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Structure of the impurity band in heavily doped nonmagnetic semiconductors
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We study the properties of the impurity band in heavily doped nonmagnetic semiconductors using the Jacobi-
Davidson algorithm and the supervised deep learning method. The disorder averaged inverse participation ratio
and Thouless number calculation show us the rich structure inside the impurity band. A convolutional neural
network model, which is trained to distinguish the extended/localized phase of the Anderson model with high
accuracy, shows us the results in good agreement with the conventional approach. Together, we find that there
are three mobility edges in the impurity band for a specific on-site impurity potential, which means the presence
of the extended states while filling the impurity band.
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I. INTRODUCTION

The effect of disorder has been extensively studied since
Anderson’s seminal paper [1]. Diluted magnetic semicon-
ductors (DMS) doped with a small concentration of charged
impurities constitute an interesting magnetic system that has
a number of novel features for study by numerical simula-
tion [2]. Much of the research has been focused on II-VI
(such as CdTe or ZnSe) and III-V (such as GaAs) compound
semiconductors doped with a low concentration (x ∼ 1–8%)
of manganese (Mn) impurities. Of particular interest in this
field is Ga1−xMnxAs which has been shown to exhibit fer-
romagnetic behavior above 100 K [3]. In these samples, the
manganese is substituted with gallium and acts as an accep-
tor (donating one hole to the crystal), so that the material
is p type. The holes bind to the impurities with an energy
of around 130 meV around x ∼ 10% [4]. Since x � 1, the
overlap between different impurity states can be ignored, thus
the interaction between the charge carriers can be neglected.
The system can be simply described by a noninteracting tight-
binding model. When the system contains only one impurity,
and the binding energy is large enough, an impurity state
appears below the conductance band (we assume the impurity
potential is attractive). It is locally distributed in space near the
impurity potential within a localization length ζ . As increas-
ing the concentration x, the overlap between different impurity
states extends the single impurity energy to an impurity band
in the density of state (DOS) and eventually merges with the
conductance band. Simultaneously, the states in the impurity
band are expected to become more and more extended and
ultimately regain their bandlike character [5]. However, the
details inside the impurity band are rarely studied.
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One reason for lacking such a study is the computation
difficulty even in the noninteracting case. Generally, the per-
centage of the state in the impurity band in the total number
of states is about 10% at the concentration we are interested
in. Taking a three-dimensional Anderson model with lattice
size 30 × 30 × 30 as an example, the number of states which
we need to know in the impurity band is about 3000. The
exact diagonalization [6] for such a system is very difficult
due to the large dimension. On the other hand, we have to do
a large number of sample averages. The sparse matrix diago-
nalization, such as the Lanczos method [7], can be adapted to
obtain a few lowest-lying states or a few states nearby special
energy [the simplest way is diagonalizing (H − εI )2 by using
the original Lanczos diagonalization method].

Machine learning methods have recently emerged as a
valuable tool to study the quantum many-body physics prob-
lems [8–25]. Its ability to process high-dimensional data and
recognize complex patterns has been utilized to determine
phase diagrams and phase transitions [26–37]. In particular,
the convolutional neural network (CNN) [38] model, which
initially is designed for image recognition, was widely used to
study different kinds of phase transition problems including
the Bose-Hubbard model [39], spin-1/2 Heisenberg model
[40], quantum transverse-field Ising model [35], etc. The
power of using machine learning to recognize quantum states
lies in their ability to finish tasks without the knowledge of
physics background or the Hamiltonian of the system. Even
if the neural network is trained in a small energy region of
the system, it can be used to obtain the whole phase dia-
gram [27,29]. Also, it can discriminate quantum states with
high accuracy even if they are trained from a totally different
Hamiltonian. This special feature of machine learning inspires
us to try to identify the delocalized states in the impurity band.

In this paper, we develop a method to obtain the cor-
rect DOS and other localization properties, such as inverse
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participation ratio (IPR) [41] and Thouless number [42],
by using Jacobi-Davidson sparse matrix diagonalization [43]
with an importance sampling statistics method. Meanwhile,
we train a three-dimensional CNN model using the data gen-
erated from the Anderson model, and then the trained model
is used to identify the existence of extended states in the
impurity band. This paper is organized as follows: In Sec. II
we describe the tight-binding model on the cubic lattice and
numerical methods; Sec. III demonstrates the effect of heavy
doping studied by studying the IPR and Thouless number;
Sec. IV demonstrates the implementation of the deep learn-
ing approach and the results from the trained neural network
model. Finally, we close with a conclusion.

II. MODEL AND METHODS

We consider a tight-binding model on a D-dimensional
hypercubic lattice with the nearest-neighbor hopping t , and
on-site energies εi:

H = −t
∑
〈i, j〉

(ĉ†
j ĉ j + H.c.) +

∑
i

εiĉ
†
i ĉi. (1)

The hopping term simulates the itinerant electrons and the
on-site energy has a bimodal distribution εi = −W with prob-
ability x, and εi = 0 with probability (1 − x). This model has
a host lattice with a single relevant band, with a fraction
x of substitutional impurities. For one-dimensional (d = 1)
free electrons, the energy-momentum dispersion relation is
E (k) = 2t cos(k), and it is easy to get the DOS with the
formula

ρ(E ) =
(

1

2π

)d ∫
dS

∇kE
. (2)

The result for one dimension (1D) is

ρ1d (E ) = 1√
4t2 − E2

. (3)

There is no analytic solution for higher dimensional systems;
however, an approximation that is accurate to roughly 2% was
given by Andres et al. [44]. Instead, the DOS can be calculated
numerically by exact diagonalization as shown in Fig. 1 where
t has been set to the unit. After introducing the impurities, all
states become localized in 1D and two dimensions (2D) based
on the scaling theory of localization [45]. In three dimensions,
part of the states become localized and develop into an impu-
rity band at the edge of the conducting band. To determine the
localized/extended state, namely, the location of the mobility
gap, we calculate the IPR [41],

IPR =
∑

i

∣∣ψ4
i

∣∣( ∑
i

∣∣ψ2
i

∣∣)2 (4)

for each state, where the ψi is the weight of an eigen wave
function on the ith site. Heuristically, if we compare two trivial
states with wave functions for a N-site system:

�extended =
∑

i

(ψi = 1/
√

N ) =
√

N (5)
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FIG. 1. The density of states for free electrons in the tight-
binding model in one, two, and three dimensions. Here t has been
set as the unit.

and

�localized( j) =
∑

i

(ψi = δi j ) = 1, (6)

where �extended is an extended state which has equal weight on
each site and �localized( j) is a localized state which only has
weight on the jth site. It is easy to see that the IPR of �extended

decreased with the order of 1
N and a constant for �localized( j).

On the other hand, the Thouless number [42] is defined as

g(E ) = 〈|	E |〉
〈δE〉 , (7)

where δE is the energy difference while the boundary condi-
tion changes from periodic boundary condition to antiperiodic
boundary condition and the |	E | is the average energy dis-
tance around E . Since only the extended states are sensitive
to the change of boundary condition, g(E ) grows linearly
as a function of the system size for the extended state, and
conversely, it reduces for the localized state. In this work,
we determine the localization properties by systematically
studying the IPR and Thouless number for different system
sizes, and the crossover points of the Thouless number give us
a hint of the mobility edge.

For a three-dimensional cubic lattice of size L, the Hamil-
tonian matrix has a dimension of L3. General full exact
diagonalization methods, such as Lapack library [46], can
only deal with small system sizes. The computation time of
diagonalizing one matrix with size L3 grows dramatically as
a function of the system size. According to Ref. [5], while
the doping concentration x > 5%, the maximum height and
breadth of the impurity band DOS seems to saturate, thus
we treat 5% as the typical value of the heavily doped con-
centration. As shown in Fig. 2, we deal with a system with
size 19 × 20 × 21 with doping concentration x = 5%, after
averaging thousands of samples, we obtained the DOS for
different doping energies. It is shown that a peak emerges
gradually near the band edge as increasing the doping energy
W . This peak becomes more prominent around W ∼ 4.5 at
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FIG. 2. The evolution of the DOS at the band edge with different
doping strengths. The system has size 19 × 20 × 21 and can be fully
diagonalized.

which an obvious depletion is developed at the junction be-
tween the impurity band and the conduction band.

Since only the developed impurity band is the interest-
ing part, we are focusing on that. The number of states
in the impurity band is about the lowest 10% of states in
the whole band, thus we do not have to fully diagonalize
the Hamiltonian. On the other hand, we just need to calcu-
late the DOS, IPR, and Thouless number for those lowest
10% states after averaging thousands of samples. For our
needs, we use the sparse matrix diagonalization with the
Jacobi-Davidson (JADA) method [43] which can search a few
(10–20) states efficiently around a specific energy. For a given
sample at fixed doping strength, we randomly distribute the
reference points (30–50 points) in the impurity band; taking
W = −4.5 as an example, the reference points are picked
randomly in the region [−8:−4]; about 10–20 states can be
obtained by JADA around each reference point. The reference
points could also be picked by importance sampling based
on the DOS for a small system from the full diagonalization.
We collect all these energies for each reference point in one
sample. After thousands of sample averaging, we obtain the
same DOS as that from the full diagonalization for a small
system. It is obvious that the JADA method can easily go
beyond the limit of the full exact diagonalization. At least on
the same price of the computation time, we can nearly double
the system size compared to the Lapack method. In this work,
we calculate the properties for system sizes up to 403 sites by
using the JADA method.

III. THE EFFECT OF HEAVY DOPING

As analyzed in the previous section, with typical doping
concentration x = 5%, we find that a clear impurity band
in the DOS is developed at about W = −4.5. We plot the
DOS and IPR together for different system sizes as shown
in Fig. 3. The line of the DOS for different system sizes
collapses to a single curve and it is the same as that from
exact diagonalization (ED) as shown in Fig. 2, which tells us
that we have already obtained the essential information of the
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FIG. 3. The DOS and IPR for the 5% doped system with W =
−4.5. The results are obtained from exact diagonalization. The num-
ber of configurations ranges from 1000 for system 14 × 15 × 16 to
50 for 29 × 30 × 31. The DOS is almost system-size independent.
The IPR drops in the center of the impurity band.

impurity band. As increasing the system size, the IPR does
not change on the edge of the band, which means the states on
the edge of the whole band are localized. The IPR in the bulk
decreases as enlarging the system; especially at the center of
the impurity band (E ∼ −6.2), the IPR drops to zero, which
is the same as in the system bulk (E ∼ −4.0). However, there
is a small peak near E ∼ −5.5, which is at the right edge of
the impurity band. The IPR in the vicinity of this point tends
to saturate to a finite value as increasing the system size. The
nonzero saturation of the IPR at this energy means another
possible mobility edge existing near the junction between the
conduction band and the impurity band.

In order to justify our conjecture, we systematically study
the value of the IPR for several system sizes. As shown in
Fig. 4(a), we choose four points from the knowledge of the
DOS and IPR. (1) E = −4.2 is in the bulk of the conduction
band, at which the state is extended. (2) E = −5.4 is at the
right edge of the impurity band. The state here is localized
according to our conjecture. (3) E = −6.2 is in the bulk of
the impurity band, which is extended according to its zero IPR
value in large L limit. (4) E = −6.8 is on the left edge of
the impurity band and thus at the edge of the whole energy
band. The state at the band edge is supposed to be localized.
In Fig. 4(b) we again compare the DOS from JADA with that
from Lapack, which shows a convergence in large system size.
According to the way of choosing these four points, (1) and
(3) should have similar behavior as increasing the system size,
and vice versa for (2) and (4). Figure 4(c) shows the IPR for
these four energies in different system sizes. We plot the data
in logarithmic scale and fit it by function

ln(IPR) = A + B ln(L) + C ln(L)2. (8)

The sign of the curvature C tells us whether the state is local-
ized or not. For (1) and (3), C < 0 means they are extended
states, and oppositely C > 0 for localized states at points (2)
and (4).
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FIG. 4. The IPR/DOS as a function of system size for fixed
energies. In (c), we fit the data by using a function ln(IPR) = A +
B ln(L) + C ln(L)2. The curvature C is labeled in the figure.

As another criterion, we calculate the Thouless number
g(E ) for different system sizes. The results are shown in Fig. 5
in which we plot the DOS together with the same horizontal
axis. The impurity band has been divided into several regions
at the crossover of g(E ) for different sizes. We label these
regions by “L” (localized) and “E” (extended) to demonstrate
different behavior g(E ). As increasing the system size, it is ob-
vious that the g(E ) increases in the E region and decreases in
the L region. The energies with vertical lines are the locations
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FIG. 5. The Thouless number g(E ) as a function of energy for
finite systems using exact diagonalization.

of the mobility edges, or the boundaries between the localized
states and the extended states.

IV. DEEP LEARNING APPROACH

The CNN, which is originally designed for two-
dimensional image recognition, has been widely adopted in
studying phase transition and achieves high accuracy in recog-
nition. A standard image recognition model can be used for
a three-dimensional (3D) electron system by integrating the
3D electron density in one direction. But the drawback of
this approach is that the information of the electron density
along one direction is lost during integration. So, we design a
3D CNN model for our 3D lattice model. To distinguish the
localized and delocalized state, the CNN model will return
two real numbers to represent the probability of the extended
state P and the localized state (1 − P) for the given wave
function. If the probability of the extended state is larger than
0.5, we think the eigenstate is delocalized, and vice versa.
Due to the limitation of the graphics memory (8 GB) of
our graphics card (NVIDIA GTX 1080), we consider a 3D
20 × 20 × 20 lattice. The hidden layers in the CNN model
consist of convolutional layers, max-pooling layers, and fully
connected layers. The loss function is defined by the cross
entropy H (x) = −∑

x p(x)lnp(x). During the training, we
use the RMSPropOptimizer solver defined in TENSORFLOW

[47] as the stochastic gradient descent solver to minimize the
loss function. The details of the neural network model are in
Appendix.

The training data for different phases are sampled from the
three-dimensional Anderson model using different disorder
parameters. It’s well known that the critical disorder at E = 0
for the 3D Anderson model is 16.54 ± 0.01 [48–50]. When
the disorder strength W is larger than the critical value, the
wave functions are exponentially localized and the system
behaves as an insulator. Otherwise, the wave functions are
delocalized and the system behaves as a metal. This phe-
nomenon is known as metal-insulator transition (MIT) [1].
We get 4000 eigenstates from W ∈ [14.0, 16.0) as the delo-
calized phase and 4000 eigenstates from W ∈ [17.0, 19.0) as
the localized phase by steps of 0.1. For each W , we prepare 40
different realizations of randomness and for each realization,
we take five eigenstates around E = 0. For the validation data
set, we get another 600 eigenstates from W ∈ [10.0, 16.0)
and 600 eigenstates from W ∈ [17.0, 23.0) in steps of 0.1.
During each step of the training, we randomly select 256
eigenstates from the training data set as the input and calculate
the gradient of the loss function with respect to the parameters
in the CNN model and update them. After every 50 steps, we
test the prediction accuracy on the validation data set and save
the model with the highest prediction accuracy.

To show the prediction accuracy for different disorder pa-
rameters W , we generate another 16 000 eigenstates sampled
from the Anderson model using W ∈ [0.1, 16.0] and W ∈
[17.0, 33.0). The prediction accuracy for different disorder
strengths W is shown in Fig. 6(a), and the overall accuracy
is 99.0%. The lowest prediction accuracy around the critical
disorder 0.8Wc < W < 1.2Wc is about 83%. We also test our
trained model by producing the phase transition diagram of
the 3D Anderson model. The testing data are sampled from
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FIG. 6. The performance of the trained neural network on the
Anderson model with different disorder parameters W . Wc = 16.54
is the critical disorder for E = 0. (a) The classification accuracy of
the trained neural network model. (b) The probability that the wave
function is considered as an extended state by the trained neural
network model.

W ∈ [8.0, 25.0] by steps of 0.1. In each realization of the same
disorder parameter W , we pick five eigenstates around the
band center (E = 0) as input data and use the averaged de-
localized probability of the five eigenstates as the delocalized
probability of this realization. We prepare five random real-
izations for each W and average the delocalized probability.
The phase diagram calculated using our trained CNN model
is shown in Fig. 6(b). From Fig. 6(b), we see that the trained
CNN model successfully captures the MIT.

Owing to its excellent classification accuracy, the trained
neural network model is ready to find the extended state in
the impurity band. We generate 1000 random realizations for
the Hamiltonian in Eq. (1) with doping probability x = 5%
and disorder parameter W = −4.5, and obtain all eigenstates
using the exact diagonalization method in LAPACK. These
quantum states are used as the input data for our trained CNN
model to calculate the delocalized probability. We average
the probability over 1000 realizations and the result is shown
in Fig. 7. The trained CNN model confirms that delocalized
states exist in the impurity band, which is in good agreement
with the results obtained via IPR or Thouless number.

FIG. 7. The probability that the corresponding wave function for
different eigenenergies is considered as an extended state by the
trained neural network model. The input wave functions are gener-
ated from the Hamiltonian in Eq. (1) using exact diagonalization.
Averages over 1000 realizations are taken.

FIG. 8. The architecture of the 3D CNN model employed in this
paper for the 3D 20 × 20 × 20 lattice. “None” in the figure repre-
sents the batch size during training or evaluation, which is not a fixed
number.

V. CONCLUSIONS

In this work, we numerically investigate the proper-
ties of the states in the “impurity band” of heavily doped
nonmagnetic semiconductors. By using general full exact
diagonalization and sparse matrix diagonalization with the
JADA method, we find that with a typical doping probability
x = 5%, the impurity band in the DOS is developed at about
W = −4.5. We calculate the IPR, Thouless number, and DOS
together for different system sizes and study the relationship
between them. The data fitting of IPR and system size on
four points suggests the existence of the extended states in
the impurity band. The Thouless number calculation supports
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the same conclusion and gives the exact location of mobility
edges.

In addition, we also utilize the supervised deep learning
method, which is the state-of-the-art method in pattern recog-
nition, to distinguish the extended and localized states in the
impurity band. We train a 3D CNN model using the data
generated from the Anderson model and then apply the trained
neural network model to classify the states in the “impu-
rity band.” Our trained neural network model achieves high
accuracy (99.0%) in classifying different states in the Ander-
son model. The prediction of our trained model on impurity
band also supports the finding from the relationship between
IPR, Thouless number, and system size though the predicted
locations of mobility edges have small discrepancies. Our
calculation gives direct evidence that there are three mobility
edges in the impurity band for a specific on-site impurity
potential in heavily doped nonmagnetic semiconductors.
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APPENDIX: NEURAL NETWORK MODEL
ARCHITECTURE AND HYPERPARAMETERS

The 3D CNN model used in this paper has a similar ar-
chitecture to “AlexNet” [38] and “VGGNet” [51], but with
a smaller number of convolutional, max-pooling, and fully
connected layers. This is because we are dealing with a 3D
lattice and the edges in the lattice have a much smaller length
compared to the images. The architecture of our model is
shown in Fig. 8, and the input and output dimension of each
layer is also listed in the figure.

The size of the convolution kernel applied in the first and
second convolutional layers is 5 × 5 × 5 and 3 × 3 × 3, re-
spectively. The activation function, rectified linear unit [52],
is performed after the convolutional layer and the fully con-
nected layer except for the last layer, which is activated by
the softmax [53] function. Bias parameters are included for
artificial neurons. Dropout [54] is performed with probability
p = 0.5 after the first fully connected layer to avoid overfitting
and increase the evaluation accuracy.
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