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Dynamical scaling laws in the quantum q-state clock chain
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We show that phase transitions in the quantum q-state clock model for q � 4 can be characterized by an
enhanced decay behavior of the Loschmidt echo via a small quench. The quantum criticality of the quantum
q-state clock model is numerically investigated by the finite-size scaling of the first minimum of the Loschmidt
echo and the short-time average of the rate function. The equilibrium correlation-length critical exponents are
obtained from the scaling laws which are consistent with previous results. Furthermore, we study dynamical
quantum phase transitions by analyzing the Loschmidt echo and the order parameter for any q upon a big quench.
For q � 4, we show that dynamical quantum phase transitions can be described by the Loschmidt echo and the
zeros of the order parameter. In particular, we find the rate function increases logarithmically with q at the first
critical time. However, for q > 4, we find that the correspondence between the singularities of the Loschmidt
echo and the zeros of the order parameter no longer exists. Instead, we find that the Loschmidt echo near its first
minimum converges, while the order parameter at its first zero increases linearly with q.
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I. INTRODUCTION

Continuous phase transitions in equilibrium are central
concepts in quantum many-body systems [1]. The nature
of phase transitions can usually be characterized by the
universality classes and the order parameters from the renor-
malization group [2,3] and the finite-size scaling theory [4,5].
Using the theoretical tools of quantum information science,
quantum phase transitions and critical phenomena in equi-
librium can also be probed by the quantum entanglement
[6–8], the ground-state fidelity [9–19], and the Loschmidt
echo [20–22]. In contrast to the quantum entanglement and the
ground-state fidelity, which are properties of the ground state,
the Loschmidt echo is a nonequilibrium quantity and is much
easier to be measured in experiments upon a sudden quench.
Recently, the dynamical scaling laws of the Loschmidt echo
are established to extract equilibrium critical exponents of
many-body systems by the finite-size scaling theory for
second-order phase transitions [21]. For instance, the univer-
sality class of phase transitions in one-dimensional Hermitian
[21] and non-Hermitian transverse field Ising chains [22] was
identified by the Loschmidt echoes.

On the other hand, the generalization of phase transitions to
nonequilibrium systems [23,24] is attractive from the perspec-
tive of exploring unconventional phase transitions. Recently,
an interesting nonequilibrium phase transition, named the dy-
namical quantum phase transition (DQPT) [25–27], is found
to occur during the real-time evolution of a system upon a
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sudden quench. DQPTs take place after a big sudden quench
of the system across equilibrium quantum critical points in
the thermodynamic limit [25,28,29], which have been investi-
gated in various systems [30–38]. The DQPT arising from the
large quench is often characterized by the Loschmidt echo sin-
gularities [25] and the zeros of an order parameter [25,28–30]
at the critical time tc. It is argued recently that the dynamics
of such a DQPT is analogous to a two-level system dynamics
[39]. Whether the DQPT can exhibit a complex many-body
dynamics or merely behave as a two-level system remains to
be understood [40–42].

Motivated by the use of the Loschmidt echo both to
characterize equilibrium phase transitions and to unveil
novel nonequilibrium phase transitions, we investigate the
quench dynamics in the quantum q-state clock model, where
Loschmidt echoes can be analytically solved [43,44] for some
special quench protocols. In particular, we focus on the fol-
lowing two questions: first, whether the Loschmidt echo can
be used to detect equilibrium second-order phase transitions
in the presence of discrete symmetries higher than the Z2

symmetry, and second, what is the relationship between the
singularities of the Loschmidt echo and the zeros of an order
parameter of the DQPTs in the q-state clock model?

In this paper, we first use the Loschmidt echo to explore
equilibrium second-order phase transitions in the q-state clock
model and to identify the finite-size dynamical scaling and the
correlation-length critical exponents for q � 4. We find that
the decay of the Loschmidt echo is enhanced near the equilib-
rium critical point, through which we obtain the equilibrium
correlation-length critical exponents. We show that, in the
absence of the knowledge of the critical point and the phase
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transition, one can use the short-time average rate function
to study the quantum criticality even in the presence of Zq

symmetries. In addition, we develop a numerically efficient
method to perform the finite-size scaling for extracting equi-
librium critical exponents by simply using the first minima
of the Loschmidt echoes. Furthermore, we investigate the
DQPTs of the q-state clock model upon a big quench. We
derive analytical solutions for both the Loschmidt echo and
the order parameter for arbitrary q, with which we show that
DQPTs arising from the Loschmidt echo singularity can be
connected to the zeros of the order parameters for q � 4.
In particular, we find the value of the rate function of the
Loschmidt echo of q = 4 is twice as much as that of q = 2.
In addition, we show that the rate function increases logarith-
mically with q at the first critical time tc in the regime q � 4.
In contrast, for q > 4, we find that the Loschmidt echo singu-
larity does not correspond to the zeros of the order parameters.
The Loschmidt echo at its first minimum converges, and the
order parameter at its first zero increases linearly with q.

This paper is organized as follows. In Sec. II, we introduce
the quantum q-state clock model. In Sec. III, we discuss the
scaling law of the Loschmidt echo. In Sec. IV, we study a
small quench dynamics for q � 4 in the vicinity of the equi-
librium quantum critical point of the q-state clock model and
extract equilibrium critical exponents. In Sec. V, we study the
DQPTs of the q-state clock model upon a big quench for any
q and its relation to the zeros of order parameters. In Sec. VI,
we summarize our results.

II. q-STATE CLOCK MODEL

We consider a general one-dimensional quantum q-state
clock model of N sites with periodic boundary condition,
whose Hamiltonian is given by [45–48],

H = −J
N∑

j=1

(U †
j+1Uj + U †

j Uj+1) − h
N∑

j=1

(Vj + V †
j ), (1)

where the kinetic energy term is represented by the unitary
operator Uj with the coupling coefficient J , and the other
unitary operator Vj denotes the potential energy term with
the coupling constant h. The periodic boundary condition is
imposed as UN+1 = U1. We label the q states of the local
Hilbert space at the site j by |0〉 j, . . . , |l〉 j, . . . , |q − 1〉 j with
0 < l < q − 1. In these orthogonal bases, the operators Uj

and Vj are written as

Uj =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 . . . 0
0 ω 0 0 . . . 0
0 0 ω2 0 . . . 0
0 0 0 ω3 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . ωq−1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2)

Vj =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 1
1 0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3)

Here, the unitary operator Uj is a diagonal matrix in which
diagonal elements are ωk with ω = ei2π/q ≡ eiθ and k =
0, 1, . . . , q − 1 for arbitrary integers q. Uj and Vj obey the
following relations,

VjUj = ωVjUj, (4)

U q
j = V q

j = 1. (5)

The quantum q-state clock model which has the Zq sym-
metry undergoes second-order phase transitions [45–48] for
q � 4 and Berezinskii-Kosterlitz-Thouless (BKT) transitions
for q > 4. In the following, we study the q-state clock model
out of equilibrium by considering the following two cases:
One case is that we discover equilibrium second-order phase
transitions of q � 4 by the Loschmidt echo as well as its
short-time average rate function upon a small sudden quench.
The other case is that we investigate DQPTs by the Loschmidt
echo and the order parameter upon a big sudden quench for
any q.

III. LOSCHMIDT ECHO

In this section, we briefly introduce the Loschmidt echo
and its rate function. Given an arbitrary initial state |ψ0〉,
the time evolution under a postquenched time-independent
Hamiltonian Hf is given by

|ψ (t )〉 = e−iHf t |ψ0〉, (6)

where h̄ = 1. The Loschmidt echo is defined by the return
probability (or time-evolved fidelity)

L(t ) = |〈ψ0|e−iHf t |ψ0〉|2, (7)

with the Loschmidt amplitude G(t ) = 〈ψ0|ψ (t )〉.
It has been shown that the decay of the Loschmidt echo

can be enhanced by the equilibrium quantum criticality [20].
The first minimum of the Loschmidt echo at the time tmin,1 has
recently been shown to scale as [21]

1 − Lmin(N, g) ∝ g2N2/ν, (8)

at the equilibrium critical point for second-order phase transi-
tions. Here g is the small constant step defined by

g = h f − hi, (9)

with hi and h f being two coupling constants to control quench
protocols. The dynamical scaling law in Eq. (8) that governs
the critically enhanced decay behavior of the Loschmidt echo
with respect to N can be used to extract the equilibrium
correlation-length critical exponent ν.

We note that the Loschmidt echo Lmin(N, g) exhibits the
scaling law in Eq. (8) for a small quench in the vicinity of the
equilibrium critical point hc. This poses a challenge for using
the Loschmidt echo to diagnose the equilibrium criticality if
a prior knowledge about the precise value of the critical point
hc is absent [21,22]. In the following section, we propose to
use a short-time average of the rate function [22],

r̄(N, h, g) = − 1

N

ln[L̄(N, h, g)]

g2
, (10)

which is analogous to the ground-state fidelity susceptibility
to find Lmin(N, g). Here L̄(N, h) is the short-time average of
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FIG. 1. Scaling of the short-time average rate function and the Loschmidt echo of the q-state clock model. (a) The short-time average rate
function r̄(N, h, g) with respect to h with g = 0.01 in different lattice sizes N = 8, 12, 16, 20, and 24 (from bottom to top along the peaks) for
q = 2. (b) The Loschmidt echo L(N, h, g, t ) at the peak position h∗ of r̄(N, h, g) in panel (a) with g = 0.01 as a function of time t for lattice
sizes N = 8, 12, 16, 20, and 24 (from top to bottom along the first minima). (c) Finite-size scaling of 1 − Lmin(N, g) obtained from panel
(b) as a function of lattice sizes N , where the blue square symbols are numerical values and the black solid line denotes the fitting curve. The
correlation-length critical exponent ν = 0.992 is obtained from the fitting curve. Here panels (d), (e), and (f) represent the short-time average
rate function, the Loschmidt echo, and the finite-size scaling of 1 − Lmin(N, g) for q = 3, respectively. The corresponding data for q = 4 are
shown in panels (g), (h), and (i), respectively. The correlation-length critical exponents obtained from fitting curves are ν = 0.842 for q = 3
and ν = 1.033 for q = 4.

the Loschmidt echo within the time duration T defined by

L̄(N, h, g) = 1

T

∫ T

0
L(N, h, g, t )dt . (11)

We note that the time duration T for the average should exceed
tmin,1 in order to recover the value of Lmin(N, g).

On the other hand, the rate function of the Loschmidt echo
given by

r(t ) = − 1

N
ln L(t ) (12)

can reveal Loschmidt echo singularities at the critical time tc
upon a big sudden quench [25–27]. The singularities of the
rate function indicate that a system undergoes DQPTs. In the
following, we use the rate function in Eq. (12) to analyze the
DQPTs.

IV. DYNAMICS UPON SMALL QUENCH

In this section, we study the dynamics of the q-state clock
model in Eq. (1) upon a small quench. First of all, we obtain
the ground state |ψ0〉 of the Hamiltonian in Eq. (1) at the
coupling hi, and we then compute the Loschmidt echo using
Eq. (7) for a quench protocol where the coupling constant

is suddenly changed from the initial hi to a final h f with a
small constant step g = 0.01. We calculate the time-evolved
wave function |ψ (t )〉 using the time-dependent density matrix
renormalization group (t-DMRG) [49–53] with a time step
�t = 10−3 under periodic boundary conditions [54], where
we choose J = 1. In the following, we focus on the cases of
q � 4 as the dynamical scaling laws of the Loschmidt echo
given in Eq. (8) are argued to be valid for second-order phase
transitions [21]. The dynamical scaling laws of the Loschmidt
echo are poorly understood for equilibrium BKT transitions to
the best of our knowledge, which are left for future study. We
also note that the numerical simulations for q > 4 are difficult
using the t-DMRG method with periodic boundary conditions.

In the absence of any prior knowledge about the exact
critical value of a model, we propose to use a short-time
average rate function to probe second-order phase transitions.
Let us briefly summarize the procedure here and apply it
to the q-state clock model. We first calculate the short-time
average rate functions r̄(N, h, g) from Eq. (10) by varying the
coupling h and find the pseudocritical points h∗, which are
derived from the peaks of short-time average rate functions
for each lattice N as shown in Fig. 1(a). We then perform
numerical simulations with the t-DMRG upon a quench from
the pseudocritical point h∗ to h f = h∗ + g for N = 8, 12,
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FIG. 2. Evolution and the scaling of the Loschmidt echo.
(a) Time evolution of the Loschmidt echo L(N, h, g, t ) as the func-
tion of h and t for q = 3 with g = 0.01 in N = 16 lattice sites,
which exhibits a decay behavior enhanced by the quantum crit-
icality. (b) Finite-size scaling of the minima of the Loschmidt
echoes Lmin(N, g) for q = 2 (purple square), q = 3 (red triangle), and
q = 4 (black diamond) with sizes N = 8, 12, 16, 20, and 24. The
correlation-length critical exponents obtained from fitting curves are
ν = 0.992 for q = 2, ν = 0.842 for q = 3, and ν = 1.029 for q = 4.

16, 20, and 24 sites. The results of the Loschmidt echoes
L(N, h, g, t ) presented in Fig. 1(b) exhibit a decay and re-
vival dynamics. The first minima of the Loschmidt echoes
Lmin(N, g) are plotted in Fig. 1(c) with respect to the lattice
size N . According to the scaling law in Eq. (8), we obtain
the critical exponent ν = 0.991 ± 0.003 for q = 2. Similarly,
we find the critical exponent ν = 0.844 ± 0.006 when q = 3
and the critical exponent ν = 1.038 ± 0.022 when q = 4 as
demonstrated in Figs. 1(d) to 1(i) [55].

The above results of the critical exponents are consis-
tent with the exact values [48], which are ν = 1 for q = 2
and 4 and ν = 5/6 for q = 3. This demonstrates that the
short-time average rate function is a valid method to probe
phase transitions of the q-state clock model without knowing
the critical values in advance. A drawback of this method,
however, is that one has to choose a time duration for the
average that may affect the precision on the retrieved values
of critical exponents. This can be circumvented by instead
using the first minima in the three-dimensional plot of the
Loschmidt echoes [cf. Fig. 2(a)] as a probe to perform the
finite-size scaling with Eq. (8) to extract equilibrium critical
exponents. The correlation-length critical exponents obtained
from first minima of the Loschmidt echoes Lmin(N, g) are

ν = 0.991 ± 0.003 for q = 2, ν = 0.844 ± 0.006 for q = 3,
and ν = 1.034 ± 0.017 for q = 4, respectively [cf. Fig. 2(a)].

V. DQPT UPON BIG QUENCH

Let us now consider the dynamics of the q-state clock
model in Eq. (1) upon a big sudden quench. We first consider
the case by quenching the system from hi = ∞ to h f = 0, in
which we derive analytic solutions of the Loschmidt echoes
as well as the order parameters for arbitrary q. The results are
separately discussed in two parts (q � 4 and q > 4) according
to the universality classes of the model.

The ground state |ψ0〉 of the q-state clock model in Eq. (1)
at hi = ∞ is the product state given by

|ψ0〉 =
N⊗

j=1

|φ〉 j, (13)

where the local eigenstate |φ〉 j is

|φ〉 j =
⎛
⎝ 1√

q

q−1∑
n=0

|n〉
⎞
⎠

j

= 1√
q

⎛
⎜⎜⎜⎜⎝

1
1
...

1
1

⎞
⎟⎟⎟⎟⎠. (14)

The Loschmidt amplitude G(t ) for periodic boundary condi-
tions can be simply written as [43,44]

G(t ) = trTN , (15)

analogous to the partition function of the Ising model. Here T
is a q × q matrix with the elements,

Tm,n = 1

q
eiJt2 cos[2π (m−n)/q], (16)

and m, n = 0, 1, . . . , q − 1. The Loschmidt amplitude can
also be written as [43,44]

G(t ) =
q∑

i=1

	N
i , (17)

in terms of eigenvalues 	i of the matrix T. Equation (17)
allows one to analytically investigate the behaviors of the
Loschmidt echo, which we go into detail about later.

Let us introduce a time-evolved order parameter defined by

W (t ) = 1

N
〈ψ (t )|

∑
j

(Vj + V †
j )|ψ (t )〉, (18)

using the potential operator Vj . If Vj is written in terms of the
{|m〉} as

Vj =
q−1∑
m=0

|m〉〈m + 1|, (19)

with the condition |q〉 ≡ |0〉, the order parameter W (t ) can be
simply derived as (see Appendix A for details)

W (t ) = 1

N
〈ψ0|e−iJt

∑
i (U

†
i+1Ui+U †

i Ui+1 )
∑

j

(Vj + V †
j )

× eiJt
∑

i (U
†
i+1Ui+U †

i Ui+1 )|ψ0〉 (20)
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= 1

q3

q−1∑
m=0

⎛
⎝q−1∑

n=1

e−4iJt sin( θ
2 ) sin[(m−n+ 1

2 )θ]

⎞
⎠

2

+ H.c., (21)

under periodic boundary conditions. We use the order param-
eter in Eq. (21) to identify the DQPTs.

A. Dynamics for q � 4

Let us first consider the simplest case q = 2, for which the
matrix

T = 1

2

(
e2iJt e−2iJt

e−2iJt e2iJt

)
. (22)

The two eigenvalues of T are 	1 = 1
2 e−2iJt (e4iJt − 1) and

	2 = 1
2 e−2iJt (e4iJt + 1), respectively. Therefore, we have the

Loschmidt amplitude

G(t ) = [
1
2 e−2iJt (e4iJt − 1)

]N + [
1
2 e−2iJt (e4iJt + 1)

]N
. (23)

The critical times for q = 2 are given by

tcn = π

8J
(2n + 1), (24)

by finding the zeros (or minima) of the Loschmidt echo L(t ) =
|G(t )|2 with n ∈ N. At the first critical point tc1 = π

8J , we
obtain the rate function

r(tc1) = − 1

N
ln L(tc1)

= ln 2 − 1

N
ln(1 + iN )2, (25)

which becomes ln 2 as the system size N tends to infinity. This
interesting result shows that the rate function r(tc1) does not
diverge, but converges to a finite value in the thermodynamic
limit.

Let us continue to investigate whether the convergence of
the rate function r(tc1) in the thermodynamic limit persists for
q = 3 and q = 4. First, the matrix T for q = 3 is given by

T = 1

3

⎛
⎝e2iJt e−iJt e−iJt

e−iJt e2iJt e−iJt

e−iJt e−iJt e2iJt

⎞
⎠. (26)

The eigenvalues of T are 	1 = 	2 = 1
3 e−iJt (e3iJt − 1) and

	3 = 1
3 e−iJt (e3iJt + 2), respectively. We obtain the Loschmidt

amplitude

G(t ) = 2
[

1
3 e−iJt (e3iJt − 1)

]N + [
1
3 e−iJt (e3iJt + 2)

]N
. (27)

The critical times for q = 3 are given by [43]

t1
cn = 2π

9J
(3n + 1), (28)

t2
cn = 2π

9J
(3n + 2). (29)

The rate function is found to be ln 3 at the first critical time
tc1 = t1

c1 = 2π
9J as the system size N tends to infinity (see

Appendix B for details). Second, for q = 4, the matrix T is
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t/tc

0.00
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FIG. 3. Rate functions of Loschmidt echoes and order parame-
ters upon a quench from hi = ∞ to hf = 0. (a) The rate function
r(t ) as the function of t/tc for q � 4 for J = 1 and N = 100 lattice
sites, where the rate function r(t ) for q = 4 is twice the value of that
for q = 2. Here, the first critical times tc are π/8 for q = 2, 2π/9
for q = 3, and π/4 for q = 4, respectively. (b) The order parameter
W (t ) with respect to tc with the same parameters as those in panel
(a), whose zeros correspond to critical times hc shown in panel (a).

given by

T = 1

4

⎛
⎜⎜⎝

e2iJt 1 e−2iJt 1
1 e2iJt 1 e−2iJt

e−2iJt 1 e2iJt 1
1 e−2iJt 1 e2iJt

⎞
⎟⎟⎠. (30)

The eigenvalues of T are 	1 = 1
4 e−2iJt (e2iJt − 1)2, 	2 =

1
4 e−2iJt (e2iJt + 1)2, and 	3 = 	4 = 1

4 e−2iJt (e4iJt − 1), re-
spectively. Therefore, we have

G(t ) = [
1
4 e−2iJt (e2iJt − 1)2

]N + [
1
4 e−2iJt (e2iJt + 1)2

]N

+ 2
[

1
4 e−2iJt (e4iJt − 1)

]N
. (31)

From this, we find that the critical times for q = 4 are given
by

tcn = π

4J
(2n + 1). (32)

The rate function is found to be ln 4 at the first critical time
tc1 = π

4J as the system size N tends to infinity (see Appendix B
for details). Therefore, we have proved that the rate function
increases logarithmically with q at the first critical time tc1 for
q � 4 [cf. Fig. 3(a)]. Moreover, analytical results show that
the rate function r(t ) for q = 4 is twice as big as that of q = 2
[see Fig. 3(a) and Appendix C for details].

We have studied the rate function of the Loschmidt echo
for an arbitrary finite system N for q � 4. In the following,
we discuss the order parameter W (t ) of DQPTs, which is
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FIG. 4. Rate functions and order parameters. The dynamics is
obtained for J = 1 and N = 24 lattice sites by quenching the sys-
tem from hi = ∞ to hf = 0.01 (red solid line), hf = 0.05 (blue
dashed-dot line), and hf = 0.1 (green dashed line) with t-DMRG,
respectively. (a) The rate functions r(t ) as the functions of t/tc for
q = 2 with tc = π/8. (c) The order parameters W (t ) as the functions
of t/tc for q = 2. The corresponding data for q = 3 with tc = 2π/9
are shown in panels (b) and (d), respectively.

argued to be zero at critical times that can be connected to the
Loschmidt echo singularity for q � 4. For q = 2, the order
parameter W (t ) is given by (see Appendix D for details)

W (t ) = 1

23

∑
m

(∑
n

e−4iJt sin( π
2 ) sin[(m−n+ 1

2 )π]

)2

+ H.c.

=2 cos2(4Jt ). (33)

Likewise, we find that the order parameters W (t ) are equal
to 2

9 {[2 cos(3Jt ) + 1]2} and 2 cos2(2Jt ) for q = 3 and q = 4,
respectively. As shown in Fig. 3(b), we find a one-to-one
relationship between the Loschmidt echo singularity and the
zeros of the order parameter (see Appendix D for details).

In order to consider quantum fluctuations during the time
evolution, we quench the system from hi = ∞ to h f =
0.01, h f = 0.05, and h f = 0.1. The corresponding Loschmidt
echoes and order parameters are computed by using the
t-DMRG method for N = 24 lattice sites with periodic bound-
ary conditions. We find that DQPTs can survive in short time,
where rate functions r(t ) of the Loschmidt echoes display
kinks, which can also be characterized by the order parameters
W (t ) as in the case of h f = 0 (cf. Fig. 4).

B. Dynamics for q > 4

In the previous section, we have shown our main results
of DQPTs for q � 4. It is fascinating to study DQPTs upon
a quench across a critical point belonging to different univer-
sality classes. For example, an exact mapping of DQPTs can
be established for a quench across the Ising transition and a
quench across a deconfined quantum critical point in a chain
[29]. Since the q-state clock model exhibits BKT transitions

0 2 4 6 8 10

t

0

1

2

r(
t)

(a)
q=5

q=6

q=7

0 2 4 6 8 10

t

0

1

2

W
(t

)

(b) q=5

q=6

q=7

5 6 7 8 9 10

q

1.0

1.5

2.0

t c
1

(c)

FIG. 5. Quench dynamics from hi = ∞ to hf = 0 for q > 4.
(a) Rate functions r(t ) as the functions of t for q = 5, 6, and 7 with
J = 1 and N = 100 lattice sites, which tend to converge at the first
cusp. (b) Order parameters W (t ) with the same parameters as those
in panel (a). (c) The time tc1 obtained from the first zeros of order
parameters W (t ) with respect to q. The blue square symbols are
numerical results, and the black solid line is the fitting curve.

for q > 4, studying a quench dynamics for q > 4 can shed a
light on the nature of DQPTs upon a quench across a BKT
transition and we present the results in the following. The
general results of the Loschmidt amplitude G(t ) in Eq. (17)
and the order parameter W (t ) in Eq. (21) remain valid for the
cases where q > 4. However, it is difficult to obtain the simple
analytical formulas for q > 4. We discuss the DQPTs based
on the numerical results.

We find that the DQPTs persist for q > 4, where rate
functions r(t ) exhibit nonanalytical behaviors associated with
linear cusps [cf. Fig. 5(a)]. However, the Loschmidt echo
for q > 4 at the first critical time converges; this is in stark
contrast with the logarithmical increase with q for q < 4 that
we have found in the previous section. Interestingly, the zeros
of order parameters no longer correspond to the Loschmidt
echo singularities [cf. Fig. 5(b)]; this observation indicates
that the DQPTs for q > 4 are beyond two-level dynamics. In
addition, we find that the critical times tc1 obtained from the
first zeros of the order parameters W (t ) increase linearly with
q as shown in Fig. 5(c) for q > 4. Our numerical calculations
show that the DQPTs upon a big quench through a BKT
transition can exhibit a nature that is fundamentally different
than that of a second-order phase transition. Our observation
calls for a rigorous theoretical framework for understanding
DQPTs across the BKT transition, which will be a topic of
future studies.
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VI. CONCLUSION

In summary, we have studied the finite-size scaling laws
of the Loschmidt echo in the quantum q-state clock model.
We have shown that the short-time average rate function and
the first minimum of the Loschmidt echo as a function of
both time and coupling constant can serve as probes to detect
equilibrium second-order phase transitions without knowing
the accurate critical values in advance in the presence of dis-
crete Zq symmetry. The equilibrium correlation-length critical
exponents ν obtained for q � 4 are consistent with the known
results. It would be interesting to establish dynamical scaling
laws of the Loschmidt echo for BKT transitions to know
whether the Loschmidt echo can characterize BKT transitions
as the ground-state fidelity [48] in the future.

We have presented analytic results for the Loschmidt echo
and the order parameter for any q, which have been used to
understand DQPTs of the q-state clock model. For q � 4, we
have shown that the Loschmidt echo singularity is connected
to the zeros of the order parameter. In particular, the rate func-
tion is found to increase logarithmically with q at the critical

times. Meanwhile, for q > 4, the one-to-one correspondence
between the Loschmidt echo and the order parameter no
longer exists. The nature of DQPTs upon a quench across the
BKT transition remains to be understood.
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APPENDIX A: DERIVATION OF ORDER PARAMETERS

In this section, we show the details of the derivation of the order parameter W (t ), which is defined by

W (t ) = 1

N

∑
j

〈Vj + V †
j 〉 (A1)

= 1

N

∑
j

〈ψ (t )|(Vj + V †
j )|ψ (t )〉 (A2)

= 〈ψ0|e−iJt
∑

i (U
†
i+1Ui+U †

i Ui+1 )(V1 + V †
1 )eiJt

∑
i (U

†
i+1Ui+U †

i Ui+1 )|ψ0〉 (A3)

= 〈ψ0|e−iJt[(U †
2 +U †

N )U1+U †
1 (U2+UN )](V1 + V †

1 )eiJt[(U †
2 +U †

N )U1+U †
1 (U2+UN )]|ψ0〉. (A4)

Remember the operator Vj is

Vj =
q−1∑
m=0

(|m〉〈m + 1|). (A5)

We have

W (t ) = 〈ψ0|e−iJt[(U †
2 +U †

N )U1+U †
1 (U2+UN )]

q−1∑
m=0

(|m〉〈m + 1|)1eiJt[(U †
2 +U †

N )U1+U †
1 (U2+UN )]|ψ0〉 + H.c., (A6)

=
q−1∑
m=0

〈ψ0|e−iJt[eimθ (U †
2 +U †

N )+e−imθ (U2+UN )](|m〉〈m + 1|)1eiJt[ei(m+1)θ (U †
2 +U †

N )+e−i(m+1)θ (U2+UN )]|ψ0〉 + H.c., (A7)

=
q−1∑
m=0

〈ψ0|eiJt[(ei(m+1)θ −eimθ )(U †
2 +U †

N )+(e−i(m+1)θ−e−imθ )(U2+UN )](|m〉〈m + 1|)1|ψ0〉 + H.c. (A8)

Because

|ψ0〉 =
N⊗

j=1

(
1√
q

∑
n

|n〉
)

j

(A9)

and

〈m| 1√
q

∑
n

|n〉 = 1√
q
, (A10)
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we have

W (t ) = 1

q

q−1∑
m=0

〈ψ0|eiJt[(ei(m+1)θ −eimθ )U †
2 +(e−i(m+1)θ −e−imθ )U2]eiJt[(ei(m+1)θ −eimθ )U †

N +(e−i(m+1)θ −e−imθ )UN ]|ψ0〉 + H.c., (A11)

= 1

q

q−1∑
m=0

⎛
⎝1

q

∑
n,n′,n′′

2〈n|eiJt[(ei(m+1)θ −eimθ )U †
2 ](|n′〉〈n′|)2eiJt[(e−i(m+1)θ −e−imθ )U2]|n′′〉2

⎞
⎠

2

+ H.c. (A12)

= 1

q

q−1∑
m=0

1

q2

(∑
n

eiJt[(ei(m+1)θ −eimθ )e−inθ ]eiJt[(e−i(m+1)θ −e−imθ )einθ ]

)2

+ H.c. (A13)

= 1

q3

q−1∑
m=0

(∑
n

eiJt[(eiθ −1)ei(m−n)θ +(e−iθ−1)ei(n−m)θ ]

)2

+ H.c. (A14)

= 1

q3

q−1∑
m=0

(∑
n

eiJt[e
iθ
2 (e

iθ
2 −e− iθ

2 )ei(m−n)θ+e− iθ
2 (e− iθ

2 −e
iθ
2 )ei(n−m)θ ]

)2

+ H.c. (A15)

= 1

q3

q−1∑
m=0

(∑
n

eiJt[(e
iθ
2 −e− iθ

2 )(e(m−n+ 1
2 )iθ−e−(m−n+ 1

2 )iθ )]

)2

+ H.c. (A16)

= 1

q3

q−1∑
m=0

(∑
n

eiJt{2i sin( θ
2 )·2i sin[(m−n+ 1

2 )θ]}
)2

+ H.c. (A17)

= 1

q3

q−1∑
m=0

(∑
n

e−4iJt sin( θ
2 ) sin[(m−n+ 1

2 )θ]

)2

+ H.c. (A18)

We arrive at the general analytic solution of the order parameter W (t ).

APPENDIX B: DERIVATION OF THE RATE FUNCTION AT FIRST CRITICAL TIMES

In this section, we present the details for the rate function at the first critical time tc. When q = 2, the Loschmidt amplitude

G(t ) = (
1
2 e−2iJt (e4iJt − 1)

)N + (
1
2 e−2iJt (e4iJt + 1)

)N
. (B1)

Place the first critical time t = tc1 = π
8J into it and we have

G(tc1) = 2− N
2 (1 + iN ). (B2)

The rate function r(t ) is written by

r(tc1) = − 1

N
ln L(tc1)

= ln 2 − 2

N
ln |1 + iN |. (B3)

If the size of the system N tends to infinity, the rate function turns into ln 2.
When q = 3, The matrix T is

T = 1

3

⎛
⎝e2iJt e−iJt e−iJt

e−iJt e2iJt e−iJt

e−iJt e−iJt e2iJt

⎞
⎠. (B4)

The eigenvalues of T are 	1 = 	2 = 1
3 e−iJt (e3iJt − 1) and 1

3 e−iJt (e3iJt + 2), respectively. Therefore, we have

G(t ) = 2
[

1
3 e−iJt (e3iJt − 1)

]N + [
1
3 e−iJt (e3iJt + 2)

]N
. (B5)

When placing the first critical time t = tc = 2π
9J into G(t ), we have the following simple form,

G(tc1) = 3−N e−i2Nπ/9[2(ei2π/3 − 1)N + (ei2π/3 + 2)N ]. (B6)
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Then the rate function is given by

r(tc1) = − 1

N
ln L(tc1)

= ln 3 − 1

N
ln |5 + 4(−1)N cos(Nπ/3)|. (B7)

It is not difficult to see that, if the size of the system N verges to infinity, the rate function turns into ln 3.
Similarly, the matrix T for q = 4 is

T = 1

4

⎛
⎜⎜⎝

e2iJt 1 e−2iJt 1
1 e2iJt 1 e−2iJt

e−2iJt 1 e2iJt 1
1 e−2iJt 1 e2iJt

⎞
⎟⎟⎠. (B8)

The eigenvalues of T are 	1 = 1
4J e−2iJt (e2iJt − 1)2, 	2 = 1

4 e−2iJt (e2iJt + 1)2, and 	3 = 	4 = 1
4 e−2iJt (e4iJt − 1). Therefore, we

have

G(t ) = [
1
4 e−2iJt (e2iJt − 1)2

]N + [
1
4 e−2iJt (e2iJt + 1)2

]N + 2
[

1
4 e−2iJt (e4iJt − 1)

]N
. (B9)

When the critical time t = tc1 = π
4J is placed into G(t ), we have

G(tc1) = 2−N [1 + (−1)N + 2iN ]. (B10)

Then the rate function for q = 4 is obtained by

r(tc1) = − 1

N
ln L(tc1)

= ln 4 − 2

N
ln |1 + (−1)N + 2iN |. (B11)

Obviously, if the size of the system N tends to infinity, the rate function turns into ln 4.

APPENDIX C: RELATIONSHIP OF RATE FUNCTIONS FOR q = 2 AND q = 4

In this Appendix, we go into detail about the relationship between the rate function of q = 2 and q = 4. We prove that the rate
function r(t ) for q = 4 is twice as much as that for q = 2 as the function of t/tc1. For q = 2, we have the Loschmidt amplitude

G(t ) = [i sin 2Jt]N + [cos 2Jt]N . (C1)

As there are four cases based on iN , G(t ) have four forms:

G(t ) =i(sin 2Jt )N + (cos 2Jt )N (N = 4n + 1), (C2)

G(t ) = − (sin 2Jt )N + (cos 2Jt )N (N = 4n + 2), (C3)

G(t ) = − i(sin 2Jt )N + (cos 2Jt )N (N = 4n + 3), (C4)

G(t ) =(sin 2Jt )N + (cos 2Jt )N (N = 4n). (C5)

The Loschmidt echo has the following forms:

L(t ) =(sin 2Jt )2N + (cos 2Jt )2N (N = 4n + 1), (C6)

L(t ) =[(sin 2Jt )N − (cos 2Jt )N ]2 (N = 4n + 2), (C7)

L(t ) =(sin 2Jt )2N + (cos 2Jt )2N (N = 4n + 3), (C8)

L(t ) =[(sin 2Jt )N + (cos 2Jt )N ]2 (N = 4n). (C9)

For q = 4, as 	1 = − sin2 Jt , 	2 = cos2 Jt , and 	3 = 	4 = i
2 sin 2Jt , we have the Loschmidt amplitude

G(t ) = [− sin2 Jt]N + [cos2 Jt]N + 2

[
i

2
sin 2Jt

]N

, (C10)

which has the following forms:

G(t ) =[− sin2 Jt]N + [cos2 Jt]N + 2i
[

1
2 sin 2Jt

]N
(N = 4n + 1), (C11)
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G(t ) =[− sin2 Jt]N + [cos2 Jt]N − 2
[

1
2 sin 2Jt

]N
(N = 4n + 2), (C12)

G(t ) =[− sin2 Jt]N + [cos2 Jt]N − 2i
[

1
2 sin 2Jt

]N
(N = 4n + 3), (C13)

G(t ) =[− sin2 Jt]N + [cos2 Jt]N + 2
[

1
2 sin 2Jt

]N
(N = 4n). (C14)

Consequently, the Loschmidt echo has the following forms.
When N = 4n + 1, it is

L(t ) = [
(− sin2 Jt )N + (cos2 Jt )N + 2i

(
1
2 sin 2Jt

)N][
(− sin2 Jt )N + (cos2 Jt )N − 2i

(
1
2 sin 2Jt

)N]
(C15)

= (sin Jt )4N + 2(sin Jt cos Jt )2N + (cos Jt )4N (C16)

= [
(sin Jt )2N + (cos Jt )2N

]2
. (C17)

When N = 4n + 2, it is

L(t ) = [
(− sin2 Jt )N + (cos2 Jt )N − 2

(
1
2 sin 2Jt

)N][
(− sin2 Jt )N + (cos2 Jt )N − 2

(
1
2 sin 2Jt

)N]
(C18)

= [
(sin2 Jt )N + (cos2 Jt )N − 2

(
1
2 sin 2Jt

)N][
(sin2 Jt )N + (cos2 Jt )N − 2

(
1
2 sin 2Jt

)N]
(C19)

= (sin Jt )4N + 2(sin Jt cos Jt )2N + (cos Jt )4N − 4
(

1
2 sin2 Jt sin 2Jt

)N − 4
(

1
2 cos2 Jt sin 2Jt

)N + 4(sin t cos t )2N (C20)

= [(sin Jt )2N + (cos Jt )2N ]2 − 4(sin Jt cos Jt )N [(sin Jt )2N + (cos Jt )2N ] + 4(sin t cos t )2N (C21)

= [(sin Jt )2N − 2(sin t cos t )N + (cos Jt )2N ]2 (C22)

= [(sin Jt )N − (cos Jt )N ]4. (C23)

When N = 4n + 3, it is

L(t ) = [
(− sin2 Jt )N + (cos2 Jt )N − 2i

(
1
2 sin 2Jt

)N][
(− sin2 Jt )N + (cos2 Jt )N + 2i

(
1
2 sin 2Jt

)N]
(C24)

= (sin Jt )4N + 2(sin Jt cos Jt )2N + (cos Jt )4N (C25)

= [(sin Jt )2N + (cos Jt )2N ]2. (C26)

When N = 4n, it is

L(t ) = [
(− sin2 Jt )N + (cos2 Jt )N + 2

(
1
2 sin 2Jt

)N][
(− sin2 Jt )N + (cos2 Jt )N + 2

(
1
2 sin 2Jt

)N]
(C27)

= [
(sin2 Jt )N + (cos2 Jt )N + 2

(
1
2 sin 2Jt

)N][
(sin2 Jt )N + (cos2 Jt )N + 2

(
1
2 sin 2Jt

)N]
(C28)

= [(sin Jt )2N + 2(sin t cos t )N + (cos Jt )2N ]2 (C29)

= [(sin Jt )N + (cos Jt )N ]4. (C30)

Remember the critical times are tcn = π
8J (2n + 1) and tcn = π

4J (2n + 1) for q = 2 and q = 4. It is easy to find that the Loschmidt
echo for q = 4 is merely the square of the Loschmidt echo for q = 2 as the function of t/tc1. In other words, the rate function of
the Loschmidt echo for q = 4 is twice as big as that for q = 2 as the function of t/tc.

APPENDIX D: THE ORDER PARAMETERS OF q = 2, 3, AND 4

When q = 2 and θ = 2π
2 = π , we can obtain the following order parameter:

W (t ) = 1

N

∑
j

〈Vj + V †
j 〉 (D1)

= 1

23

1∑
m=0

(
1∑

n=0

e−4iJt sin ( π
2 ) sin [(m−n+ 1

2 )π]
)2

+ H.c. (D2)

= 1

8

1∑
m=0

(
e−4iJt sin ( π

2 ) sin [(m+ 1
2 )π] + e−4iJt sin ( π

2 ) sin [(m− 1
2 )π])2 + H.c. (D3)

= 2 × 1

8
(e−4iJt + e−4iJt )2 + H.c. (D4)

= cos2(4Jt ) + H.c. (D5)

= 2 cos2(4Jt ). (D6)
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When q = 3 and θ = 2π
3 , the order parameter is

W (t ) = 1

N

∑
j

〈Vj + V †
j 〉 (D7)

= 1

33

2∑
m=0

(
2∑

n=0

e−4iJt sin ( π
3 ) sin [(m−n+ 1

2 ) 2π
3 ]

)2

+ H.c. (D8)

= 1

27

2∑
m=0

(
e−4iJt sin( π

3 ) sin[(m+ 1
2 ) 2π

3 ] + e−4iJt sin( π
3 ) sin[(m− 1

2 ) 2π
3 ] + e−4iJt sin( π

3 ) sin[(m− 3
2 ) 2π

3 ]
)2 + H.c. (D9)

= 1

27
[3(e−3iJt + e3iJt + 1)2] + H.c. (D10)

= 2

9
[(2 cos(3Jt ) + 1)2] (D11)

When q = 4 and θ = 2π
4 = π

2 , the order parameter is

W (t ) = 1

N

∑
j

〈Vj + V †
j 〉 (D12)

= 1

43

3∑
m=0

(
3∑

n=0

e−4iJt sin ( π
4 ) sin [(m−n+ 1

2 ) π
2 ]

)2

+ H.c. (D13)

= 1

64

3∑
m=0

(
e−4iJt sin ( π

4 ) sin [(m+ 1
2 ) π

2 ] + e−4iJt sin ( π
4 ) sin [(m− 1

2 ) π
2 ]

+ e−4iJt sin ( π
4 ) sin [(m− 3

2 ) π
2 ] + e−4iJt sin ( π

4 ) sin [(m− 5
2 ) π

2 ])2 + H.c. (D14)

= 1
64 [4(e−2iJt + e2iJt + e2iJt + e−2iJt )2] + H.c. (D15)

= 1
64 {4[4 cos(2Jt )]2} + H.c. (D16)

= 2 cos2(2Jt ). (D17)

We derive the simple forms of the order parameter for q = 2, 3, and 4.

[1] S. Sachdev, Quantum Phase Transitions (Cambridge University,
Cambridge, England, 1999).

[2] K. G. Wilson and J. Kogut, Phys. Rep. 12, 75 (1974).
[3] K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).
[4] M. E. Fisher and M. N. Barber, Phys. Rev. Lett. 28, 1516

(1972).
[5] M. E. Fisher, Rev. Mod. Phys. 46, 597 (1974).
[6] A. Osterloh, L. Amico, G. Falci, and R. Fazio, Nature (London)

416, 608 (2002).
[7] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki,

Rev. Mod. Phys. 81, 865 (2009).
[8] J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys. 82, 277

(2010).
[9] W.-L. You, Y.-W. Li, and S.-J. Gu, Phys. Rev. E 76, 022101

(2007).
[10] L. Campos Venuti and P. Zanardi, Phys. Rev. Lett. 99, 095701

(2007).
[11] S. Chen, L. Wang, Y. Hao, and Y. Wang, Phys. Rev. A 77,

032111 (2008).
[12] S.-J. Gu, H.-M. Kwok, W.-Q. Ning, and H.-Q. Lin, Phys. Rev.

B 77, 245109 (2008).

[13] S. Yang, S.-J. Gu, C.-P. Sun, and H.-Q. Lin, Phys. Rev. A 78,
012304 (2008).

[14] S.-J. Gu, Int. J. Mod. Phys. B 24, 4371 (2010).
[15] G. Sun, Phys. Rev. A 96, 043621 (2017).
[16] Z. Zhu, G. Sun, W.-L. You, and D.-N. Shi, Phys. Rev. A 98,

023607 (2018).
[17] Q. Luo, J. Zhao, and X. Wang, Phys. Rev. E 98, 022106

(2018).
[18] G. Sun, J.-C. Tang, and S.-P. Kou, Front. Phys. 17, 33502

(2022).
[19] Y.-N. Wang, W.-L. You, and G. Sun, Phys. Rev. A 106, 053315

(2022).
[20] H. T. Quan, Z. Song, X. F. Liu, P. Zanardi, and C. P. Sun, Phys.

Rev. Lett. 96, 140604 (2006).
[21] M.-J. Hwang, B.-B. Wei, S. F. Huelga, and M. B. Plenio,

arXiv:1904.09937.
[22] J.-C. Tang, S.-P. Kou, and G. Sun, Europhys. Lett. 137, 40001

(2022).
[23] G. Ódor, Rev. Mod. Phys. 76, 663 (2004).
[24] H. Weimer, A. Kshetrimayum, and R. Orús, Rev. Mod. Phys.

93, 015008 (2021).

134303-11

https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/PhysRevLett.28.1516
https://doi.org/10.1103/RevModPhys.46.597
https://doi.org/10.1038/416608a
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/PhysRevE.76.022101
https://doi.org/10.1103/PhysRevLett.99.095701
https://doi.org/10.1103/PhysRevA.77.032111
https://doi.org/10.1103/PhysRevB.77.245109
https://doi.org/10.1103/PhysRevA.78.012304
https://doi.org/10.1142/S0217979210056335
https://doi.org/10.1103/PhysRevA.96.043621
https://doi.org/10.1103/PhysRevA.98.023607
https://doi.org/10.1103/PhysRevE.98.022106
https://doi.org/10.1007/s11467-021-1126-1
https://doi.org/10.1103/PhysRevA.106.053315
https://doi.org/10.1103/PhysRevLett.96.140604
http://arxiv.org/abs/arXiv:1904.09937
https://doi.org/10.1209/0295-5075/ac53c4
https://doi.org/10.1103/RevModPhys.76.663
https://doi.org/10.1103/RevModPhys.93.015008


TANG, YOU, HWANG, AND SUN PHYSICAL REVIEW B 107, 134303 (2023)

[25] M. Heyl, A. Polkovnikov, and S. Kehrein, Phys. Rev. Lett. 110,
135704 (2013).

[26] M. Heyl, Rep. Prog. Phys. 81, 054001 (2018).
[27] J. Marino, M. Eckstein, M. S. Foster, and A. M. Rey, Rep. Prog.

Phys. 85, 116001 (2022).
[28] I. Hagymási, C. Hubig, Ö. Legeza, and U. Schollwöck, Phys.

Rev. Lett. 122, 250601 (2019).
[29] G. Sun and B.-B. Wei, Phys. Rev. B 102, 094302 (2020).
[30] P. Jurcevic, H. Shen, P. Hauke, C. Maier, T. Brydges, C.

Hempel, B. P. Lanyon, M. Heyl, R. Blatt, and C. F. Roos, Phys.
Rev. Lett. 119, 080501 (2017).

[31] N. Fläschner, D. Vogel, M. Tarnowski, B. Rem, D.-S. Lühmann,
M. Heyl, J. Budich, L. Mathey, K. Sengstock, and C.
Weitenberg, Nat. Phys. 14, 265 (2018).

[32] X.-Y. Xu, Q.-Q. Wang, M. Heyl, J. C. Budich, W.-W. Pan, Z.
Chen, M. Jan, K. Sun, J.-S. Xu, Y.-J. Han, C.-F. Li, and G.-C.
Guo, Light: Sci. Appl. 9, 7 (2020).

[33] K. Wang, X. Qiu, L. Xiao, X. Zhan, Z. Bian, W. Yi, and P. Xue,
Phys. Rev. Lett. 122, 020501 (2019).

[34] T. Tian, Y. Ke, L. Zhang, S. Lin, Z. Shi, P. Huang, C. Lee, and
J. Du, Phys. Rev. B 100, 024310 (2019).

[35] X.-Y. Guo, C. Yang, Y. Zeng, Y. Peng, H.-K. Li, H. Deng, Y.-R.
Jin, S. Chen, D. Zheng, and H. Fan, Phys. Rev. Appl. 11, 044080
(2019).

[36] X. Nie, B.-B. Wei, X. Chen, Z. Zhang, X. Zhao, C. Qiu, Y. Tian,
Y. Ji, T. Xin, D. Lu, and J. Li, Phys. Rev. Lett. 124, 250601
(2020).

[37] T. Tian, H.-X. Yang, L.-Y. Qiu, H.-Y. Liang, Y.-B. Yang, Y. Xu,
and L.-M. Duan, Phys. Rev. Lett. 124, 043001 (2020).

[38] L.-N. Wu, J. Nettersheim, J. Feß, A. Schnell, S. Burgardt,
S. Hiebel, D. Adam, A. Eckardt, and A. Widera,
arXiv:2208.05164.

[39] J. Zakrzewski, arXiv:2204.09454.
[40] M. Van Damme, J.-Y. Desaules, Z. Papić, and J. C. Halimeh,
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