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Dynamical singularity of the rate function for quench dynamics in finite-size quantum systems

Yumeng Zeng ,1,2 Bozhen Zhou ,1 and Shu Chen 1,2,3,*

1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3Yangtze River Delta Physics Research Center, Liyang, Jiangsu 213300, China

(Received 7 November 2022; revised 15 March 2023; accepted 27 March 2023; published 7 April 2023)

The dynamical quantum phase transition is characterized by the emergence of nonanalytic behaviors in the rate
function, corresponding to the occurrence of exact zero points of the Loschmidt echo in the thermodynamical
limit. In general, exact zeros of the Loschmidt echo are not accessible in a finite-size quantum system except for
some fine-tuned quench parameters. In this work, we study the realization of the dynamical singularity of the
rate function for finite-size systems under the twist boundary condition, which can be introduced by applying a
magnetic flux. By tuning the magnetic flux, we illustrate that exact zeros of the Loschmidt echo can be always
achieved when the postquench parameter is across the underlying equilibrium phase transition point, and thus
the rate function of a finite-size system is divergent at a series of critical times. We demonstrate our theoretical
scheme by calculating the Su-Schrieffer-Heeger model and the Creutz model in detail and exhibit its applicability
to more general cases. Our result unveils that the emergence of dynamical singularity in the rate function can be
viewed as a signature for detecting dynamical quantum phase transition in finite-size systems. We also unveil that
the critical times in our theoretical scheme are independent on the systems size, and thus it provides a convenient
way to determine the critical times by tuning the magnetic flux to achieve the dynamical singularity of the rate
function.
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I. INTRODUCTION

Since the dynamical quantum phase transition (DQPT)
was proposed [1], it has become an important concept in
describing a class of nonequilibrium critical phenomena as-
sociated with singular behavior in the real-time evolution of
the Loschmidt echo (LE) [1–21]. Given 〈ψi|ψ (t )〉 denotes the
overlap of an initial ground state |ψi〉 and its time evolution
state |ψ (t )〉 = e−iHf t |ψi〉 governed by a postquench Hamilto-
nian Hf , the LE is defined as

L(t ) = |〈ψi|ψ (t )〉|2, (1)

which represents the return probability of the time evolution
state to the initial state [22]. The LE plays a particularly
important role in the characterization of the DQPT [20,21].
When the phase-driving parameter is quenched across an un-
derlying equilibrium phase transition point, a series of zero
points of LE emerge at some critical times. In general, ex-
act zeros of LE only occur when the system size tends to
infinity [1,23,24]. Meanwhile, LE always approaches zero in
the thermodynamical limit, even when the quench parameter
does not cross the transition point. This can be attributed to
the Anderson orthogonality catastrophe [25] for the reason
that the multiplication of an infinite number of numbers with
magnitude less than 1 equals 0. To eliminate the effect of
system size properly, it is convenient to introduce the rate
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function of LE given by

λ(t ) = − 1

L
lnL(t ). (2)

As the LE is analogous to a dynamical boundary partition
function, the rate function λ(t ) can be viewed as a dynamical
free energy. Thus the DQPT is characterized by nonanalytic
behaviors in the rate function of LE in the thermodynamical
limit.

According to the theory of DQPT, the nonanalyticity of
rate function occurs at the critical times t∗

n when the quench
parameter is across the equilibrium phase transition point,
corresponding to the emergence of exact zeros of LE in
the thermodynamical limit. For finite-size systems, LE usu-
ally has no exact zeros, except for fine-tuned postquench
parameters which fulfill specific constraint conditions [24].
Therefore, to study the DQPT and extract the critical times in
finite-size quantum systems, one needs to resort to finite-size
analysis to extract the nonanalytical properties and critical
times in the limit of L → ∞. With the increase of L, L(t )
approaches zero at critical times t∗

n , and thus lnL(t∗
n ) → ∞

when L → ∞. However, λ(t∗
n ) is not divergent and only dis-

plays a cusp due to the fact that the divergence is offset by
the L in the denominator. For a finite system with size L,
t∗
n (L) are determined by the times at which λ takes the local

maximum. As we shall demonstrate later, t∗
n (L) does not fulfill

a simple fitting relation with L. Thanks to the advance of quan-
tum simulators, quantum simulations of DQPT were already
reported in various systems [26–33], such as trapped ions
[26,27], Rydberg atoms [28], and ultracold atoms [29–31],
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with finite sizes. Therefore, extracting the nonanalytical sig-
nature of DQPT in finite-size systems is important from both
experimental and theoretical aspects.

In this work, we study the nonanalytical behaviors of
DQPT in finite-size systems with a twist boundary condition
which can be realized by introducing a magnetic flux φc into
the periodic system. When the quench parameter is across
the equilibrium phase transition point, by tuning the flux, we
demonstrate that exact zeros of LE can be always achieved at
critical times t∗

n even for a finite-size system. It is interesting
that the critical times obtained in this way are independent
of the system sizes and match exactly with the critical times
obtained in the thermodynamical limit of the corresponding
periodic system. Due to the finite size L, the rate function
λ(t ) should be divergent at critical times t∗

n , corresponding
to the exact zeros of LE. On the other hand, no exact zeros
can be achieved if there is no DQPT, when the postquench
and prequench parameters are in the same region of phases.
Correspondingly, the rate function is not sensitive to the flux
and does not show any singular behavior. Our theoretical work
unveils that the emergence of the dynamical singularity in the
rate function can be viewed as a signature for detecting DQPT
in finite-size systems. Since the critical times in our theoretical
scheme are not dependent on the systems size, it provides us
a convenient way to determine the critical times in finite-size
systems.

II. MODELS AND SCHEME FOR ACHIEVING
THE DYNAMICAL SINGULARITY

To illustrate how the singularity of the rate function arises
as a result of the emergence of zero points of LE, we con-
sider general one-dimensional (1D) two-band systems with
the Hamiltonian in momentum space described by

ĥ(γ , k) =
∑

α=x,y,z

dα (γ , k)σ̂α + d0(γ , k)Î, (3)

where γ denotes a phase transition driving parameter; σ̂α

are Pauli matrices with α = x, y, z; dα (γ , k) and d0(γ , k)
are the corresponding vector components of ĥ(γ , k); and Î
is the unit matrix. Such systems are widely studied in the
literature [9–11] and include, e.g., the transverse-field Ising
model, quantum XY models, the Su-Schrieffer-Heeger (SSH)
model, and Creutz model, as special cases. Consider a quench
process described by a sudden change of driving parameter
γ = γiθ (−t ) + γ f θ (t ) with the initial state prepared as the
ground state of the prequench Hamiltonian H (γi ). The LE
following the quench can be written as

L =
∏

k

Lk =
∏

k

∣∣〈ψ i
k

∣∣e−iĥ(γ f ,k)t
∣∣ψ i

k

〉∣∣2
, (4)

where ĥ(γ f , k) is the postquench Hamiltonian with mode k.
Choosing |ψ i

k〉 as the k-mode of the ground state of the pre-
quench Hamiltonian, then we have

Lk = 1 − 	k sin2[ε f (k)t], (5)

with

	k = 1 −
[∑

α=x,y,z dα (γi, k)dα (γ f , k)

εi(k)ε f (k)

]2

,

where εi(k) = √∑
αd2

α (γi, k) and ε f (k) = √∑
αd2

α (γ f , k).
The singularity of rate function λ(t ) = − 1

L lnL(t ) occurs
when L(t ) = 0, which needs at least one k-mode fulfilling
	k = 1 and gives rise to the following constraint relation:∑

α=x,y,z

dα (γi, k)dα (γ f , k) = 0. (6)

To make our discussion concrete, we consider the SSH model
[34] and the Creutz model [35] as examples and show the
details of the calculation in this section.

A. SSH model

First, we consider the SSH model with the vector compo-
nents of Hamiltonian given by

dx(k) = J1 + J2 cos k, (7)

dy(k) = −J2 sin k, (8)

and dz(k) = d0(k) = 0, where J1 and J2 represent the intra-
cellular and intercellular tunneling amplitudes, respectively.
The SSH model possesses two topologically different phases
for J2 > J1 and J2 < J1 with a phase transition occurring at
the transition point of J2c/J1 = 1 [34,36]. Then we quench
parameter J2 from J2i to J2 f at t = 0 and get the Loschmidt
echo of the SSH model

L(t ) =
∏

k

{1 − 	k sin2[ε f (k)t]}, (9)

where ε f (k) and 	k are given by

ε f (k) = J1

√
1 + 2γ f cos k + γ 2

f , (10)

	k = 1 − [1 + (γi + γ f ) cos k + γiγ f ]2(
1 + 2γi cos k + γ 2

i

)(
1 + 2γ f cos k + γ 2

f

) . (11)

Here γi = J2i
J1

and γ f = J2 f

J1
. For convenience, we shall fix J1 =

1 and take it as the energy unit in the following calculation.
For a finite-size system under the periodic boundary condition
(PBC), the momentum k takes discrete values k = 2πm/L
with m = −L/2,−L/2 + 1, . . . , L/2 − 1 if L is even or m =
−(L − 1)/2,−(L − 1)/2 + 1, . . . , (L − 1)/2 if L is odd.

For a finite-size system under the PBC, we can utilize
Eqs. (2) and (9) to calculate the rate function numerically. In
Fig. 1(a), we display the rate function λ(t ) versus time t for
different system sizes L. Around the critical times t∗

n , the rate
function exhibits a series of peaks and the times t∗

n (L) corre-
sponding to these local maximums can be used to interpolate
numerically the values of critical times in the limit of L → ∞.
When we increase the size, t∗

n (L) does not change linearly
with L, but approaches the critical times t∗

n in an oscillating
way as shown in Figs. 1(b) and 1(c). In the thermodynamical
limit, the nonanalytical behaviors of λ(t ) are characterized by
the emergence of a cusp at t∗

n . Using λmax to represent the
first local maximum of λ(t ), we find that the value of λmax

does not increase linearly with the increase of system size
but approaches a finite number in an oscillating way. Our
numerical result unveils λmax ∼ 0.643 with L → ∞. In the
thermodynamical limit L → ∞, the momentum k distributes
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(a)

(b) (c)

FIG. 1. (a) The rate function λ(t ) of the SSH model versus t for
different system sizes L = 40, 60, 100, and 1100. Vertical dashed
lines guide the values of critical times t∗

1 ≈ 2.565 and t∗
2 ≈ 7.695.

(b), (c) are numerical results of the time when λ takes its local
maximums for different sizes L. We take γi = 1.5 and γ f = 0.5.

continuously and we have

λ(t ) = − 1

2π

∫ 2π

0
ln[1 − 	k sin2[ε f (k)t]]dk,

from which we numerically evaluate the value λ(t∗
1 ) ≈ 0.643

at the critical time t∗
1 . It is evident that λ(t∗

1 ) is equal to λmax

in the thermodynamical limit.
The nonanalytical behaviors of the rate function occurring

at the critical times t∗
n are associated to the emergence of

zeros of LE. We notice that the constraint relation for ensuring
L(t ) = 0 is

γ f = −1 + γi cos k

γi + cos k
. (12)

If |γi| < 1, Eq. (12) is fulfilled only for |γ f | > 1. On the
other hand, if |γi| > 1, Eq. (12) is fulfilled only for |γ f | < 1.
It means that the exact zeros of LE emerge only when the
quench parameter γ is across the underlying phase transition
point. When γi and γ f are in different phase regions, there
always exists a pair of momentum modes given by

kc,± = ± arccos

[
−1 + γiγ f

γi + γ f

]
, (13)

which leads to the occurrence of a series of zero points of LE
at

t∗
n = π

2ε f (kc,±)
(2n − 1), (14)

with

ε f (kc,±)/J1 =
√(

1 − γ 2
f

)
(γi − γ f )

γi + γ f
, (15)

(a)

(b)

FIG. 2. (a) The images of kc,+/π and kc,−/π versus γ f for the
SSH model. The blue and red lines correspond to γi = 0.5 and γi =
1.5, respectively. The two red circles denote kc,+/π ≈ 0.839 and
kc,−/π ≈ −0.839 for γi = 1.5 and γ f = 0.5, respectively. (b) The
exact solution of φc/π for γ f ∈ [−1, 1]. The red point denotes
φc/π ≈ 0.783 for γ f = 0.5. Here γi = 1.5 and L = 20.

and n being a positive integer. Since ε f (kc,+) = ε f (kc,−), we
omit the subscript ± in t∗

n as either ε f (kc,+) or ε f (kc,−) gives
the same contribution to critical times. In Fig. 2(a), we exhibit
the images of kc,+/π and kc,−/π versus γ f for γi = 0.5 and
γi = 1.5 according to Eq. (13), and the two red circles de-
note kc,+/π ≈ 0.839 and kc,−/π ≈ −0.839 for γi = 1.5 and
γ f = 0.5. For finite-size systems, k takes discrete values. Ac-
cording to Eq. (13), kc,± is usually not equal to the quantized
momentum values k = 2πm/L enforced by the PBC except
for some fine-tuned postquench parameters [24]. With the
increase in the system size, kc,± can be approached in terms of
min |k − kc,±| � π/L, and thus exact zeros of LE are usually
only achievable in the thermodynamical limit of L → ∞.

Although exact zeros of LE for a finite-size system gen-
erally do not exist, next we unveil that exact zeros of LE
can be achieved even in a finite-size system if we introduce
a magnetic flux φ into the system. The effect of magnetic
flux is effectively described by the introduction of a twist
boundary condition in real space c†

L+1 = c†
1eiφ (φ ∈ (0, π ]).

Under the twist boundary condition, the quantized momen-
tum is shifted by a factor φ/L, i.e., k = 2πm+φ

L with m =
−L/2,−L/2 + 1, . . . , L/2 − 1 if L is even or m = −(L −
1)/2,−(L − 1)/2 + 1, . . . , (L − 1)/2 if L is odd. Therefore,
for a given lattice size L we can always achieve kc,+ or kc,− by
tuning the flux φ to

φc = min{mod[Lkc,+, 2π ], mod [Lkc,−, 2π ]}. (16)

In Fig. 2(b), we display the image of φc/π versus γ f according
to Eq. (16) for the system with γi = 1.5 and L = 20, and the
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(a)

(b)

FIG. 3. (a) The rate function λ(t ) versus t for the SSH model
with γi = 1.5, γ f = 0.5, φ = 0, 0.5π, 0.783π , and π . Vertical
dashed lines guide the divergent points t∗

1 ≈ 2.565 and t∗
2 ≈ 7.695,

respectively. (b) The images of λmax versus φ/π . The dashed blue
line corresponds to γi = 1.5, γ f = 0.5, whereas the dotted or-
ange line corresponds to γi = 1.5, γ f = 1.2. The vertical dashed
line guides the divergent point φc/π ≈ 0.783. Here we take L = 20.

red point in the picture denotes φc/π ≈ 0.783 for γi = 1.5,
and γ f = 0.5.

Let � = φ − φc, at the time t = t∗
n , we can get

λ(t∗
n ) = − 1

L

⎡
⎣lnLk∗ (t∗

n ) +
∑
k 
=k∗

lnLk (t∗
n )

⎤
⎦, (17)

where Lk∗ (t∗
n ) comes from the contribution of the k∗-mode

which is closest to kc, i.e., k∗ = kc + �/L. Let � → 0, we
can get

Lk∗ (t∗
n ) ≈ (γi + γ f )3 + γ 2

f t∗2
n (γ f − γi )

(
1 − γ 2

i

)
(γ f − γi )2(γ f + γi )L2

�2. (18)

When � → 0, Lk∗ (t∗
n ) → 0 and thus lnLk∗ (t∗

n ) is divergent,
i.e., when φ achieves φc, the rate function becomes divergent
at the critical times.

In Fig. 3(a), we demonstrate rate functions versus t for var-
ious φ with L = 20, γi = 1.5, and γ f = 0.5. It is shown that
the rate function is divergent at the critical times t∗

1 ≈ 2.565
and t∗

2 ≈ 7.695 when φ is tuned to the critical value φc which
is shown in Fig. 2(b). In comparison with Fig. 1(a), both the
nonanalytical behaviors occur at the same critical times t∗

1
and t∗

2 . While the nonanalyticity of the rate function in the
thermodynamical limit is characterized by a cusp or a kink,
the nonanalyticity of the rate function of a finite-size system
induced by tuning the flux φ is characterized by the appear-
ance of singularity at the critical times. Such a singularity
of the rate function for the finite-size system is a kind of
dynamical singularity, which corresponds to the occurrence of
exact zeros of LE. The existence of dynamical singularity for
a finite-size system means that the initial state can evolve to
its orthogonal state at a series of time by tuning the magnetic
flux.

For a given γi and γ f , tuning φ from 0 to π , from Fig. 3(b)
we can see that if γi and γ f belong to the same phase, λmax

barely changes with φ, which means no singularity of rate
function can be observed; if γi and γ f belong to different
phases, λmax will diverge at φc/π ≈ 0.783, which gives a
signal of DQPT. Therefore, we can judge whether a DQPT
happens by observing the change of λmax as a function of
φ, which continuously varies from 0 to π . By tuning φ in
finite-size systems, we also obtain the critical times of DQPT,
which are usually defined in the thermodynamical limit and
can be extracted from the finite-size-scaling analysis in previ-
ous studies.

B. Creutz model

Next we consider the Creutz model [35] which describes
the dynamics of a spinless electron moving in a ladder system
governed by the Hamiltonian

H = −
∑
j=1

[
Jh

(
eiθ cp†

j+1cp
j + e−iθ cq†

j+1cq
j

)

+ Jd
(
cp†

j+1cq
j + cq†

j+1cp
j

) + Jvcq†
j cp

j + H.c.
]
, (19)

where cp(q)†
j and cp(q)

j are fermionic creation and annihilation
operators on the jth site of the lower (upper) chain; Jh, Jd , and
Jv represent hopping amplitudes for horizontal, diagonal, and
vertical bonds, respectively; and θ ∈ [−π/2, π/2] represents
the magnetic flux per plaquette induced by a magnetic field
piercing the ladder [35,37]. Via the Fourier transformation,
the vector components of the Hamiltonian in momentum
space can be expressed as dx(k)=−2Jd cos k−Jv, dy(k) = 0,

dz(k) = −2Jh sin k sin θ , and d0(k) = −2Jh cos k cos θ . For
simplicity, in the following we will focus on the case of Jh =
Jd = J and Jv/2J < 1, and take J = 1 as the unit of energy.
In this case, the Creutz model has two distinct topologically
nontrivial phases for −π/2 � θ < 0 and 0 < θ � π/2 with
a phase transition occurring at the transition point of θ = 0
[38]. Then we quench parameter θ from θi to θ f at t = 0 and
get the LE of the Creutz model

L(t ) =
∏

k

{1 − 	k sin2[ε f (k)t]}, (20)

where

	k = 1 − 16J4[(cos k + J̃v )2 + sin2 k sin θi sin θ f ]2

ε2
i (k)ε2

f (k)
, (21)

εi(k) = 2J
√

(cos k + J̃v )2 + sin2 k sin2 θi, (22)

and

ε f (k) = 2J
√

(cos k + J̃v )2 + sin2 k sin2 θ f , (23)

with J̃v = Jv/2J . The corresponding constraint relation of
Eq. (6) for the occurrence of exact zeros of LE is

sin θ f = − (cos k + J̃v )2

sin2 k sin θi
. (24)

If sin θi < 0, Eq. (24) is fulfilled only for sin θ f > 0. On
the other hand, if sin θi > 0, Eq. (24) is fulfilled only for
sin θ f < 0. It means that the dynamical singularity of the rate
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(a)

(b) (c)

FIG. 4. (a) The rate function λ(t ) versus t for the Creutz model
with different system sizes L = 40, 60, 100, and 1200. Vertical
dashed lines guide the values of critical times t∗

1,1 ≈ 1.435, t∗
1,2 ≈

2.176, t∗
2,1 ≈ 4.306, and t∗

2,2 ≈ 6.527, respectively. (b), (c) are numer-
ical results of the time when λ takes its local maximums for different
sizes L. Here J̃v = 0.5, θi = 0.4, and θ f = −0.4.

function exists only when the quench parameter θ is across
the underlying phase transition point.

When θi and θ f are in different phase regions, there are
always two pairs of momentum modes given by

kc,1± = ± arccos

⎡
⎢⎣−J̃v +

√
A
(
J̃2
v − 1 + A

)
1 − A

⎤
⎥⎦, (25)

and

kc,2± = ± arccos

⎡
⎢⎣−J̃v −

√
A
(
J̃2
v − 1 + A

)
1 − A

⎤
⎥⎦, (26)

with A = sin θi sin θ f , which lead to the occurrence of a series
of dynamical singularities of the rate function at

t∗
n,1/2 = π

2ε f (kc,1±/2±)
(2n − 1), (27)

with

ε f (kc,1±/2±)/2J =
√

(sin θ f − sin θi ) sin θ f sin2 kc,1±/2±

(28)

and n being a positive integer. Since ε f (kc,1+/2+) =
ε f (kc,1−/2−), we omit the subscript ± in t∗

n,1/2. Similarly, kc,1±
and kc,2± are usually not equal to the quantized momentum
values k = 2πm/L enforced by the PBC except for some fine-
tuned postquench parameters. It means that the exact zeros of
LE of a finite-size system generally do not exist for arbitrary
θi and θ f . With the increase in the system size, kc,1±/2± can
be approached in terms of min |k − kc,1±/2±| � π/L, and thus

(a) 0.4,0.772)

0.4,0.536)

0.4,–0.536)

0.4,–0.772)

0.4,0.721)

0.4,0.550)

(b)

FIG. 5. (a) The images of kc,1+, kc,1−, kc,2+, and kc,2− versus θ f

for the Creutz model. The blue and red lines correspond to θi = −0.4
and θi = 0.4, respectively. The four red circles denote kc,1±/π ≈
±0.536 and kc,2±/π ≈ ±0.772 for θi = 0.4 and θ f = −0.4. (b) The
exact solutions of φc,1/π and φc,2/π of the Creutz model for θ f ∈
[−π/2, 0]. The two red points denote φc,1/π ≈ 0.721 and φc,2/π ≈
0.550 for θ f = −0.4. Here θi = 0.4, J̃v = 0.5, and L = 20.

dynamical singularities of the rate function are usually only
achieved in the limit of L → ∞.

In Fig. 4(a), we display the rate function λ(t ) versus time
t for different system sizes L. From Figs. 4(b) and 4(c) we
can see that t∗

1,1(L) and t∗
1,2(L) approach the critical times in

an oscillating way as the size L increases. With the increase
of the size L, we find that the value of λmax also approaches a
finite number in an oscillating way and λmax ∼ 0.621 when
L → ∞. In the thermodynamical limit, the momentum k
distributes continuously and we have λ(t ) = − 1

2π

∫ 2π

0 ln[1 −
	k sin2[ε f (k)t]]dk, from which we numerically evaluate the
value λ(t∗

1,1) ≈ 0.621 at the critical time t∗
1,1, agreeing with

λmax in the thermodynamical limit.
In Fig. 5(a), we exhibit the images of kc,1+, kc,1−, kc,2+,

and kc,2− versus θ f for θi = −0.4 and θi = 0.4 according to
Eqs. (25) and (26), and the four red circles denote kc,1±/π ≈
±0.536 and kc,2±/π ≈ ±0.772 for θi = 0.4 and θ f = −0.4.
Since the quantized momenta k usually do not include kc,1±
and kc,2± under the PBC, we introduce the twist boundary
condition here. For a system with a given finite size L, we
can always achieve kc,1+/2+ or kc,1−/2− by using the twist
boundary condition with

φc,1/2 = min{mod[Lkc,1+/2+, 2π ], mod [Lkc,1−/2−, 2π ]}.
(29)

Figure 5(b) displays the images of φc,1/π and φc,2/π ver-
sus θ f according to Eq. (29) for the system with θi = 0.4,
J̃v = 0.5, and L = 20, and the two red points denote φc,1/π ≈
0.721 and φc,2/π ≈ 0.550 for θi = 0.4 and θ f = −0.4.

Let �1/2 = φ − φc,1/2, at the time t = t∗
n,1/2 we can get

λ(t∗
n,1/2) = − 1

L

⎡
⎣lnLk∗

1/2
(t∗

n,1/2) +
∑

k 
=k∗
1/2

lnLk (t∗
n,1/2)

⎤
⎦, (30)

134302-5



YUMENG ZENG, BOZHEN ZHOU, AND SHU CHEN PHYSICAL REVIEW B 107, 134302 (2023)

(a)

(b)

FIG. 6. (a) The rate function λ(t ) versus t for the Creutz model
with θi = 0.4, θ f = −0.4, φ = 0, 0.550π, 0.721π , and π , respec-
tively. Vertical dashed lines guide the divergent points t∗

1,1 ≈ 1.435,
t∗
1,2 ≈ 2.176, t∗

2,1 ≈ 4.306, and t∗
2,2 ≈ 6.527. (b) The images of λmax

versus φ/π . The dashed blue line corresponds to θi = 0.4, θ f =
−0.4, and the dotted orange line corresponds to θi = 0.4, θ f = 0.1.
Vertical dashed lines guide the divergent points φc,1/π ≈ 0.721 and
φc,2/π ≈ 0.550. Here we take J̃v = 0.5 and L = 20.

where Lk∗
1/2

(t∗
n,1/2) comes from the contribution of the k∗

1/2-
mode which is closest to kc,1/2, i.e., k∗

1/2 = kc,1/2 + �1/2/L.
Let �1/2 → 0, we can get

Lk∗
1/2

(t∗
n,1/2) ≈ B1/2�

2
1/2, (31)

where

B1/2 = 4
[
t∗2
n,1/2(J̃v + cos kc,1/2 cos2 θ f )2 − C

]
(sin θ f − sin θi ) sin θ f L2

,

with C = sin θ f (J̃2
v −1+sin θi sin θ f )

sin2 kc,1/2(sin θ f −sin θi )
. It means when �1/2 → 0,

i.e., φ → φc,1/2, Lk∗
1/2

(t∗
n,1/2) ∝ �2

1/2. When φ reaches φc,1/2,
we can get a k∗

1/2-mode which satisfies k∗
1/2 = kc,1/2 and

Lk∗
1/2

(t∗
n,1/2) = 0, thus the rate function is divergent at t∗

n,1/2.
In Fig. 6(a), we demonstrate rate functions versus t for

various φ with L = 20, J̃v = 0.5, θi = 0.4, and θ f = −0.4.
It is shown that the rate functions are divergent at the criti-
cal times t∗

1,1 ≈ 1.435 and t∗
2,1 ≈ 4.306, when φ is tuned to

the critical value φc,1 ≈ 0.721π , and divergent at the critical
times t∗

1,2 ≈ 2.176 and t∗
2,2 ≈ 6.527, when φ is tuned to the

critical value φc,2 ≈ 0.550π . In comparison with Fig. 4(a), all
the nonanalytical behaviors occur at the same critical times
obtained by finite-size-scaling analysis. For a pair of given θi

and θ f , Fig. 6(b) shows that if θi and θ f belong to the same
phase, λmax only changes slightly with φ, which means the
absence of DQPT; if θi and θ f belong to different phases, λmax

will diverge at φc,1/π and φc,2/π , indicating the occurrence of
DQPT. It is a remarkable fact that there are two critical mag-
netic fluxes φc,1 and φc,2, which are generated by two pairs
of momentum modes kc,1± and kc,2±, respectively. While φc,1

only produces singularities at t∗
n,1, φc,2 produces singularities

at t∗
n,2.

(a)

(b)

(c)

FIG. 7. (a) A scheme for the SSH model with long range hop-
ping. (b) The rate function λ(t ) versus t with φ = 0, 0.487π, 0.8π ,
and π for the system with α = 1, respectively. Vertical dashed
lines guide the divergent points t∗

1 ≈ 3.163 and t∗
2 ≈ 9.490. (c) The

rate function λ(t ) versus t with φ = 0, 0.5π, 0.782π , and π for
the system with α = 10, respectively. Vertical dashed lines guide
the divergent points t∗

1 ≈ 2.565 and t∗
2 ≈ 7.696. Here we take

J1 = 1, J2i = 1.5, J2 f = 0.5, and L = 20.

III. APPLICATION TO OTHER MODEL SYSTEMS

To exhibit the applicability of our theoretical scheme to
more general cases, here we study more examples by taking
account into the effect long-range hopping, dimensionality,
and interaction. We shall explore the dynamical singularity of
rate function in the SSH model with long-range hopping, the
two-dimensional Qi-Wu-Zhang model [39], and the interact-
ing SSH model, respectively.

A. SSH model with long-range hopping

Consider the SSH model with long-range hopping de-
scribed by

H =
L∑

n=1

L/2∑
r=1

(V1,rc†
A,ncB,n+r−1 + V2,rc†

A,n+rcB,n

+ V3,rc†
A,ncA,n+r + V4,rc†

B,ncB,n+r + H.c.), (32)

where V1,r = J1e−α(r−1), V2,r = J2e−α(r−1), V3,r =
J3e−α(r−1), V4,r = J4e−α(r−1), and α is a tunable positive pa-
rameter. The model is schematically depicted in Fig. 7(a). By
using the Fourier transformation c†

A/B,n = 1√
L

∑
k eiknc†

A/B,k ,

134302-6
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we get

H =
∑

k

L/2∑
r=1

[(V1,re−ik(r−1) + V2,reikr )c†
A,kcB,k

+ cos[kr](V3,rc†
A,kcA,k + V4,rc†

B,kcB,k ) + H.c.]. (33)

The vector components of the Hamiltonian in momentum
space are

dx(k) =
L/2∑
r=1

(V1,r cos[k(r − 1)] + V2,r cos[kr]), (34)

dy(k) =
L/2∑
r=1

(V1,r sin[k(r − 1)] − V2,r sin[kr]), (35)

dz(k) =
L/2∑
r=1

(V3,r − V4,r ) cos[kr], (36)

d0(k) =
L/2∑
r=1

(V3,r + V4,r ) cos[kr]. (37)

For simplicity, we set V3,r = V4,r and choose V2,r as the quench
parameter. The phase transition point is V2c,r/V1,r = 1. Ac-
cording to Eq. (6), the corresponding constraint relation for
the occurrence of divergence of the rate function is

L/2∑
r=1

(V1,r cos[k(r − 1)] + V2i,r cos[kr])

×
L/2∑
r=1

(V1,r cos[k(r − 1)] + V2 f ,r cos[kr])

+
L/2∑
r=1

(V1,r sin[k(r − 1)] − V2i,r sin[kr])

×
L/2∑
r=1

(V1,r sin[k(r − 1)] − V2 f ,r sin[kr]) = 0. (38)

If we choose J1 = 1, J2i = 1.5, J2 f = 0.5, α = 1, and
L = 20, we can get kc ≈ 0.676π from Eq. (38). Then it
follows that φc ≈ 0.487π , t∗

1 ≈ 3.163, and t∗
2 ≈ 9.490. In

Fig. 7(b), we show the image of rate function for the case
of α = 1 with various φ. It is obvious that the rate function
diverges at t∗

1 and t∗
2 for φc ≈ 0.487π , while the rate function

is analytic for other values of φ. As a comparison, we choose
α = 10 and keep the other parameters the same as the case
of α = 1, and the rate function is displayed in Fig. 7(c). In
this case, the amplitude of hopping decays rapidly so that the
dynamical behavior of the model resembles the SSH model
without long range hopping. Similar to Fig. 3(a), the result for
the case of α = 10 in Fig. 7(c) shows that the rate function
diverges at t∗

1 ≈ 2.565 and t∗
2 ≈ 7.696 for φc ≈ 0.782π .

B. Qi-Wu-Zhang model

Next we consider the Qi-Wu-Zhang model, which is a two-
dimensional two-band model described by

H = − 1

2

∑
nx,ny

[(
c†

nx,ny
cnx+1,ny + c†

nx,ny
cnx,ny+1

)

+ ic†
nx,ny

c†
nx,ny+1 − c†

nx,ny
c†

nx+1,ny

+ μc†
nx,ny

cnx,ny + H.c.
]
, (39)

where μ is the chemical potential. After the Fourier transfor-
mation, we get the vector components of the Hamiltonian in
momentum space as

dx = sin ky, (40)

dy = − sin kx, (41)

dz = − cos kx − cos ky − μ, (42)

d0 = −2μ. (43)

Depending on the value of μ, the Qi-Wu-Zhang model is
known to have three different topological phases characterized
by different band Chern numbers with transition points at
μc = 0 and ±2 [39].

According to Eq. (6), the corresponding constraint relation
for the occurrence of divergence of the rate function is

μiμ f + (cos kx + cos ky)(μi + μ f ) + 2 cos kx cos ky + 2 = 0.

(44)

For the Qi-Wu-Zhang model, we find plenty of pairs of
(kxc, kyc) satisfy Eq. (44), and the value of kyc is determined
by

kyc = ± arccos

[−μiμ f − (μi + μ f ) cos kxc − 2

μi + μ f + 2 cos kxc

]
. (45)

Taking μ as the quench parameter, we choose μi ∈ (0, 2) and
μ f ∈ (−2, 0). To make sure that kyc is real, the value of kxc is
bounded as follows:

cos kxc ∈
[
−1,− μiμ f

μi + μ f + 2
− 1

]

∪
[
− μiμ f

μi + μ f − 2
+ 1, 1

]
. (46)

It should be noted that the critical time t∗
n is no longer a value,

but in a region

t∗
n ∈

⎡
⎢⎣ (2n − 1)π

2
√

μ f (μ f −2)(μ f −μi )
μi+μ f −2

,
(2n − 1)π

2
√

μ f (μ f +2)(μ f −μi )
μi+μ f +2

⎤
⎥⎦, (47)

where n is a positive integer.
It is worth noting that, for a finite-size system, both kx and

ky take discrete values. Thus the number of pairs of (kxc, kyc)
satisfing Eq. (44) is finite. If we choose μi = 0.3, μ f = −0.9,
and Lx = Ly = 12, we can get 16 pairs of (kxc, kyc)
from Eq. (44), given by (kxc,1, kyc,1) ≈ (±0.146π, π ) or
(π,±0.146π ), (kxc,2, kyc,2) ≈ (±0.0849π,±5π/6) or
(±5π/6,±0.0849π ), and (kxc,3, kyc,3) ≈ (±0.799π, 0) or
(0,±0.799π ). By applying the twist boundary conditions
(kx = 2πmx+φxc

Lx
, ky = 2πmy

Ly
) or (kx = 2πmx

Lx
, ky = 2πmy+φyc

Ly
)

with φxc/yc,1 ≈ 0.244π, φxc/yc,2 ≈ 0.981π , and φxc/yc,3 ≈
0.412π , we get the corresponding critical times given
by t∗

n,1 ≈ 1.431(2n − 1), t∗
n,2 ≈ 1.602(2n − 1), and

t∗
n,3 ≈ 1.705(2n − 1), respectively. In Fig. 8(a), we show

the image of the rate function for the Qi-Wu-Zhang model for
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(a)

(b)

FIG. 8. (a) The rate function λ(t ) versus t for the Qi-Wu-Zhang
model with μi = 0.3, μ f = −0.9, φx/y = 0, 0.244π, 0.412π , and
0.981π , respectively. Vertical dashed lines guide the divergent points
t∗
1,1 ≈ 1.431, t∗

1,2 ≈ 1.602, t∗
1,3 ≈ 1.705, t∗

2,1 ≈ 4.294, t∗
2,2 ≈ 4.805,

and t∗
2,3 ≈ 5.116. (b) The images of λmax versus φx/y/π . The dashed

blue line corresponds to μi = 0.3, μ f = −0.9, and the dotted or-
ange line corresponds to μi = 0.3, μ f = 0.1. Vertical dashed lines
guide the divergent points φxc/yc,1/π ≈ 0.244, φxc/yc,3/π ≈ 0.412,
and φxc/yc,2/π ≈ 0.981. Here we take Lx = Ly = 12.

various φx/y, where μi = 0.3, μ f = −0.9 and Lx = Ly = 12.
The rate functions distinctly diverge at the corresponding
critical times for φx/y = φxc/yc,1, φx/y = φxc/yc,2, and
φx/y = φxc/yc,3, while the rate function under the period
boundary condition is smooth for all time. Figure 8(b) exhibits
that λmax diverges at φxc/yc,1 ≈ 0.244π, φxc/yc,2 ≈ 0.981π

and φxc/yc,3 ≈ 0.412π when μi and μ f are in different phase
regions, while there is no divergence when μi and μ f belong
to the same phase. It is important to note that each φxc/yc just
produces a part of all the singularities. To obtain the whole
critical times t∗

1 ∈ [1.431, 1.705], t∗
2 ∈ [4.294, 5.116], and so

on, one needs to add proper twist boundary conditions on
both the x and y directions simultaneously.

C. Interacting SSH model
To check whether our theoretical scheme works for the in-

teracting system, now we consider the interacting SSH model
with the twist boundary condition

H =
L−1∑
j=1

(J1c†
j,Ac j,B + J2c†

j,Bc j+1,A + H.c.)

+ (J1c†
L,AcL,B + J2e−iφc†

L,Bc1,A + H.c.)

+ U
L∑

j=1

(n j,An j,B + n j,Bn j+1,A), (48)

where U > 0 characterizes the strength of the nearest-
neighbor repulsive interaction, n j,A/B denotes the fermion
occupation number operator of sublattice A/B on the unit cell
j, and nL+1,A = n1,A. Here we shall consider the half-filling
case. The topological phase transition of the interacting SSH
model under the periodic boundary condition was discussed in

FIG. 9. The rate function λ(t ) versus t for the interacting SSH
model with J1 = 1, J2i = 0.2, and L = 5. The other parameters are
(a) U = 0.1, J2 f = 0.7; (b) U = 0.6, J2 f = 0.7; (c), (e) U = 0.1,
J2 f = 2; (d), (f) U = 0.6, J2 f = 2.

Ref. [40]. When U is much larger than J1 and J2, the system is
in a density-wave phase with the ground state approximately
described by |1010 · · · 〉 or |0101 · · · 〉. Here we shall consider
the case with U much smaller than J1 and J2, for which there
is still a phase transition when we change the parameter J2/J1

with the transition point close to J2/J1 = 1 when U is small.
Since our motivation is to observe the signature of dynam-

ical singularity in a small size system, we shall not pursue
determining the phase boundary of the system precisely. By
applying the finite-size scaling of fidelity [40], we obtain
the approximate value of the phase transition point J2c/J1 ≈
1.038 and J2c/J1 ≈ 1.103 for U = 0.1 and U = 0.6, respec-
tively. We numerically calculate the rate function by exact
diagonalization of a system with L = 5 by fixing U and J1 = 1
and quenching the parameter J2. The numerical results are
shown in Fig. 9. For quench from J2/J1 < 1 to J2/J1 > 1,
we can observe that the rate functions present some peaks at
some typical magnetic fluxes φ, as shown in Figs. 9(c) and
9(d). However, these peaks are absent for the quench process
from J2/J1 < 1 to J2/J1 < 1, as shown in Figs. 9(a) and 9(b).
By scrutinizing these peaks in Figs. 9(c) and 9(d), we choose
three rate functions from Figs. 9(c) and 9(d) and show them
in Figs. 9(e) and 9(f), respectively. We can see that the rate
function with φ = 1.4111 in Fig. 9(e) and the rate function
with φ = 0.2012 in Fig. 9(f) exhibit obvious peaks, while the
other four rate functions display no divergence. Our numerical
results indicate a clear signature of dynamical singularity even
in a small size interacting system by tuning the magnetic flux.
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IV. CONCLUSION AND DISCUSSION

In summary, we proposed a theoretical scheme for studying
the dynamical singularity of the rate function in finite-size
quantum systems which exhibit DQPT in the thermodynamic
limit. The dynamical singularity of the rate function occurs
whenever the corresponding LE has exact zero points, which
is, however, not accessible in a finite-size quantum system
with the PBC because the momentum takes quantized values
k = 2πm/L. To realize the exact zeros of LE, we consider
the twist boundary condition by applying a magnetic flux
into the system, which enables us to shift the quantized
momentum continuously to achieve the exact zeros of LE.
Taking the SSH model and Creutz model as concrete exam-
ples, we demonstrate that tuning the magnetic flux can lead
to the occurrence of divergency in the rate function of a
finite-size system at the same critical times as in the case
of the thermodynamical limit, when the quench parameter
is across the underlying equilibrium phase transition point.
We also exhibit the applicability of our theoretical scheme to
more general cases, including the SSH model with long-range
hopping, the Qi-Wu-Zhang model, and the interacting SSH
model.

Our work unveils that the singularity of the rate function
is accessible in finite-size quantum systems by introducing
an additional magnetic flux, which provides a possible way
for experimentally detecting DQPT and the critical times in
finite-size quantum systems. For the experimental setup in
a trapped-ion quantum simulator [26,27], it remains a chal-
lenging task to create tunable magnetic flux in the setup.
However, for the cold atomic system, one can implement dis-
crete momentum states by using multifrequency Bragg lasers
to realize the SSH model on a momentum lattice [41], where
the synthetic magnetic flux through the ring are tunable [42].
We expect that the momentum lattice of cold atomic systems
might be a promising platform to observe the dynamical sin-
gularity of the rate function related to the DQPT.
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