicular to one another. This setup creates a spin-
textured neutron beam where there is a lattice of points with
respect to which the MWPs impart a rich variety of spin-OAM
entanglement; these structures are a result of the interference
between the two opposite-spin paths with momenta �k↑ and �k↓.
One important implication of this result is that the paraxial
approximation usually used in neutron scattering may not be
used for the analysis of OAM when using MWPs [32]. To
compute the refractive corrections we utilized the magnetic
Snell’s law, an interesting universal derivation of which (based
on a relativistic action principle) can be found in Appendix B.
This derivation is universal in the sense that it is applicable
to both massless and massive particles, relativistic or not. We
also explicitly showed in the momentum representation that
our configuration of MWPs act as a transverse momentum and
spin entangler, which intuitively explains why these neutron
beams carry OAM, as well as why the constituent neutrons
are in spin-orbit entangled states.

An analog of the unitary operator Ûpair for the case |ψin〉 =
e−iωti |↑z〉 ⊗ |k0z〉 (e.g., the state with θin, φin = 0) was exper-
imentally realized using triangular coils (LOV prisms) [20].
However, in that work, the spin-texture period is on the order
of a few centimeters. The calculation of the OAM was done
in a quantum version of the single-path Larmor precession,
where no refraction was assumed. While that single-path
model was sufficient to analyze the generated spin texture,
to calculate the OAM states, it is required to take refraction
into account. One can do this by either using a wave-packet
model (for example, see [72]), or as we did via the path-
integral formulation. As mentioned above, a key feature of
our calculation that extends previous work [4,20] is the kinetic
phase contribution to the phase spatial variations to first-order
in deflection angles αi. Most importantly, the experimental
and technical challenges and future prospects of LOV prisms
compared to MWPs are completely different.

Another surprising yet interesting result is that the re-
fractive effects encoded in αi are not observable in the
magnetic-field dependent phase up to O[α2

i , αiϕ, ϕ2], because
all of these refractive terms can be factored out as an overall
global phase. The absence of αi arises from the fact that the
refractive corrections to the two spin states’ paths are both
proportional to ±αi, meaning that they only differ by a sign.
Hence, any linear correction O[α2

i , αiϕ, ϕ2] to the magnetic-
field dependent phase that each spin state accumulates is
always exactly equal but opposite. However, due to their
opposite spins, the magnetic-field dependent phases are ac-
cumulated in opposite direction; therefore, both states acquire
exactly the same correction. Because all of these corrections
are to the phases of the coefficients Aσ in Eq. (45), they can
be factored out as an overall global phase since the corrections
are the same for the two opposite-spin paths. The final phase
observed (i.e., the total relative phase between the two states)
in the measurement of the polarization at the detection plane
in the parallelogram configuration is �L, which can be written
as an expansion of the deflection angles, which takes the gen-
eral form �L = �

(1)
L + �

(2)
L + . . ., where �

(n)
L is the nth-order

refractive correction. To first order, we have

�
(1)
L = 4|μ|(B1 − B2)(1 + ϕ)y

v0h̄

− 4|μ|(B1L1 − B2L2)ϕ

v0 h̄
, (81)

which is indeed equivalent to the phase predicted by the
single-path Larmor precession model.

In order to obtain a nontrivial refractive correction to the
magnetic-field dependent phases of the two opposite-spin
paths, one needs to consider the refractive correction to second
order. The second-order refractive effects will give corrections
to both the geometric focusing condition and the phase gradi-
ent. The O[α3

i , . . . ] corrections to the phase spatial variations
for both geometries are of the general form

�
(2)
L = |μ|

2v0h̄

(
A1α

2
1 + A12α1α2 + A2α

2
2 + Aϕϕ2

+ A1ϕα1ϕ + A2ϕα2ϕ
)
, (82)

where A1, A12, A2, Aϕ , A1ϕ , and A2ϕ are coefficients given
in Appendix C that depend on the magnetic field strengths,
the position and size of the MWPs, and the initial state of
the neutron. We notice some interesting features. First of all,
contrary to the lowest-order O[α2

i , αiϕ, ϕ2] calculation where
the additional phase is proportional to the beam divergence
ϕ, we find terms that are intrinsically due to the refractive
effect of the beam even in the absence of the beam diver-
gence. Secondly, A1ϕ and A2ϕ are contributed purely from the
kinetic phase, and no cross-term αiϕ appears in the magnetic
field-dependent phase for the same reason that the first-order
refractive correction vanishes. Therefore, to properly obtain
the higher order refractive corrections, one must consider the
kinetic phase. Last of all, we find that the correction to the
phase spatial variation now depends not only in the distance
a + δ12 between centers of the MWPs, but also depends on the
physical size of the MWP in a complicated way.
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APPENDIX A: THE KINETIC PHASE AND UNITARITY
IN THE INTERFEROMETRIC LIMIT

We now discuss in more detail why the free propagator
is given by exp(i�kσ · (�rσ −�ri )

2 ) in the interferometric limit. This
result is deeply rooted in our interferometric limit where space
and time can be related to each other via the classical tra-
jectories. For the sake of simplicity, consider the exact free
propagation of an initial plane wave

�(�ri, ti ) = 1/(2π h̄)
3
2 exp(i(�k · �ri − ωti )), (A1)
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which travels from spacetime coordinates (�ri, ti ) to (�r f , t f ). The wave function after propagation is given by

�(�r f , t f ) =
∫
R3

d�ri

√
m

i2π h̄(t f − ti )
exp

(
i
m(�r f − �ri )2

2h̄(t f − ti )

)
�(�ri, ti ) = 1

(2π h̄)
3
2

exp(i(�k · �r f − ωt f )), (A2)

where ω = h̄k2/2m is the dispersion relation for a free, nonrelativistic, particle. In our interferometric approximation, we replace
the above convolution integral by a multiplicative phase related to the classical action. Such a phase factor in the case of a plane
wave is

exp(i[�k · (�r f − �ri ) − ω(t f − ti )]),

which can be further simplified by recognizing that the strictly classical trajectory of the interferometric limit allows us to write

ω(t f − ti ) = 1

2

m�v
h̄

· �v (t f − ti ) = 1

2
�k · (�r f − �ri ). (A3)

Hence, we obtain exactly the so-called kinetic phase.
Next, we explicitly show that even after taking the interferometric limit, the resulting operator shown in Eq. (14) remains

unitary

(Û ±
ν )†Û ±

ν =
∫
R3

d�rid�r ′
i

∑
σ,σ ′=↑,↓

A±∗
σ ′ (�r ′

i )A±
σ (�ri )|σ ′

ν〉〈σ ′
ν |σν〉〈σν | ⊗ |�r ′

i 〉〈�roσ ′ (�r ′
i )|�roσ (�ri)〉〈�ri|

=
∫
R3

d�rid�r ′
i

∑
σ,σ ′=↑,↓

A±∗
σ ′ (�r ′

i )A±
σ (�ri )|σ ′

ν〉δσσ ′ 〈σν | ⊗ |�r ′
i 〉δ(�roσ ′ (�r ′

i ) − �roσ (�ri ))〈�ri|

=
∫
R3

d�rid�r ′
i

∑
σ=↑,↓

A±∗
σ (�r ′

i )A±
σ (�ri )|σν〉〈σν | ⊗ |�r ′

i 〉δ(�r ′
i − �ri )〈�ri|

=
∫
R3

d�ri

∑
σ=↑,↓

|A±
σ (�ri )|2|σν〉〈σν | ⊗ |�ri〉〈�ri| = 1, ν ∈ {x, y}, (A4)

where we make use of |A±
σ | = 1 in the geometrical ray limit

such that �ro↑,↓(�ri ) is a bijective function, and thus we have
δ(�roσ ′ (�r ′

i ) − �roσ (�ri )) = δ(�ri − �r ′
i ). Therefore, Û ±

ν is unitary.
Finally, as the total time evolution operator of the prism Û MWP

ν

is a product of 2 unitary operators, it must also be unitary.

APPENDIX B: DERIVATION OF MAGNETIC SNELL’S LAW

The law of the refraction of light was discovered by
the dutch mathematician and astronomer Willebrord Snellius
(Snell) in 1621. Its justification has a colorful history [82].
Curiously, Descartes (1637) and Fermat (1657) developed two
conflicting explanations. Descartes based his derivation on
what is known today as the conservation of momentum in the
direction parallel to the boundary separating the two media.
For incident (refracted) angle θi (θo) and speed of light ci (co),
he obtained

ci sin θi = co sin θo, (B1)

which qualitatively disagrees with Snell’s result. Meanwhile,
Fermat obtained his result

sin θi

ci
= sin θo

co
, (B2)

by assuming the principle of least time. It turns out that Fermat
obtained the correct result for light refraction.

Interestingly, it is also known that Snell’s law for nonrel-
ativistic neutron optics follows Decartes’ original result, with
ci (co) → viσ (voσ ). Therefore, Snell’s law for neutron refrac-
tion cannot be derived from Fermat’s principle of least time.

From a theoretical point of view, there should be a unified
principle yielding both of these behaviors in the appropriate
limits. In this section, we present a derivation of the mag-
netic Snell’s law based on a stationary action principle which
unifies both refraction laws for light and neutrons when the
two media do not move with respect to each other. As will
be shown, the difference arises from the distinction between
massless and massive particles (in the nonrelativistic limit).

We start by considering the action for a relativistic particle
in a potential V (�r) characterizing the medium

S(�r, �̇r) =
∫ t2

t1

dt

(
−mc2

γ
− V (�r)

)
=

∫ t2

t1

dt L(�r, �̇r), (B3)

where γ = 1/

√
1 − v2

c2 , �v is the velocity of the particle, and
c the speed of light. For refraction, V (�r) is constant in each
medium with a discontinuous jump across the boundary. In
Hamilton’s variational principle, the action S is a functional
of both the coordinate �r and its first time derivative �̇r. Its
variation leads to the usual Euler-Lagrange equations of mo-
tion. However, for particles undergoing pure refraction, their
energy is assumed to be conserved as they cross the boundary.
Due to this extra constraint it is more convenient to use the
action defined in Maupertuis’s action principle

S(�r) =
∫ B

A
�p · d�r, (B4)

where �p = ∂L/∂ �̇r is the usual canonical momentum. Since
our potential V (�r) depends only on the spatial coordinate (and
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perhaps on the spin of the particle), in the optical potential
limit, �p is constant in each region and parallel to the displace-
ment d�r, resulting in the simplification

S(�r) =
∫ B

A
p ds, (B5)

where p and ds are the magnitudes of the canonical momen-
tum and displacement, respectively. Since Maupertuis’s action
principle uses the constant energy constraint to eliminate �̇r,
one can express the magnitude of the canonical momentum p
in terms of the particle’s energy as

p = mvγ =
√

(E − V (�r))2 − m2c4

c
. (B6)

For our experimental setup in Fig. 3, the total classical
action for the neutron |σx〉 state moving from A to B is

Stot,σ = SAC,σ + SBC,σ , (B7)

where SAC,σ and SBC,σ are the classical actions in the two field
regions

SAC,σ =
√

(E − Viσ )2 − m2c4
i

ci
|�rC − �rA|, (B8)

SCB,σ =
√

(E − Voσ )2 − m2c4
o

co
|�rB − �rC |, (B9)

with coordinates �rA,B,C corresponding to the points indicated
in Fig. 3. Minimizing the variations of Stot,σ with respect to
zC , where the neutron crosses the boundary (whose normal is
the y axis in Fig. 3) leads to

∂Stot,σ

∂zC
=

√
(E − Viσ )2 − m2c4

i

ci

zC − zA

|�rC − �rA|

−
√

(E − Voσ )2 − m2c4
o

co

zB − zC

|�rB − �rC | = 0. (B10)

Using trigonometric relationships between θi, θo, viσ , and
voσ , it is straightforward to obtain Snell’s law for relativistic
neutrons

pi

po
= co

ci

√
(E − Viσ )2 − m2c4

i√
(E − Voσ )2 − m2c4

o

= sin θo

sin θi
, (B11)

where pa = mvaσ /

√
1 − v2

aσ

c2
a

with a = i, o. Moreover, since
most of the current experiments with neutrons are carried
out in the nonrelativistic limit, the momentum simplifies to

pa ≈ mvaσ , where

voσ =
√

v2
iσ + 2μσ (Bo + Bi )

m
, (B12)

due to conservation of energy. Then, for massive nonrelativis-
tic particles, we obtain the familiar

viσ sin θi = voσ sin θo. (B13)

The case of light, that is, relativistic massless particles
called photons, is subject to the same variational principle
with the same end result, Eq. (B11). However, for photons the
dispersion relation is given by pa = h̄ωa/ca, where h̄ωa = Ea

is its energy. From conservation of energy

co sin θi = ci sin θo, (B14)

and one obtains Snell’s law for light refraction, Eq. (B2).

APPENDIX C: HIGHER-ORDER CORRECTION
COEFFICIENTS

We now list the second-order corrections due to the deflec-
tion angles α1 and α2 and the divergence angle ϕ. The A1,
A12, A2, and Aϕ coefficients in Eq. (82) for the parallelogram
geometry are given by the following equations:

AP,Div
1 = B1

2
(5y + 4z − 3a) − 2B2(a + δ12 − z),

AP,Div
12 = 4B1(3z − 4y − 3a − 3δ12)

+ 2B2(5a + 6δ12 + 8y − 6z),

AP,Div
2 = B1(2z − 3a − 2δ12) − B2

2
(7a + 4δ12 − 5y − 4z),

AP,Div
ϕ = 2B1(3y − 2z) + 2B2(2z − 2a − 2δ12 − 3y),

AP,Div
1ϕ = 2mv0(z − y),

AP,Div
2ϕ = 2mv0(a + δ12 + y − z). (C1)

For the triangular geometry, the second-order coefficients
are given by the following equations:

AT,Div
1 = B1

2
(5y + 4z − 3a) + 2B2(5a + 5δ12 − 6y − 5z),

AT,Div
12 = 4B1(a + δ12 − 2y − z) + 2B2(8y + 6z − 5a + 6δ12),

AT,Div
2 = B1(3a + 2δ12 − 2z) − B2

2
(4z − 5y − 7a − 4δ12),

AT,Div
ϕ = 2B1(3y − 2z) + 2B2(2a + 2δ12 − 3y − 2z),

AT,Div
1ϕ = 2mv0(z − y),

AT,Div
2ϕ = 2mv0(a + δ12 − y − z). (C2)
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