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Thermal first-order phase transitions, Ising critical points, and reentrance in the Ising-Heisenberg
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The thermal phase transitions of a spin-1/2 Ising-Heisenberg model on the diamond-decorated square lattice
in a magnetic field are investigated using a decoration-iteration transformation and classical Monte Carlo simula-
tions. A generalized decoration-iteration transformation maps this model exactly onto an effective classical Ising
model on the square lattice with temperature-dependent effective nearest-neighbor interactions and magnetic
field strength. The effective field vanishes along a ground-state phase boundary of the original model, separating
a ferrimagnetic and a quantum monomer-dimer phase. At finite temperatures this phase boundary gives rise to
an exactly solvable surface of discontinuous (first-order) phase transitions, which terminates in a line of Ising
critical points. The existence of discontinuous reentrant phase transitions within a narrow parameter regime is
reported and explained in terms of the low-energy excitations from both phases. These exact results, obtained
from the mapping to the zero-field effective Ising model, are corroborated by classical Monte Carlo simulations
of the effective model.

DOI: 10.1103/PhysRevB.107.134402

I. INTRODUCTION

Phase transitions and critical phenomena of spin systems in
the presence of an external magnetic field remain a longstand-
ing challenge for rigorous theoretical investigations [1]. For
example, in spite of formidable efforts there does not exist a
general exact solution to even the most basic statistical lattice
model, the two-dimensional spin-1/2 Ising model, in finite
magnetic fields [1]. Exactly solvable spin models displaying
thermal phase transitions and critical points in finite magnetic
fields therefore represent challenging research topics in their
own right, deserving a great deal of attention. An early exam-
ple in this field is Fisher’s “superexchange antiferromagnet”
[2,3], where a magnetic field is applied to spins decorating
the edges of a square-lattice Ising model, but parameters nev-
ertheless need to be fine-tuned to render this model exactly
solvable.

From the experimental point of view, recent specific-
heat measurements on the Shastry-Sutherland compound
SrCu2(BO3)2 [4,5] at zero magnetic field evidenced a remark-
able line of discontinuous phase transitions in the pressure-
temperature phase diagram [6]. The experimentally observed
line of first-order transitions, terminating at a critical point that
belongs to the universality class of the two-dimensional Ising
model, was ascribed to a coexistence line of dimer-singlet and
plaquette-singlet phases. Indeed, a theoretical modeling based
on the notion of a pressure-tuned interaction ratio satisfacto-
rily reproduced the measured specific-heat data [6]. Moreover,
it turns out that the frustrated magnetic material SrCu2(BO3)2

*jozef.strecka@upjs.sk

reveals in finite magnetic fields various quantum and ther-
mal phase transitions in the pressure-temperature-field phase
diagram, which currently represents a highly topical issue
on account of their puzzling nature [6–11]. It is worthwhile
to remark that enigmatic finite-temperature phase transitions
are not unique to SrCu2(BO3)2, but may be encountered in
various low-dimensional frustrated quantum materials (cf. the
recent review [12] and references cited therein). Lines of
first-order thermal phase transitions ending at Ising critical
points were recently reported also for the spin-1/2 Heisenberg
square bilayer [13,14] and trilayer [15], as well as the spin-1/2
Heisenberg model on the diamond-decorated square lattice in
finite magnetic fields [16].

The spin-1/2 Heisenberg model on the diamond-decorated
square lattice indeed provides a prominent example of a
dimer-based, geometrically frustrated quantum spin model
that displays a great diversity of quantum ground states and
phase transitions. Its zero-field ground-state phase diagram
was comprehensively studied in Refs. [17–21], providing
evidence for two unconventional ground-state phases, the
monomer-dimer and dimer-tetramer ground states, with ex-
tensive residual entropies, in addition to the ferrimagnetic
ground state expected according to the Lieb-Mattis theorem
[22]. Besides the three aforementioned zero-field ground-state
phases, in finite magnetic fields the model exhibits a further
spin-canted phase as well as a fully polarized paramagnetic
phase [16]. The most interesting findings, however, concern
the validation of peculiar thermal phase transitions of the
spin-1/2 Heisenberg model on the diamond-decorated square
lattice by sign-problem-free quantum Monte Carlo simula-
tions performed in a spin-dimer basis [16]. More specifically,
a surface of first-order thermal transitions was identified,
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JOZEF STREČKA et al. PHYSICAL REVIEW B 107, 134402 (2023)

extending from the line of first-order quantum phase transi-
tions that separates the monomer-dimer and the ferrimagnetic
ground-state phases. This wall of discontinuous thermal phase
transitions eventually terminates in a line of Ising thermal
critical points [16], where the fluctuations in the dimer sin-
glet (triplet) density from the monomer-dimer (ferrimagnetic)
phase proliferate.

The primary goal of this paper is to examine the
aforementioned phenomena on more rigorous grounds.
For that purpose we consider the analogous spin-1/2
Ising-Heisenberg model on the diamond-decorated square
lattice in a magnetic field, which provides deeper insights
into the aforementioned thermal phase transitions and
critical points via exact analytical results. Here, the term
“Ising-Heisenberg model” refers to an ensemble of interacting
spins with Ising and Heisenberg interaction terms, which
could be regarded more as an academic curiosity rather than
a realistic model of some magnetic material. It nevertheless
turns out that a few Ising-Heisenberg models adequately
capture the magnetic behavior of specific magnetic materials,
namely, Cu(3-Clpy)2(N3)2 [23], [(CuL)2Dy][Mo(CN)8]
[24,25], [Fe(H2O)(L)][Nb(CN)8][Fe(L)] [26], Dy(NO3)
(DMSO)2Cu(opba)(DMSO)2 [27,28], {Dy(hfac)2

(CH3OH)}2{Cu(dmg)(Hdmg)}2 [29,30], and [CuMn(L)]
[Fe(bpb)(CN)2] ClO4 [31]. In the following, we will refer to
a spin with only Ising interactions as an Ising spin, while all
other spins of the Ising-Heisenberg model are referred to as
Heisenberg spins.

Thus far, the spin-1/2 Ising-Heisenberg model on the
diamond-decorated square lattice has only been exactly solved
for zero magnetic field, which provided proof for a line of con-
tinuous (second-order) quantum phase transitions separating
a spontaneously long-range ordered phase from a disordered
one [32]. The magnetic behavior of this mixed classical-
quantum spin model in nonzero magnetic fields will be the
subject of this paper, which is organized as follows. In Sec. II
we introduce the spin-1/2 Ising-Heisenberg model on the
diamond-decorated square lattice and explain the basic steps
of the methods applied for its solution. The most interesting
results regarding the phase diagram, magnetization curves,
and the order parameter are then discussed in Sec. III. Finally,
the paper ends with a summary and perspectives in Sec. IV.

II. MODEL AND METHOD

The spin-1/2 Ising-Heisenberg model on the diamond-
decorated square lattice, schematically illustrated in Fig. 1, is
given by the Hamiltonian

Ĥ = J1

L∑
i=1

L∑
j=1

[(
Ŝz

1,i, j + Ŝz
1,i+1, j

)(
Ŝz

2,i, j + Ŝz
3,i, j

)

+ (
Ŝz

1,i, j + Ŝz
1,i, j+1

)(
Ŝz

4,i, j + Ŝz
5,i, j

)]

+ J2

L∑
i=1

L∑
j=1

(Ŝ2,i, j · Ŝ3,i, j + Ŝ4,i, j · Ŝ5,i, j )

− h
5∑

k=1

L∑
i=1

L∑
j=1

Ŝz
k,i, j . (1)

FIG. 1. Illustration of the diamond-decorated square lattice.
Large blue (small red) circles denote Ising (Heisenberg) spins. The
unit cell, containing five spins, is also indicated.

Here, a spin-1/2 operator Ŝk,i, j ≡ (Ŝx
k,i, j, Ŝy

k,i, j, Ŝz
k,i, j ) is as-

signed to each site of the diamond-decorated square lattice,
where the former subscript k determines the site position
within the unit cell and the latter two subscripts i and j specify
the position (in terms of row and column) of the unit cell itself.
According to the Hamiltonian (1), the nodal sites (k = 1) of
the diamond-decorated square lattice shown in Fig. 1 as large
blue circles are occupied by Ising spins, while decorating sites
(k = 2, 3, 4, 5) schematically visualized as small red circles
are occupied by Heisenberg spins. The coupling constant J1

takes into account the Ising-type exchange interaction be-
tween nearest-neighbor Ising and Heisenberg spins, while the
coupling constant J2 quantifies the isotropic exchange interac-
tion between the nearest-neighbor Heisenberg spins. The last
term h accounts for the Zeeman energy of both Heisenberg
and Ising spins in the external magnetic field.

For further convenience, the total Hamiltonian (1) of
the spin-1/2 Ising-Heisenberg model on the diamond-
decorated square lattice can be rewritten as a sum of cluster
Hamiltonians:

Ĥ =
L∑

i=1

L∑
j=1

(
Ĥh

i, j + Ĥv
i, j

)
, (2)

where each cluster Hamiltonian Ĥh
i, j (Ĥv

i, j) includes all interac-
tion terms of a diamond spin cluster, containing one horizontal
(vertical) Heisenberg dimer, as schematically shown in the left
part of Fig. 2. These read explicitly

Ĥh
i, j = J1

(
Ŝz

1,i, j + Ŝz
1,i+1, j

)(
Ŝz

2,i, j + Ŝz
3,i, j

) + J2Ŝ2,i, j · Ŝ3,i, j

− h
(
Ŝz

2,i, j + Ŝz
3,i, j

) − h

4

(
Ŝz

1,i, j + Ŝz
1,i+1, j

)
,

Ĥv
i, j = J1

(
Ŝz

1,i, j + Ŝz
1,i, j+1

)(
Ŝz

4,i, j + Ŝz
5,i, j

) + J2Ŝ4,i, j · Ŝ5,i, j

− h
(
Ŝz

4,i, j + Ŝz
5,i, j

) − h

4

(
Ŝz

1,i, j + Ŝz
1,i, j+1

)
. (3)

Note that the factor 1/4 in the Zeeman term of the Ising
spins ensures the proper counting of this interaction term,
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FIG. 2. Illustration of the decoration-iteration transformations
(DITs) (5) and (6) applied locally to a horizontal and vertical dia-
mond spin cluster, respectively.

which is symmetrically split among four cluster Hamiltonians,
involving one and the same Ising spin. The decomposition

of the total Hamiltonian (1) into a set of commuting cluster
Hamiltonians (3) allows one to partially factorize the to-
tal partition function into a product of the cluster partition
functions:

Z =
∑

{Sz
1,i, j}

L∏
i=1

L∏
j=1

[
Tr2,i, jTr3,i, j exp

(−βĤh
i, j

)]

× [
Tr4,i, jTr5,i, j exp

(−βĤv
i, j

)]
. (4)

Formula (4) is consistent with the fact that the spin degrees of
freedom of the Heisenberg dimers can be traced out indepen-
dently of each other. A straightforward diagonalization of the
cluster Hamiltonians (3) within the spin-dimer basis provides
the effective Boltzmann weights, which can be substituted
through the generalized decoration-iteration transformation
[33–35]. An explicit form of the decoration-iteration transfor-
mation for the horizontal and vertical diamond spin clusters is
given by the following formulas:

Tr2,i, jTr3,i, j exp
(−βĤh

i, j

) = exp

[
3βJ2

4
+ βh

4

(
Sz

1,i, j + Sz
1,i+1, j

)]{
1 + e−βJ2

[
1 + 2 cosh

(
βJ1(Sz

1,i, j + Sz
1,i+1, j ) − βh

)]}

= A exp

[
βJeff S

z
1,i, jS

z
1,i+1, j + βheff

4

(
Sz

1,i, j + Sz
1,i+1, j

)]
(5)

and

Tr4,i, jTr5,i, j exp
(−βĤv

i, j

) = exp

[
3βJ2

4
+ βh

4

(
Sz

1,i, j + Sz
1,i, j+1

)]{
1 + e−βJ2

[
1 + 2 cosh

(
βJ1

(
Sz

1,i, j + Sz
1,i, j+1

) − βh
)]}

= A exp

[
βJeff S

z
1,i, jS

z
1,i, j+1 + βheff

4

(
Sz

1,i, j + Sz
1,i, j+1

)]
. (6)

The physical meaning of the decoration-iteration transfor-
mations (5) and (6) lies in replacing the Boltzmann weights
related to the diamond spin cluster by an equivalent expres-
sion, which exclusively depends only on two Ising spins. It
directly follows from Eqs. (5) and (6) that the Heisenberg spin
dimer and its associated interaction terms can be replaced by
the effective interaction Jeff and effective field heff ascribed to
two enclosing Ising spins (see Fig. 2 for a schematic repre-
sentation of this mapping). This is actually reminiscent of the
procedure used in Refs. [2,3], except that here we trace out a
Heisenberg dimer instead of a single Ising spin per edge of the
effective square lattice.

Note that one gets only three independent equations from
the decoration-iteration transformations (5) and (6) by consid-
ering all four possible combinations of two Ising spins, which
unambiguously determine the transformation parameters as A,
Jeff , and heff :

A = e
3
4 βJ2

(
V1V2V

2
3

) 1
4 , (7)

βJeff = ln

(
V1V2

V 2
3

)
, (8)

βheff = βh + 2 ln

(
V1

V2

)
, (9)

where

V1 = 1 + e−βJ2 [1 + 2 cosh (βJ1 − βh)],

V2 = 1 + e−βJ2 [1 + 2 cosh (βJ1 + βh)],

V3 = 1 + e−βJ2 [1 + 2 cosh (βh)]. (10)

Using the formulas (5) and (6) in the factorized form of the
partition function (4) establishes an exact mapping between
the partition functions of the spin-1/2 Ising-Heisenberg model
on the diamond-decorated square lattice and the effective
spin-1/2 Ising model on a square lattice,

Z (β, J1, J2, h) = A2N Zeff (β, Jeff , heff ), (11)

which is defined through an effective Hamiltonian involving
temperature-dependent nearest-neighbor interactions Jeff and
magnetic field heff (see Fig. 3 for an illustration of the estab-
lished mapping):

Heff = −Jeff

L∑
i=1

L∑
j=1

(
Sz

1,i, jS
z
1,i+1, j + Sz

1,i, jS
z
1,i, j+1

)

− heff

L∑
i=1

L∑
j=1

Sz
1,i, j . (12)
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FIG. 3. Mapping between the spin-1/2 Ising-Heisenberg
diamond-decorated square lattice and the effective spin-1/2 square-
lattice Ising model obtained by applying the decoration-iteration
transformations (DITs) (5) and (6) to all horizontal and vertical
diamond spin clusters.

Since the coefficient A in Eq. (11) is a regular function [see
Eq. (7)], Z inherits the singular structure from Zeff such that
any emerging continuous thermal phase transition will be in
the Ising universality class.

Local observables can be calculated from the corre-
spondence between the spin-1/2 Ising-Heisenberg diamond-
decorated square-lattice model and the effective Ising model
as follows: The local magnetization of the original Ising spins
and the correlation function among nearest-neighbor Ising
spins follow from the theorems by Barry and co-workers
[36–39]

mI ≡ 〈
Ŝz

1,i, j

〉 = 〈
Sz

1,i, j

〉
eff ≡ meff ,

εI ≡ 〈
Ŝz

1,i, j Ŝ
z
1,i+1, j

〉 = 〈
Sz

1,i, jS
z
1,i+1, j

〉
eff ≡ εeff , (13)

where 〈· · · 〉 and 〈· · · 〉eff denote the standard canonical ensem-
ble average within the spin-1/2 Ising-Heisenberg diamond-
decorated square-lattice Hamiltonian (1) and the effective
Ising model Hamiltonian (12), respectively. Hence the local
magnetization mI and the nearest-neighbor correlation func-
tion εI are directly equal to the quantities meff and εeff of
the effective Ising model with effective interaction Jeff and
effective field heff . In addition, the mapping (11) between the
partition functions in turn provides an explicit formula for
the free energy of the spin-1/2 Ising-Heisenberg diamond-
decorated square-lattice model F = −kBT ln Z , from which
one may calculate the total magnetization accordingly,

MT = −∂F

∂h
= 2N

∂ ln A

∂ (βh)
+ ∂ ln Zeff

∂ (βh)
. (14)

The total magnetization MT = NmI + 4NmH can alternatively
be expressed in terms of the single-site magnetization of the
Ising spins mI ≡ 〈Ŝz

1,i, j〉 and the single-site magnetization of

the Heisenberg spins mH ≡ 〈Ŝz
k,i, j〉 (k = 2, . . . , 5), so that the

final formula (14) for the total magnetization allows for a
straightforward derivation of the single-site magnetization of
the Heisenberg spins upon subtracting the relevant contribu-
tion from the Ising spins:

mH ≡ 〈
Ŝz

k,i, j

〉 = 1

8

(
W1

V1
+ W2

V2
+ 2

W3

V3

)
+ mI

2

(
W1

V1
− W2

V2

)

+ εI

2

(
W1

V1
+ W2

V2
− 2

W3

V3

)
(k = 2, . . . , 5), (15)

where we have introduced the coefficients W1 =
−2e−βJ2 sinh(βJ1 − βh), W2 = 2e−βJ2 sinh(βJ1 + βh), and
W3 = 2e−βJ2 sinh(βh).

Another local quantity that is of importance is the den-
sity of the singlet-dimer states of the Heisenberg spin pairs.
The density of these singlets can be evaluated from the
nearest-neighbor correlation function of the Heisenberg spins
according to

n = 1

4
− 〈Ŝ2k,i, j · Ŝ2k+1,i, j〉 = 1

4
+ 1

2N

∂ ln Z

∂ (βJ2)
. (16)

After performing the respective differentiation in Eq. (16), the
density of singlets can be expressed in terms of the single-site
magnetization of the Ising spins mI and the nearest-neighbor
correlation function εI of the Ising spins:

n = 1

4

(
1

V1
+ 1

V2
+ 2

V3

)
+ mI

(
1

V1
− 1

V2

)

+ εI

(
1

V1
+ 1

V2
− 2

V3

)
. (17)

Recall that the zero-field spin-1/2 Ising model on a square
lattice is exactly solvable from Onsager’s ingenious exact so-
lution [40]. Thanks to the exact mapping relation (11) between
both partition functions, the spin-1/2 Ising-Heisenberg model
on the diamond-decorated square lattice in a magnetic field
thus also becomes exactly solvable in the particular parameter
subspace where the effective field vanishes, heff = 0. From
Eq. (9), this condition yields

exp

(
βh

2

)
= 1 + e−βJ2 [1 + 2 cosh (βJ1 + βh)]

1 + e−βJ2 [1 + 2 cosh (βJ1 − βh)]
. (18)

It turns out that the transcendent equation (18), ensuring a van-
ishing effective field heff = 0, also has a nontrivial solution for
finite magnetic field(s) h �= 0 and a given temperature apart
from the trivial solution h = 0 that is valid for any tempera-
ture. One of the intriguing consequences of Onsager’s exact
solution [40] is that the spin-1/2 Ising model on the square
lattice in zero (effective) field shows a continuous phase
transition at the critical temperature βcJeff = Jeff/(kBTc) =
2 ln(1 + √

2), which in turn implies the existence of analo-
gous continuous phase transitions within the universality class
of the two-dimensional Ising model for the original Ising-
Heisenberg model whenever the following critical condition
is met:

exp

(
βch

4

)
(1 +

√
2) = 1 + e−βcJ2 [1 + 2 cosh (βc(J1 + h))]

1 + e−βcJ2 [1 + 2 cosh (βch)]
.

(19)

The spin-1/2 Ising model on a square lattice in nonzero (ef-
fective) magnetic field is not exactly solvable, and one must
therefore resort to numerical methods if one intends to obtain
further quantitative results for the spin-1/2 Ising-Heisenberg
model on the diamond-decorated square lattice from the map-
ping relation (11) based on the effective spin-1/2 Ising model
on the square lattice. For this purpose, we performed classical
Monte Carlo simulations of the effective spin-1/2 Ising model
on the square lattice using the standard Metropolis algorithm
in open-source software from the Algorithms and Libraries
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FIG. 4. Ground-state phase diagram of the spin-1/2 Ising-
Heisenberg model on the diamond-decorated square lattice in the
(J2/J1)-(h/J1) plane. The notation for the various ground states is as
follows: FRI, classical ferrimagnetic phase; MD, quantum monomer-
dimer phase; PM, saturated paramagnetic phase. The dashed blue
line shows the projection of the critical condition (19) onto the
(J2/J1)-(h/J1) plane.

for Physics Simulations (ALPS) project [41] for finite-size
lattices with linear lattice sizes up to L = 120 and a total
number of up to 8 × 105 Monte Carlo steps.

III. RESULTS AND DISCUSSION

In the following, we will proceed to a discussion of
the most interesting results for the ground-state and finite-
temperature phase diagrams, magnetization curves, and sin-
glet density of the spin-1/2 Ising-Heisenberg model on the
diamond-decorated square lattice in the presence of an exter-
nal magnetic field.

A. Ground-state phase diagram

We begin our discussion by presenting the ground-state
phase diagram, shown in Fig. 4 in the (J2/J1)-(h/J1) plane.
All ground states can be derived from the lowest-energy
eigenstates of the diamond spin clusters given by the commut-
ing local Hamiltonians (3). Using this procedure, we obtain
three different ground-state phases: the saturated paramag-
netic (PM) phase, the classical ferrimagnetic (FRI) phase, and
the quantum monomer-dimer (MD) phase (cf. the detailed
definitions below). By comparing the respective ground-state
energies one obtains exact formulas for the first-order phase
boundaries:

hMD-FRI = 2(J2 − J1), (20)

hMD-PM = J2 + J1, (21)

hFRI-PM = 4J1. (22)

All three discontinuous phase-transition lines meet at a triple
point J2/J1 = 3, h/J1 = 4. At sufficiently large magnetic
fields h > hFRI-PM for J2 < 3J1 and h > hMD-PM for J2 > 3J1,

FIG. 5. Schematic representation of the classical ferrimagnetic
(FRI) phase and the quantum monomer-dimer (MD) phase. An oval
represents a singlet-dimer state.

the ground state is in the PM phase with all spins polarized
along the magnetic field direction:

|PM〉 =
L∏

i, j=1

|↑1,i, j〉 ⊗ |↑2,i, j↑3,i, j〉 ⊗ |↑4,i, j↑5,i, j〉. (23)

Apart from this rather trivial phase, two additional ground
states schematically illustrated in Fig. 5 emerge at low enough
magnetic fields. The first ground state can be identified as the
FRI phase with all Heisenberg spins fully polarized and all
Ising spins aligned opposite to the magnetic field:

|FRI〉 =
L∏

i, j=1

|↓1,i, j〉 ⊗ |↑2,i, j↑3,i, j〉 ⊗ |↑4,i, j↑5,i, j〉. (24)

This ground state of purely classical nature occurs in the
intermediate magnetic field range delimited by two conditions
h < hFRI-PM and h > hMD-FRI. The FRI phase (24) gives rise to
a 3/5 plateau in the zero-temperature magnetization curve, in
accordance with the Lieb-Mattis theorem [22].

In the magnetic field range delimited by the conditions
h < hMD-FRI and h < hMD-PM, one instead encounters the MD
ground state with fully polarized Ising spins and the Heisen-
berg spins forming dimer singlets,

|MD〉 =
L∏

i, j=1

|↑1,i, j〉 ⊗ 1√
2

(|↑2,i, j↓3,i, j〉 − |↓2,i, j↑3,i, j〉)

⊗ 1√
2

(|↑4,i, j↓5,i, j〉 − |↓4,i, j↑5,i, j〉), (25)

which gives rise to a 1/5 plateau in the zero-temperature mag-
netization curve. The projection of zero effective field (18) on
the (J2/J1)-(h/J1) plane, denoted by the blue dashed line in
Fig. 4, closely follows the zero-temperature phase boundary
between the FRI and MD ground-state regimes.

We note that the ground-state phase diagram of the Ising-
Heisenberg model, shown in Fig. 4, is remarkably similar
to that of the Heisenberg model on the diamond-decorated
square lattice; see Fig. 3 of Ref. [16]. In particular, both mod-
els feature an extended first-order quantum-phase-transition
line that separates a ferrimagnetic regime from the MD regime
(in the Heisenberg case, the ferrimagnetic phase still exhibits
quantum fluctuations [16], in contrast to the purely classi-
cal nature of the FRI ground state). As we will show in
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FIG. 6. Zero-temperature asymptotic values of the effective in-
teraction Jeff (a) and the effective magnetic field heff (b) in the
(J2/J1)-(h/J1) plane. Black solid lines determine zero contour lines
for the effective interaction Jeff = 0 and the effective field heff = 0.
Green dashed lines in (a) denote the ground-state phase boundaries.

the following, we observe similar interesting thermal physics
emerging from this first-order line, which we can access by
exact methods in the case of the Ising-Heisenberg model. This
adds a very valuable understanding of the underlying thermal
physics in both models. To complete the comparison of the
two models, we note that both models also exhibit a high-field
PM phase, whereas the narrow additional dimer-tetramer and
spin-canted phases that appear in the Heisenberg case are ab-
sent in the Ising-Heisenberg case, due to the pure longitudinal
interaction of the Ising spins. Therefore an analysis of the
Ising-Heisenberg case, as provided here, is of separate value
in view of the general relevance of such models for actual
compounds, as mentioned above.

B. Zero-temperature limit of effective parameters

Figure 6 shows the zero-temperature asymptotic values
of the effective interaction Jeff and the effective field heff ,
according to the exact mapping (11) between the spin-1/2
Ising-Heisenberg model on the decorated square lattice and
the spin-1/2 Ising model on the square lattice. The pres-
ence of spontaneous long-range order of the latter effective
model requires zero effective field heff = 0 in combination

with nonzero effective interaction Jeff �= 0 [40]. It is clear
from Fig. 6(a) that the regime of nonzero effective interaction
Jeff �= 0 is limited to a rather narrow strip in the parameter re-
gion bounded by the conditions h > J2 − J1 and h < J1 + J2.
The ground-state phase boundary between the FRI and MD
phases is thus the only one along which the requirement of a
nonzero effective interaction Jeff �= 0 is fulfilled.

The plot of the effective field heff displayed in Fig. 6(b)
reveals that the effective field changes sign across two zero-
temperature phase boundaries of the FRI ground state. It
actually turns out that the effective field is negative (heff < 0)
within the FRI phase, whereas it becomes positive (heff > 0)
within the MD and PM phases. Hence it follows that two
zero contour lines of the effective field heff = 0 coincide with
the ground-state phase boundaries for the FRI-PM and FRI-
MD transitions. Recall that the effective interaction vanishes,
Jeff = 0, along the ground-state phase boundary between the
FRI and PM phases and, consequently, this zero-temperature
phase transition cannot appear at any finite temperature. Con-
trary to this, the other zero contour line of the effective field
heff = 0, pertinent to the ground-state boundary between the
FRI and MD phases, is accompanied by a nonzero effective
interaction Jeff �= 0. Hence an eventual extension of this zero-
temperature phase transition to finite temperatures is indeed
feasible.

C. Exact results for thermal phase transitions

Next, we examine in detail the thermal phase
diagram of the spin-1/2 Ising-Heisenberg model on
the diamond-decorated square lattice, which is depicted
in Fig. 7(a) in the three-dimensional parameter space
(h/J1)-(J2/J1)-(kBT/J1). In agreement with the ground-state
phase diagram shown in Fig. 4, the green solid line
that falls in Fig. 7(a) onto the (h/J1)-(J2/J1) plane
corresponds to zero-temperature first-order quantum phase
transitions between the FRI and MD phases. It should be
pointed out, however, that the coexistence of the FRI and MD
phases manifested through a zero effective field, heff = 0,
is not confined to zero temperature, because the nontrivial
solution of the zero-field condition (18) extends to finite
temperatures as well. It actually turns out that the effective
field vanishes, heff = 0, along an extended surface, i.e., a
wall of discontinuities. This wall spreads across the red
solid curves that are selectively shown in Fig. 7(a), each
representing a line of thermal first-order phase transitions
between the FRI and MD phases for a selected value of
the interaction ratio J2/J1. These displayed lines of thermal
discontinuous phase transitions terminate in a line of Ising
critical points unambiguously determined by the critical
condition (19), forming a line of continuous (second-order)
phase transitions, displayed in Fig. 7(a) as a blue dotted curve.

The lines of discontinuous phase transitions (i.e., the red
solid curves) are not perfectly vertical, which means that the
magnetic field ascribed to the coexistence of the FRI and
MD phases slightly bends upon increasing the temperature
while the interaction ratio J2/J1 is kept constant. To illustrate
this more explicitly, Fig. 7(b) shows a three-dimensional plot
of the line of the Ising critical points (19) together with its
zero-temperature projection onto the (J2/J1)-(�h/J1) plane.
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FIG. 7. (a) Global phase diagram of the spin-1/2 Ising-
Heisenberg model on the diamond-decorated square lattice in the
(h/J1)-(J2/J1)-(kBT/J1) parameter space. The blue dotted curve de-
notes the line of Ising critical points, at which the lines of first-order
transitions (red solid curves) between the FRI and MD phases ter-
minate. The green solid line in the (h/J1)-(J2/J1) plane determines
the FRI-MD ground-state phase boundary. (b) The blue dotted curve
shows the line of Ising critical points as a function of the magnetic
field change �h/J1 and the interaction ratio J2/J1, whereby vertical
lines are respective projections towards the (�h/J1)-(J2/J1) plane.
The magnetic field change �h/J1 is given by the difference of the
magnetic field coordinate of the Ising critical point and the respective
FRI-MD ground-state phase boundary.

Here, �h/J1 is given by the difference of the magnetic field
value of the Ising critical point (19) and the zero-temperature
phase transition between the FRI and MD phases for a given
value of the interaction ratio. Figure 7(b) shows that this mag-
netic field shift is negative, �h/J1 < 0, for sufficiently small
values of the interaction ratio J2/J1 < 2, while it becomes
positive in the reverse case J2/J1 > 2. This change implies

a temperature-induced bending of the lines of first-order tran-
sitions to lower (higher) magnetic fields for sufficiently small
(high) values of the interaction ratio J2/J1 < 2 (J2/J1 > 2).
Note that similar bending behavior of discontinuous phase
transitions was previously reported for several frustrated
spin-1/2 Heisenberg models, based on extensive numerical
calculations [6,13–16], and we will therefore address this
intriguing feature in more detail based on our exact results
for the model at hand.

To provide a more comprehensive picture, the lines of
the thermal first-order transitions between the FRI and MD
phases are plotted in Fig. 8 along with the respective Ising
critical point for six selected values of the interaction ratio
J2/J1. It directly follows from Fig. 8 that the spin-1/2 Ising-
Heisenberg model on the diamond-decorated square lattice
exhibits a rather rich diversity of finite-temperature phase di-
agrams, depending on the coupling ratio J2/J1: For J2/J1 < 2
one observes, at low temperatures, a bending of the phase-
transition line towards lower magnetic fields, i.e., thermal
fluctuations prefer the FRI phase over the MD phase [see
Figs. 8(a)–8(d)]. On the other hand, the line of first-order tran-
sitions bends towards higher magnetic fields for larger values
of the interaction ratio J2/J1 � 2, giving rise to a thermally
assisted proliferation of the MD phase at the expense of the
FRI phase [see Figs. 8(e) and 8(f)] instead.

The most remarkable phase boundary can be found for
an interaction ratio J2/J1 � 2, as illustrated by two particular
cases shown in Figs. 8(c) and 8(d). Although one may still
detect a bending of the phase-transition line towards lower
magnetic fields at sufficiently low temperatures, the relevant
line of discontinuous phase transitions starts to bend at higher
temperatures in the opposite direction, i.e., towards higher
magnetic fields. As a consequence one surprisingly finds,
in a relatively narrow range of magnetic field strength, two
consecutive reentrant thermal phase transitions from the MD
phase to the FRI phase and vice versa. For the particular
choice of the interaction ratio J2/J1 = 1.995 and a mag-
netic field of h/J1 = 1.9899 [Fig. 8(d)], the MD phase is,
for instance, preserved up to the first transition temperature
kBT/J1 ≈ 0.1875. The FRI phase is consecutively realized at
moderate temperatures ranging up to the second transition
temperature kBT/J1 ≈ 0.285, and finally the MD phase is
recovered at higher temperatures. Whereas numerous exact
studies have previously reported continuous reentrant phase
transitions in two-dimensional exactly solved Ising spin mod-
els (see Refs. [42,43] and references therein) since the early
discovery of this peculiar phenomenon by Vaks, Larkin, and
Ovchinnikov [44], here we report the exact determination of
discontinuous reentrant phase transitions.

D. Bending of the first-order transition lines

Next, we aim to clarify why the discontinuous phase-
transition lines between the FRI and MD phases bend towards
either lower or higher magnetic fields. At low temperature,
the form of the phase-transition lines is a direct consequence
of a few low-energy excitations. To provide a more in-depth
understanding, it is convenient to start from a diagonal form
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FIG. 8. Exact finite-temperature phase diagrams of the spin-1/2 Ising-Heisenberg model on the diamond-decorated square lattice in
the magnetic field vs temperature plane at six selected values of the interaction ratio: (a) J2/J1 = 1.5, (b) J2/J1 = 1.75, (c) J2/J1 = 1.99,
(d) J2/J1 = 1.995, (e) J2/J1 = 2.0, and (f) J2/J1 = 2.5. The red solid curves determine the lines of thermal first-order transitions between the
FRI and MD phases, which end at the Ising critical point, indicated by a blue star.

of the local Hamiltonians (3) of the diamond spin clusters:

eh
i, j = J1Sz

23,i, j

(
Sz

1,i, j + Sz
1,i+1, j

) + J2

2
S23,i, j (S23,i, j + 1)

− 3J2

4
− hSz

23,i, j − h

4

(
Sz

1,i, j + Sz
1,i+1, j

)
,

ev
i, j = J1Sz

45,i, j

(
Sz

1,i, j + Sz
1,i, j+1

) + J2

2
S45,i, j (S45,i, j + 1)

− 3J2

4
− hSz

45,i, j − h

4

(
Sz

1,i, j + Sz
1,i, j+1

)
, (26)

which are expressed in terms of the quantum spin numbers of
S23,i, j = S2,i, j + S3,i, j and S45,i, j = S4,i, j + S5,i, j determining
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the total spin of the dimers and their z components. The
overall energy can then be obtained as a sum of all energy
contributions of separate diamond spin clusters (26).

The ground-state phase diagram shown in Fig. 4 involves
three different phases.

(i) The MD phase (S23,i, j = Sz
23,i, j = 0, Sz

1,i, j = 1/2) has an
energy per diamond spin cluster of

eMD = −3

4
J2 − h

4
.

(ii) The FRI phase (S23,i, j = Sz
23,i, j = 1, Sz

1,i, j = −1/2) has
an energy per diamond spin cluster of

eFRI = J2

4
− J1 − 3h

4
.

(iii) The PM phase (S23,i, j = Sz
23,i, j = 1, Sz

1,i, j = 1/2) has
an energy per diamond spin cluster of

ePM = J2

4
+ J1 − 5h

4
.

Here, we follow the procedure given in the Supplemental
Material of Ref. [13]. The low-temperature thermodynamic
properties are determined solely by the low-energy excitations
above the ground state, such that the free energy F can be
approximated as

F ≈ E0 − kBT
∑

m

Nme−β�m , (27)

where E0 denotes the ground-state energy and �m and Nm

denote the energy and the degeneracy of the mth excitation.
If one considers the phase boundary between the MD and FRI
phases, the line of first-order phase transitions can be obtained
from the equality of the free energies of both phases, i.e.,
FMD = FFRI, as in the case of the Heisenberg model [16].

To proceed further, we require the lowest-energy exci-
tations above a given ground state. First, let us introduce
a convenient notation for the eigenenergies of the dia-
mond spin clusters: E (Sz

1,i, j, {S23, Sz
23}, Sz

1,i, j+1) and their
respective excitation energies �E (Sz

1,i, j, {S23, Sz
23}, Sz

1,i, j+1).
If an excited state relates to an elementary excitation of
the Ising spin, the elementary excitation energy should
be multiplied by a factor of 4 in order to obtain the
overall energy gain, i.e., �E (Sz

1,i, j, {S23, Sz
23}, Sz

1,i, j+1) =
4(E (Sz

1,i, j, {S23, Sz
23}, Sz

1,i, j+1) − E0), since each Ising spin be-
longs to four different diamond spin clusters. Using Eq. (26),
one may readily calculate the energies of the low-energy ex-
cited states pertinent to the MD phase:

E
(

1
2 , {0, 0},− 1

2

) = − 3
4 J2,

E
(

1
2 , {1, 1}, 1

2

) = 1
4 J2 + J1 − 5

4 h,

E
(

1
2 , {1, 0}, 1

2

) = 1
4 J2 − 1

4 h. (28)

Taking into account that E0 = eMD, the corresponding excita-
tion energies relative to the MD phase are then given by the
following expressions:

�E

(
1

2
, {0, 0},−1

2

)
= h

4
× 4 = h,

FIG. 9. Density plot of the lowest excitation energy above the
MD and FRI ground states. Here, ‘excit.’ abbreviates excitations.

�E

(
1

2
, {1, 1}, 1

2

)
= J1 + J2 − h,

�E

(
1

2
, {1, 0}, 1

2

)
= J2. (29)

The excitation energy �E ( 1
2 , {0, 0},− 1

2 ) [�E ( 1
2 , {1, 1}, 1

2 )]
is smallest if h < h1 (h > h1) (see Fig. 9), where

h1 = 1
2 (J1 + J2). (30)

Note that h1 crosses the ground-state phase boundary hMD-FRI

at J2/J1 = 5/3, h/J1 = 4/3.
According to Eq. (26), the energies of the low-energy

excited states pertinent to the FRI phase are given by the
expressions

E
(

1
2 , {1, 1},− 1

2

) = 1
4 J2 − h,

E
(− 1

2 , {0, 0},− 1
2

) = − 3
4 J2 + 1

4 h,

E
(− 1

2 , {1, 0},− 1
2

) = 1
4 J2 + 1

4 h, (31)

which are consistent with the excitation energies

�E

(
1

2
, {1, 1},−1

2

)
=

(
J1 − h

4

)
× 4 = 4J1 − h,

�E

(
−1

2
, {0, 0},−1

2

)
= J1 − J2 + h,

�E

(
−1

2
, {1, 0},−1

2

)
= J1 + h. (32)

It follows from Eq. (32) that the excitation energy
�E (− 1

2 , {0, 0},− 1
2 ) [�E ( 1

2 , {1, 1},− 1
2 )] is smallest for h <

h2 (h > h2) (see Fig. 9), where

h2 = 1
2 (3J1 + J2). (33)

Comparing with (20) shows that h2 crosses the ground-state
phase boundary hMD-FRI at J2/J1 = 7/3, h/J1 = 8/3. We note
that behavior very similar to that shown in Fig. 9 for the Ising-
Heisenberg model is found in the Heisenberg model on the
diamond-decorated square lattice; see Fig. 11 of Ref. [16].
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FIG. 10. Exact results and low-temperature approximation for
the thermal first-order phase-transition lines of the spin-1/2 Ising-
Heisenberg model on the diamond-decorated square lattice for three
different values of the interaction ratio: (a) J2/J1 = 1.5, (b) J2/J1 =
1.995, and (c) J2/J1 = 2.5.

Using the excitation energies (29) and (32), one readily
finds the low-temperature approximation for the free energy
per diamond spin cluster in the MD and FRI phases:

fMD = FMD

2N
≈ eMD − 1

β

(
1

2
e−β�E ( 1

2 ,{0,0},− 1
2 )

+ e−β�E ( 1
2 ,{1,1}, 1

2 ) + e−β�E ( 1
2 ,{1,0}, 1

2 )
)
, (34)

fFRI = FFRI

2N
≈ eFRI − 1

β

(
1

2
e−β�E ( 1

2 ,{1,1},− 1
2 )

+ e−β�E (− 1
2 ,{0,0},− 1

2 ) + e−β�E (− 1
2 ,{1,0},− 1

2 )
)
. (35)

It is convenient to again introduce the deviation of the
magnetic field from the transition field value between the MD
and FRI phases,

�h = h − hMD-FRI = h − 2(J2 − J1), (36)

which is small at low temperatures. Next, we solve the equa-
tion fMD = fFRI by keeping only terms linear in �h, which
gives the following result:

�h ≈ 2kBT
[
e−β(3J1−J2 )+ 1

2 e−β(2J2−2J1 )+e−βJ2

− e−β(J2−J1 )− 1
2 e−β(6J1−2J2 )−e−β(2J2−J1 )

]
. (37)

This result contains contributions from all low-energy exci-
tations given by Eqs. (29) and (32). However, only a few of
these contributions remain relevant for particular values of the
magnetic field and the interaction ratio. In Fig. 10(a) we illus-
trate the first paradigmatic example, typical for the parameter
region J2/J1 < 5/3, for which the lowest-energy excitation in
the MD phase �E ( 1

2 , {0, 0},− 1
2 ) = h relates to a spin flip

of the Ising spin, whereas the lowest-energy excitation in the
FRI phase �E (− 1

2 , {0, 0},− 1
2 ) = J1 − J2 + h corresponds to

the Heisenberg dimer (see Fig. 9). In this respect, one may
further simplify Eq. (37) by retaining only the two most
relevant terms, related to the aforementioned lowest-energy
excitations:

�h ≈ 2kBT

[
1

2
e−β(2J2−2J1 )−e−β(J2−J1 )

]
,

J2

J1
<

5

3
. (38)

This equation implies that the phase-transition line between
the FRI and MD phases bends to lower magnetic fields, �h <

0, because the lowest excitation energy in the FRI phase is
smaller than the one in the MD phase. This finding is con-
sistent with the phase-transition lines depicted in Fig. 10(a),
whereby the low-temperature approximation (38) correctly
reproduces at sufficiently low temperatures the form of the
exact transition line remarkably accurately (note that within
this approximation, we cannot determine the position of the
critical point).

For the second paradigmatic example, typical for larger
values of the interaction ratio J2/J1 > 7/3, the lowest-energy
excitation �E ( 1

2 , {1, 1}, 1
2 ) = J1 + J2 − h of the Heisenberg

dimer in the MD phase has a lower energy than the lowest-
energy excitation �E ( 1

2 , {1, 1},− 1
2 ) = 4J1 − h of the Ising

spins in the FRI phase. If only those two lowest-energy ex-
citations are taken into consideration, the formula (37) for �h
simplifies to

�h ≈ 2kBT

[
e−β(3J1−J2 )−1

2
e−β(6J1−2J2 )

]
,

J2

J1
>

7

3
. (39)

This result shows that the phase-transition line between the
FRI and MD phases now bends to higher magnetic fields
�h > 0, since the lowest excitation energy in the FRI phase
is higher than that in the MD phase. This fact explains why
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the exact phase-transition line displayed in Fig. 10(c) shifts
towards higher magnetic fields in accordance with the predic-
tion obtained by the low-temperature approximation (39).

Similar arguments can also be exploited for moderate val-
ues of the interaction ratio 5/3 < J2/J1 < 7/3 excluding the
particular case close to J2/J1 = 2. Under this condition, the
lowest-energy excitation in the MD and FRI phases relates to
an elementary excitation of the Heisenberg dimer with the rel-
evant excitation energies �E ( 1

2 , {1, 1}, 1
2 ) = J1 + J2 − h and

�E (− 1
2 , {0, 0},− 1

2 ) = J1 − J2 + h, respectively. Thermally
driven changes in the transition field between the MD and FRI
phases consequently follow from the formula

�h ≈ 2kBT
[
e−β(3J1−J2 ) − e−β(J2−J1 )

]
,

5

3
<

J2

J1
<

7

3
,

J2

J1
�= 2. (40)

which can be either positive or negative, depending on
whether the interaction ratio is greater or smaller than J2/J1 =
2, respectively. The particular case J2/J1 = 2 is special, be-
cause the first and second lowest-energy excitations in both
phases are equal and their contributions in Eq. (37) cancel out.
Therefore the third lowest-energy excitation of the Heisenberg
dimers to the zero-magnetization triplet state decisively deter-
mines the thermal behavior of the magnetic field change �h:

�h ≈ 2kBT
[
e−βJ2−e−β(2J2−J1 )

]
, J2

J1
= 2. (41)

Evidently, the lowest excitation energy �E ( 1
2 , {1, 0}, 1

2 ) =
J2 in the MD phase is smaller than the one
�E (− 1

2 , {1, 0},− 1
2 ) = J1 + h in the FRI phase, and hence the

phase-transition line between the MD and FRI phases bends
towards higher magnetic fields, in accordance with what is
observed in Fig. 8(e). The specific case with the interaction
ratio J2/J1 � 2 is even much more intricate because of a
subtle interplay between a few low-energy excitations. The
phase-transition line between the MD and FRI phases at first
bends at low enough temperatures towards lower magnetic
fields in accordance with formula (40), but an opposite
bending towards higher magnetic fields emerges at moderate
temperatures, due to a decisive role of the third-lowest
excitations of the Heisenberg dimer to the zero-magnetization
triplet state. It can thus be concluded that reentrant phase
transitions that are observed within a narrow region of the
interaction parameters J2/J1 � 2 can be attributed to a subtle
interplay of all three lowest-energy excitations (29) and (32)
above the respective MD and FRI phases [see Fig. 10(b)].

E. Monte Carlo simulations

In order to provide an independent confirmation of the ex-
act results presented in the previous sections, we additionally
performed classical Monte Carlo simulations of the effective
spin-1/2 Ising model on the square lattice with temperature-
dependent nearest-neighbor interaction and magnetic field,
given by the Hamiltonian (12), from which one may easily ex-
tract the magnetic behavior of the spin-1/2 Ising-Heisenberg
model on the diamond-decorated square lattice for arbitrary
temperature and magnetic field. First, our attention will be
focused on a detailed investigation of magnetization curves,
which are depicted in Fig. 11 for a fixed value of the interac-

tion ratio J2/J1 = 2 and four different values of temperature.
Here, we show the separate magnetizations mH and mI for the
Heisenberg and Ising spins calculated according to Eqs. (13)
and (15), respectively, as well as the total magnetization per
spin mT = (mI + 4mH)/5.

Figure 11 shows that the magnetization curves of the spin-
1/2 Ising-Heisenberg model on the diamond-decorated square
lattice exhibit two distinct intermediate 1/5 and 3/5 plateaus
whose microscopic nature can be inferred from the local mag-
netization of the Ising and Heisenberg spins. At sufficiently
low magnetic fields h/J1 < 2, the Ising spins gradually tend
towards the magnetic field direction, while there is almost no
contribution from the Heisenberg spins to the total magneti-
zation. These findings conform with the MD phase as being
composed of the polarized Ising spins and the singlet-dimer
Heisenberg spin pairs. At higher magnetic fields, h/J1 > 2,
the Heisenberg spins are oriented in the magnetic field di-
rection, in contrast to the Ising spins predominantly pointing
in the opposite direction. The observed values of the local
magnetization of the Ising and Heisenberg spins thus coincide
with the spin arrangement attributed to the FRI phase.

In agreement with the exact finite-temperature phase dia-
gram presented in Fig. 8(e), the magnetization curves display
a finite magnetization jump at sufficiently low tempera-
tures, related to a discontinuous field-driven phase transition,
which gradually shrinks upon increasing the temperature, un-
til it completely disappears at a certain critical temperature
pertinent to a continuous field-driven phase transition. The
magnetization curves plotted in Figs. 11(a) and 11(b) for
the lowest two temperatures actually exhibit quite analogous
dependencies with a pronounced magnetization discontinu-
ity, which is subject to a gradual reduction and smoothing
upon increasing of temperature. The magnetization curves
undergo a crucial change in the close vicinity of the critical
temperature kBT/J1 ≈ 0.33, at which it exhibits a smooth
continuous dependence across the Ising critical point, instead
of the discontinuous magnetization jump. The Ising critical
point is a prominent manifestation of the continuous field-
driven phase transition, which is represented by an inflection
point with an infinite tangent in the relevant magnetization
curve [see Fig. 11(c)]. Contrary to this, the magnetization
curves recorded at temperatures exceeding the critical tem-
perature are smooth and continuous functions of the magnetic
field, without any singular point as exemplified in Fig. 11(d)
for the particular case of kBT/J1 = 0.4. Although there does
not appear to be any magnetic-field-driven phase transition,
the local and total magnetizations still exhibit a crossover
between the values typical for the MD and FRI phases as
some residual trace of the low-temperature phase transition.
A similar crossover can also be found between the FRI and
PM phases around the magnetic field h/J1 = 4. However,
the crossover between the FRI and PM phases emerges for
arbitrarily low temperature, as a consequence of the absence
of any magnetic-field-driven phase transition between the FRI
and PM phases at any nonzero temperature.

The MD and FRI phases essentially differ in the character
of the spin arrangement of the Heisenberg dimers. This means
that the difference in the densities of singlets in the MD
and FRI phases plays the role of an order parameter for the
MD-FRI phase transition in close analogy to the difference in
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FIG. 11. Results from Monte Carlo simulations for the magnetization curves of the spin-1/2 Ising-Heisenberg model on the diamond-
decorated square lattice for a fixed value of the interaction ratio J2/J1 = 2 and four different values of the temperature: (a) kBT/J1 = 0.2,
(b) kBT/J1 = 0.3, (c) kBT/J1 = 0.33, and (d) kBT/J1 = 0.4.

density of the vapor and liquid phases of water. As a matter of
fact, at T = 0, all Heisenberg spin pairs create singlet-dimer
states in the MD phase where the singlet density thus is equal
to 1 (n = 1), while in the FRI all Heisenberg spins are in the
polarized triplet state, so that the singlet density becomes zero
(n = 0).

A few typical plots of the singlet density are shown in
Fig. 12(a) as a function of the magnetic field for a fixed
value of the interaction ratio J2/J1 = 2 and four selected

temperatures. At sufficiently low temperatures one indeed
observes in Fig. 12(a) an abrupt jump in the singlet den-
sity from a relatively high value n ≈ 1 ascribed to the MD
phase to a rather low value n ≈ 0 corresponding to the FRI
phase. The discontinuous jump in the singlet density coincides
with the discontinuous field-induced phase transition and
gradually shrinks upon increasing of temperature until it com-
pletely vanishes at the critical temperature kBT/J1 ≈ 0.33.
The continuous field-driven phase transition at the respective

FIG. 12. Magnetic field dependencies of the singlet density (a) and the total magnetization (b) of the spin-1/2 Ising-Heisenberg model on
the diamond-decorated square lattice for a fixed value of the interaction ratio J2/J1 = 2 and four different temperatures.
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FIG. 13. Results from Monte Carlo simulations for the temperature dependencies of the magnetization of the spin-1/2 Ising-Heisenberg
model on the diamond-decorated square lattice for a fixed value of the interaction ratio J2/J1 = 1.995 and four different values of the magnetic
field: (a) h/J1 = 1.9897, (b) h/J1 = 1.9899, (c) h/J1 = 1.9902, and (d) h/J1 = 1.9906.

critical temperature is reflected in the singlet density through
the Ising critical point denoting an inflection point with in-
finite tangent. Figure 12(a) shows that the singlet density
monotonically decreases with increasing magnetic field at
higher temperatures, e.g., at kBT/J1 = 0.4. Finally, we have
compiled in Fig. 12(b) the total magnetization as a function
of the magnetic field for a fixed value of the interaction ra-
tio J2/J1 = 2 and four different values of temperature. This
comparison bears evidence of a fundamental difference be-
tween finite-temperature manifestations of two discontinuous
zero-temperature phase transitions, MD-FRI and FRI-PM, re-
spectively. While the former discontinuous phase transition
MD-FRI is still preserved at sufficiently low temperatures
bounded from above by the Ising critical point, the latter phase
transition, FRI-PM, merely exists at zero temperature and is
replaced by a simpler crossover without any singularity for
arbitrary nonzero temperatures.

Another question is whether Monte Carlo simulations can
corroborate the reentrant phase transitions, which emerge only
within a very narrow range of the magnetic field, as exem-
plified in Figs. 8(c) and 8(d). As a showcase, we depict in
Fig. 13 Monte Carlo data for the temperature dependencies of
the magnetization of the spin-1/2 Ising-Heisenberg model on
the diamond-decorated square lattice for a fixed value of the
interaction ratio J2/J1 = 1.995 and four different values of the
magnetic field. The Monte Carlo data for the magnetization
turn out to be in excellent agreement with the exact results

presented in Fig. 8(d). If the magnetic field is fixed to the value
h/J1 = 1.9897, the local and total magnetizations exhibit the
MD ground state, whose spin arrangement gradually melts
upon increasing of temperature, without passing through any
finite-temperature phase transition [see Fig. 13(a)]. The most
peculiar thermal variations in the magnetization, which doc-
ument the double reentrant phase transitions, are displayed
in Fig. 13(b) for a magnetic field strength of h/J1 = 1.9899.
Although this value of the magnetic field differs from the
previous one only in the fourth decimal place, the Monte
Carlo data for the discontinuous magnetization jumps are in
excellent accordance with the exact values of the transition
temperatures. The MD ground state actually persists up to
the first transition temperature kBT/J1 ≈ 0.1875, at which
the system undergoes a phase transition to the FRI phase,
which is then stable until a reentrant phase transition at the
second transition temperature kBT/J1 ≈ 0.285, leading back
into the MD phase. Note that the phenomenon of the double
reentrance suddenly disappears by an additional small rise of
the magnetic field to h/J1 = 1.9902, for which one merely
detects a single discontinuous phase transition from the FRI
phase to the MD phase [see Fig. 13(c)]. Last but not least,
temperature variations of the local and total magnetization at
even higher magnetic field h/J = 1.9906 vary continuously
as one reaches the Ising critical point, which marks a contin-
uous phase transition between the FRI and MD phases [see
Fig. 13(d)].
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FIG. 14. Temperature dependence of the singlet density (a) and the total magnetization (b) of the spin-1/2 Ising-Heisenberg model on the
diamond-decorated square lattice for a fixed value of the interaction ratio J2/J1 = 1.995 and four different values of the magnetic field.

Monte Carlo data for the temperature dependence of the
singlet density are plotted in Fig. 14(a) for a fixed value of
the interaction ratio J2/J1 = 1.995 and four different values
of the magnetic field. At low temperatures the singlet den-
sity reaches its maximal value for a magnetic field of h/J =
1.9897, due to the presence of the MD phase, whose spin ar-
rangement is subject to a gradual temperature-driven melting,
mainly on account of a thermally assisted activation of the
FRI state. On the other hand, two discontinuous jumps in the
singlet density are detected when the magnetic field is set to
h/J = 1.9899 so as to achieve a sequence of double reentrant
phase transitions MD-FRI and FRI-MD [compare Fig. 14(a)
with the phase diagram shown in Fig. 8(d)]. The two discon-
tinuities in the singlet density can be alternatively regarded
as smoking gun evidence of the discontinuous reentrant phase
transitions. For a slightly larger magnetic field, h/J = 1.9902,
the singlet density is zero at low temperatures, in agreement
with the FRI ground state, and it gradually increases upon
rising temperature until it shows a single discontinuous jump,
indicating the first-order phase transition from the FRI phase
to the MD phase. Finally, a continuous change in the sin-
glet density is expected at the Ising critical point related to
the second-order phase transition between the FRI and MD
phases for the particular case with h/J = 1.9906, shown in
Fig. 14(a).

To complete the overall picture, we plotted in Fig. 14(b) the
total magnetization of the spin-1/2 Ising-Heisenberg model
on the diamond-decorated square lattice against temperature
for the same set of parameters as used in Fig. 14(a). The
zero-temperature asymptotic value of the total magnetiza-
tion mT = 0.1 (i.e., the 1/5 plateau) corresponds to the MD
phase, while mT = 0.3 (i.e., the 3/5 plateau) is indicative
of the FRI phase. Although the total magnetization never
achieves the exact zero-temperature values of mT = 0.1 and
0.3 at nonzero temperatures, the transition values of the total
magnetization always fall into the relevant branches that are
predicted for the pure MD phase (as obtained, for instance,
for h/J = 1.9897) or the pure FRI phase (as obtained for
h/J = 1.9906). Furthermore, according to Fig. 14(b) the tem-
perature dependencies of the total magnetization exhibit the
following variants of the magnetic-field-driven phase transi-
tions, depending on the strength of the magnetic field: the

absence of any phase transition (h/J = 1.9897), the double
reentrant discontinuous phase transitions manifested by two
discontinuous magnetization jumps (h/J = 1.9899), a single
discontinuous phase transition evidenced by a unique magne-
tization jump (h/J = 1.9902), or a single continuous phase
transition through an inflection point with vertical tangent
(h/J = 1.9906).

The preceding analysis shows that the singlet density
and the total magnetization of the spin-1/2 Ising-Heisenberg
model on the diamond-decorated square lattice exhibit pro-
nounced changes across the line of discontinuous phase
transitions, because both quantities take on rather distinct
values within the MD and FRI phases. Based on this fact,
the density plots of the singlet density n and the total mag-
netization mT, displayed in Fig. 15 in the magnetic field
versus temperature plane, could be alternatively regarded as
finite-temperature phase diagrams. Figure 15 demonstrates
that the singlet density and the total magnetization indeed
undergo abrupt discontinuous changes along the whole first-
order phase-transition lines, displayed in Fig. 15 by thick
green curves, whereas a smooth continuous change in these
quantities can be observed at and above the Ising critical
points, depicted by green spheres. The singlet density and
the total magnetization are considerably smeared out above
the Ising critical temperature, where they exhibit merely sub-
tle deviations from the mean values n = 0.5 and mT = 0.2,
respectively. Last but not least, the results of Monte Carlo sim-
ulations shown in Figs. 15(c) and 15(d) for the particular value
of the interaction ratio J2/J1 = 1.995 confirm the previously
predicted reentrant discontinuous phase transitions from the
MD phase to the FRI phase and vice versa.

IV. CONCLUDING REMARKS

We investigated the magnetic properties of the spin-1/2
Ising-Heisenberg model on the diamond-decorated square
lattice in a magnetic field by means of a generalized
decoration-iteration transformation and classical Monte Carlo
simulations. The generalized decoration-iteration transfor-
mation provided us with an exact mapping of the original
model to an effective spin-1/2 Ising model on the square lat-
tice, with temperature-dependent effective nearest-neighbor
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FIG. 15. Monte Carlo results for the singlet density n [(a) and (c)] and the total magnetization mT [(b) and (d)] of the spin-1/2 Ising-
Heisenberg model on the diamondlike-decorated square lattice for two selected values of the interaction ratio: (a) and (b) J2/J1 = 2.0 and
(c) and (d) J2/J1 = 1.995. Thick green solid curves display exact results for the line of first-order phase transitions terminated by the Ising
critical point (green spheres).

interactions and magnetic field. Based on this mapping, the
spin-1/2 Ising-Heisenberg model on the diamond-decorated
square lattice in a magnetic field becomes exactly solvable
within the particular subspace of the parameter region where
the effective field vanishes. Apart from a trivial case, one
obtains a vanishing effective field along the ground-state
boundary between the FRI phase and the MD phase, which
gives rise to exactly determined lines of thermal first-order
phase transitions, each terminating in a critical point. The
exact mapping shows that this critical point belongs to the
Ising universality class. We demonstrated that the first-order
phase-transition lines bend towards either lower or higher
magnetic fields upon increasing temperature, depending on
the interaction ratio. This bending of the phase-transition lines
has been explained in terms of low-energy excitations atop the
FRI and MD ground states. The remarkably good agreement
that we demonstrate between the exact shapes of the first-
order transition lines and their approximated form, obtained
from the free-energy arguments put forward in Ref. [13],
demonstrates explicitly the reliability of the latter approach,
which has been used in various related studies [13–16]. We
note that Ref. [14] derived a mapping from the plaquettized
fully frustrated bilayer spin-1/2 Heisenberg model onto an
effective Ising model, which similarly describes a line of Ising

critical points that terminates a wall of first-order transitions.
However, those results were obtained only in perturbation
theory, whereas here we obtained exact analytical results for
the thermal transitions.

Our exact results have furthermore corroborated the pres-
ence of reentrant discontinuous phase transitions, which
emerge inside a rather narrow but finite parameter regime.
To further explore the parameter region in which the effective
field is nonzero, we performed classical Monte Carlo simula-
tions of the effective spin-1/2 Ising square-lattice model with
temperature-dependent interactions and magnetic field, from
which we could extract accurate numerical results for the spin-
1/2 Ising-Heisenberg model on the diamond-decorated square
lattice in a magnetic field. These Monte Carlo results are in
perfect agreement with the exact analytical results available
for zero effective field and provided us with supplementary in-
sights into the parameter regime with a nonzero effective field.

We remark that similar lines of thermal first-order phase
transitions, ending in Ising critical points, have been reported
recently also for the fully quantum spin-1/2 Heisenberg
model on the diamond-decorated square lattice in a magnetic
field, which has been treated by sign-problem-free quantum
Monte Carlo simulations [16]. From this perspective, the exact
analytical results for the simplified spin-1/2 Ising-Heisenberg
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model on the diamond-decorated square lattice in a mag-
netic field reported here are valuable as they bring about
a more comprehensive understanding of several intriguing
physical phenomena such as the bending of the first-order
phase-transition lines, the presence of the Ising critical points,
and a reentrant discontinuous phase transition. Quantitatively
accurate results for the full Heisenberg model require time-
consuming state-of-the-art numerical methods. Without exact
results, the reentrance phenomenon could, for instance, be
easily overlooked, because this phenomenon emerges only
within a rather narrow parameter region. It would certainly be
interesting to investigate the possibility of similar reentrance
phenomena also in the quantum spin-1/2 Heisenberg model
on the diamond-decorated square lattice in a magnetic field.

This paper also paves the way towards finding exact
first-order phase transitions in several other two-dimensional
Ising-Heisenberg models in magnetic fields, which can be
treated by the generalized algebraic mapping transforma-
tions [33–35]. The spin-1/2 Ising-Heisenberg model on the
diamond-decorated Bethe lattice in a magnetic field represents
one prototypical example of this type, where an abrupt jump

in the low-temperature magnetization curve was previously
observed, but unfortunately remained unrelated to a thermal
first-order phase transition (see Figs. 4(a) and 4(b) in Ref. [45]
and Fig. 6(c) and 6(d) in Ref. [46]). It will therefore be inter-
esting to revisit the thermal physics of this model in future
work, explicitly considering further thermodynamic quanti-
ties, such as the specific heat or the magnetic susceptibility,
in the vicinity of the previously observed discontinuities.
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[45] J. Strečka and C. Ekiz, Condens. Matter Phys. 15, 43003 (2012).
[46] J. Strečka and C. Ekiz, J. Supercond. Novel Magn. 26, 2761

(2013).

134402-17

https://doi.org/10.1103/PhysRevB.42.4398
https://doi.org/10.1103/PhysRevB.44.2595
https://doi.org/10.1103/PhysRevB.51.5840
https://doi.org/10.1103/PhysRev.65.117
https://doi.org/10.1088/1742-5468/2011/05/P05001
https://doi.org/10.5488/CMP.15.43003
https://doi.org/10.1007/s10948-012-2092-1

