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Quasiparticle dynamics in a quasiperiodic Ising model
with temporally fluctuating transverse fields
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We study quasiparticle dynamics in a quasiperiodic Ising model with temporally fluctuating transverse fields.
Specifically, we calculate the dynamical exponents of the standard deviation of a quasiparticle spreading under
a field chosen randomly from binary values ±h at every time interval. We find that the short-time behavior of
the dynamical exponents depends on the interval of the temporally fluctuating fields. We also reveal how the
quasiparticle dynamics affects the relaxation of spin-spin correlation functions. The dynamics can be explained
via the overlap between the eigenvectors of a Hamiltonian with ±h.
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I. INTRODUCTION

Anderson’s pioneering research has opened a door to
analysis of localization phenomena in randomly disordered
systems [1]. Through various studies on Anderson lo-
calization, much knowledge has been obtained for cases
of one-particle problems [2–4]. Recently, localization with
many-body interactions has attracted much attention in the
context of thermalization problems in isolated quantum sys-
tems [5–7]. Such localization is referred to as many-body
localization (MBL). MBL is also an important phenomenon
in quantum information engineering because an MBL phase
can retain local information at an initial state during time
evolution. In this way, MBL provides a vast research stage
across various fields of physics.

Anderson localization has also been studied in the field of
quantum walks, which were originally introduced as quantum
versions of classical random walks [8]. The propagation of
walkers in quantum walks is different from that in classical
random walks. While a random walk exhibits a diffusive
dynamics that is characterized by a standard deviation of
the probability distribution, given as σ ∼ √

t , a walker in a
quantum walk propagates ballistically as σ ∼ t . Such ballistic
dynamics is obtained in homogeneous cases. The dynamics
in a quantum walk is strongly affected by spatial and tem-
poral disorder. Spatial disorder localizes quantum walkers as
σ ∼ 1 [9–13]. On the other hand, temporal disorder leads to
diffusive dynamics as σ ∼ √

t , regardless of whether spatial
disorder exists [14–22]. Because quantum walks are almost
equivalent to the dynamics of excitations in tight-binding
models, results for quantum walks are useful in understanding
the localization phenomena and diffusive dynamics in disor-
dered systems.

Quantum walks are formulated in two different ways: as
a discrete-time quantum walk (DTQW), or a continuous-time
quantum walk (CTQW) [23]. The difference between these
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formulations is in how the system evolves in time. The time
evolution in a DTQW is implemented by the product of two
unitary operators, a coin operator and a displacement operator.
On the other hand, the time-evolution operators in CTQWs
are given by solutions of the Schrödinger equation. In this
way, a CTQW is closer to the formulations of condensed
matter physics and the dynamics is related to nonequilibrium
relaxation as compared with a DTQW. Sachdev first showed
that the relaxation of observables can be obtained from the
classical trajectories of quasiparticles [24]. These trajectories
are estimated from the time evolution of the standard devia-
tion of the probability distributions of the quantum walkers
in CTQWs. This framework has been applied to integrable
and disordered systems, and it can successfully estimate local
quantities and correlations [25,26]. Later, Roósz et al. ana-
lyzed the quasiparticle dynamics in a one-dimensional trans-
verse field Ising model (TFIM) whose transverse field fluctu-
ates in the time domain [27]. The main characteristic parame-
ter of the randomly fluctuating field is its time interval τ . They
showed that the standard deviations exhibit diffusive or su-
perdiffusive behaviors given by σ ∼ t1/z (0.5 � 1/z < 1), de-
pending on the interval τ . However, they did not consider spa-
tial disorder, and in this paper, we reveal whether a superdif-
fusive dynamics can be obtained even under spatial disorder.

Like random disorder (RD), quasiperiodicity (QP) also
leads to localized eigenstates. The potential or hopping
parameters of QP systems are spatially modulated with in-
commensurate periods. Although more than 40 years have
passed since Abzel, Aubry, and André reported localization
in QP systems [28,29], fewer studies have been conducted on
these systems than on RD systems. Unlike RD systems, QP
systems have delocalized eigenstates even in one dimension.
In addition, QP systems at critical points have fractalities in
their eigenspectra and eigenfunctions [30–32],and they ex-
hibit anomalous diffusion [33–36]. While QP systems provide
these rich properties, there is not much choice in QP models:
the Aubry-André model is the main stage of studies on local-
ization in QP systems [37–40]. Recently, another QP model,
the quasiperiodic transverse field Ising model (QP-TFIM), has
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FIG. 1. Phase diagram of the QP-TFIM. The complexity is due
to the various symmetries in individual parameter regimes. The
abbreviation PM and FM indicate paramagnetic and ferromagnetic,
respectively. The diagram was obtained by Chandran et al. [41].

come to be studied [41–44]. The QP-TFIM has the complex
phase diagram depicted in Fig. 1. From the viewpoint of lo-
calization, the phases are roughly categorized into three types:
extended, localized, and critical phases. In the extended phase,
quasiparticles propagate ballistically, whereas no transport is
observed in the localized phase. The critical phase is located
between the other two phases and exhibits extremely slow
dynamics. The dynamics under the static Hamiltonian of the
QP-TFIM was clarified previously [43]. However, because
systems are exposed to fluctuating external fields in realistic
situations, it is worthwhile to reveal the dynamical properties
in a QP system under fluctuation in the time domain.

In this study, we consider the quasiparticle dynamics in the
QP-TFIM under temporally fluctuating fields. The transverse
fields are randomly chosen from binary values ±h at every
duration with a certain interval τ . The way the quasiparticles
spread is a key to understanding the relaxation processes,
because the local observables and correlation functions can be
estimated from this dynamics in a semiclassical framework.
Thus, we perform stroboscopic time evolution and average the
probability distribution over realized sequences of temporally
random fields. Our calculations focus on the extended para-
magnetic (extended PM) region shown in Fig. 1, which is in
contact with the critical point of the TFIM. Our results on the
quasiparticle dynamics can be summarized as follows. Short-
time behaviors depend on τ , and the quasiparticle dynamics is
superdiffusive for certain values of τ . However, the quasipar-
ticle dynamics approaches to be diffusive for any interval τ in
the long-time scale. We also calculate the relaxation dynamics
of two-point spin-spin correlation functions. The exponents in
the relaxation of these correlation functions is consistent with
the dynamical exponents of the quasiparticles. Such depen-
dence of the dynamical exponents on τ can be explained by
the overlap between the eigenvectors of the Hamiltonian with

±h. For the TFIM, the overlap has a simple structure, which
leads to nearly ballistic dynamical exponents for certain τ . On
the other hand, finer structures appear as the strength of the
quasiperiodic spin-spin couplings increases, which leads to a
diffusive dynamics for any τ .

The rest of our paper is organized as follows. In Sec. II,
we introduce the details of the model and its formulation. In
Sec. III, we show the numerical calculations for the quasipar-
ticle dynamics and spin-spin correlation function. In Sec. IV,
we review the theory introduced in Roósz’s paper and ex-
tend it to the QP-TFIM. Finally, we summarize our study in
Sec. V.

II. QUASIPERIODIC ISING MODEL WITH TEMPORALLY
FLUCTUATING FIELDS

A. Hamiltonian

The Hamiltonian of the quasiperiodic Ising model with
temporally random transverse fields is written as

Ĥ (t ) = −1

2

L−1∑
j=1

Jj σ̂
x
j σ̂

x
j+1 − 1

2
h(t )

L∑
j=1

σ̂ z
j ,

(1)
Jj = J + AJcos(Q( j + 1/2)),

where σ̂ α
j (α = x, y, z) are Pauli matrices at site j, Jj repre-

sents the quasiperiodic spin-spin coupling between sites j and
j + 1, and Q denotes an irrational number given as the golden
ratio: 2π × (

√
5 + 1)/2. This system is in the open boundary

condition. The system size L is set large enough that the edges
of the system do not affect the dynamics.

In this paper, we consider transverse fields h(t ) that are
spatially uniform but temporally fluctuating. The field is ran-
domly chosen from binary values ±h at every discrete time
tn = nτ , where τ is the discrete time interval. Within the
duration defined by (tn−1, tn], h(t ) takes a constant value.

This QP-TFIM has the complex phase diagram depicted in
Fig. 1. The phases are determined by the uniform component
J , the quasiperiodic component AJ of the spin-spin coupling,
and the static transverse field h. In this study, we aim to extend
Roósz’s work for the TFIM to the QP-TFIM. Hence, we
focus on the extended PM region (J = 1, h = 1, 0 < AJ < 1),
which connects with the critical point of the TFIM as AJ → 0.
In this parameter region, the eigenfunctions are spatially ex-
tended and quasiparticles propagate ballistically with time.

B. Formulation

In this section, we formulate the stroboscopic time evolu-
tion with respect to the time interval τ . The time-dependent
Hamiltonian has fields whose sign randomly changes at every
interval τ . However, the Hamiltonian can be treated as a static
Hamiltonian in the time domain between the intervals. In
this case, the static Hamiltonian is used to construct the time
evolution of the time-dependent Hamiltonian.

As with the TFIM, the Hamiltonian of the QP-TFIM can
be written in a quadratic form of Majorana fermions. The
operators of the Majorana fermions are defined with Pauli
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operators as

γ̂2i−1 =
( ∏

j<i

( − σ̂ z
j

))
σ̂ x

i

γ̂2i =
( ∏

j<i

( − σ̂ z
j

))
σ̂

y
i , (2)

which satisfies the anticommutation relation

{γ̂i, γ̂ j} = 2δi, j (i = 1, · · · , 2L). (3)

The static Hamiltonian Ĥ± can be written as

Ĥ± = 1

4

2L∑
i, j=1

γ̂i[H±]i j γ̂ j, (4)

where the indices ± represent the signs of the transverse fields
±h.

Here, we describe the essential properties of the static
Hamiltonian for explaining our results. First, the chiral trans-
formation changes the sign of the static Hamiltonian as

CH±C = −H±, (5)

where the chiral matrix C = diag[−1, 1,−1, 1, · · · ]. This
leads to a property that, if +εμ is an eigenenergy of H±, then
−εμ is also an eigenenergy. Second, the Hamiltonian with the
transverse field +h can be converted to that with −h by the
operation of

∏
i σ̂

x
i as[ ∏
i

σ̂ x
i

]
Ĥ+

[ ∏
i

σ̂ x
i

]
= Ĥ−, (6)

where Ĥ± denotes the respective Hamiltonians with the trans-
verse fields ±h. This relation leads to the same eigenspectra
between Ĥ− and Ĥ+, whereas the eigenvectors of Ĥ± are
different from each other and can be obtained by the operation
of

∏
i σ̂

x
i on the eigenvectors of the other Hamiltonian.

Next, we move on to formulate the stroboscopic time evo-
lution with respect to the time interval τ . As mentioned above,
the transverse fields are chosen from the constant values ±h
at every discrete time tn. The Hamiltonian is static within an
individual duration (tn−1, tn]. Thus, although the Hamiltonian
is time dependent, its time-evolution operators from t = 0
to tn can be written in products of time-evolution operators
advancing time by τ as

Û (nτ ) = Ûsn (τ ) · · · Ûs1 (τ ), (7)

where sn is the sign of h(t ) for the duration (tn−1, tn] and Ûsn =
e−iĤsn τ denotes the time-evolution operator.

The time evolution from γ̂i(tn−1) to γ̂i(tn) is

γ̂i(tn) =
2L∑
j=1

[O±(τ )]i j γ̂ j (tn−1), (8)

where O±(τ ) is an orthogonal matrix corresponding to
the time-evolution operator with respect to the Majorana
fermions. This time evolution is obtained from solutions of

the Heisenberg equations defined as

i
d

dt
γ̂i(t ) =

2L∑
j=1

[H±]i j γ̂ j (t ). (9)

We next perform quantum quenches as follows. The time
evolution starts from one of the degenerate ground states in
the classical Ising limit, J � AJ , h. We describe the state as
|x〉, which is a product state where all spins point in the +x
direction. After the above preparation, the transverse fields
are suddenly switched on, and the Hamiltonian parameter
after these quenches is in the extended PM region. In the
time evolution under the Hamiltonian after the quenches, the
transverse fields rotate the spins in the x-y plane, which creates
numerous kinks. At the same time the kinks are created,
they begin to propagate through the system. The Majorana
fermions correspond to the creation and annihilation operators
of the kinks, which can be checked by the operation of γ̂i on
|x〉. Thus, after the quenches, numerous Majorana fermions
are emitted from each site and propagate through the system.

To understand the nonequilibrium dynamics following the
quenches, it is important to reveal how the Majorana fermion
propagates through the system. In Ref. [25], the dynamics of
the Majorana fermion is treated in the semiclassical frame-
work for understanding the relaxation. In this framework,
the spin-spin correlation functions 〈x| σ̂ x

i (t )σ̂ x
j (t ) |x〉 can be

estimated from the classical trajectories of the quasiparticles.
Since the Majorana fermions roughly correspond to kinks,
when an odd number of kinks cross the line from (i, t ) to ( j, t ),
the correlation between σ̂ x

i (t ) and σ̂ x
j (t ) becomes negative;

that is, σ̂ x
i (t ) points to the opposite direction to σ̂ x

j (t ). By
averaging the individual signs of the correlation functions over
the number of kinks crossing the line, 〈x| σ̂ x

i (t )σ̂ x
j (t ) |x〉 can be

estimated. The negative correlations contribute to relaxations
of the correlation function. Thus, the speed of the relaxation
is directly determined by how quasiparticles propagate.

The propagation of the Majorana fermions can be de-
scribed by a two-point correlation function defined as

Gi(t ) = 1√
2
〈x|γ̂i(t )γ̂L|x〉. (10)

The physical meaning of this correlation function is the prob-
ability amplitude of the Majorana fermion propagating from
a space-time point (L, 0) to (i, t ), where the space coordinate
is written in the Majorana representation. The initial site L
represents the central position of the system. At the initial
time t = 0, GL(0) = 1/

√
2, GL+1(0) = i/

√
2. By using the

orthogonality of time-evolution matrices O±, one can find
that

2L∑
i=1

|Gi(t )|2 = 1. (11)

Because the Hamiltonian (4) has spatial variation, the time
evolution of the two-point correlation function (10) may de-
pend on where the Majorana fermions are initially created.
Fortunately, in the extended PM regime, such dependence is
negligibly small after the averaging over the various realiza-
tions of the fluctuating fields. Hence, we focus on the case
in which the Majorana fermion is created at the center of the
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system. By analogy with CTQWs, we define the probability
distributions as

pi(t ) := |G2i−1(t )|2 + |G2i(t )|2 (i = 1, 2, · · · , L). (12)

By combining Eqs. (9) and (10), one can find the following
equation:

i
d

dt
Gi(t ) =

2L∑
j=1

[H±]i jG j (t ). (13)

This equation takes the same form as that of the Majorana
fermion operators. The time-evolution operators O±(τ ) ad-
vance {Gi(tn−1)} to {Gi(tn)} as

Gi(tn) =
2L∑
j=1

[O±(τ )]i jG j (tn−1). (14)

As mentioned in Sec. IV, the eigenvectors of H± are useful for
explaining the relaxation of the quasiparticle dynamics under
temporal noise.

The temporally fluctuating transverse fields lead to the
dependence on the random sequence. To obtain a result that
does not depend on each realization, we take an average
of pi(t ) over Nsamp realizations of temporally random trans-
verse fields. We denote the distribution obtained for kth (k =
1, 2, · · · , Nsamp) sequence of the field as pi;k (t ), and we define
the averaged probability distributions as

pi(t ) = 1

Nsamp

Nsamp∑
k=1

pi;k (t ). (15)

III. RELAXATION ON TEMPORAL NOISE

A. Quasiparticle dynamics

To analyze how the quasiparticles propagate, we introduce
the following standard deviation in the probability distribu-
tion:

σ (tn) =
√∑

l

pl (tn)(l − l0)2, (16)

where l0 = (L + 1)/2 is the center position of the sys-
tem. As is well known for random walks (quantum walks),
the time dependence of the standard deviation is obtained
as t1/2 (t1). We expect the standard deviation to take the
form of

σ (t ) ∼ t1/z (17)

where the dynamical exponent z depends on the class of the
dynamics. Typically, 1/z = 0 for localized systems, 1/z =
1/2 for diffusive systems, and 1/z = 1 for ballistic systems.
As mentioned above, we deal with the discrete time evolution
here, and we calculate the dynamical exponent at the discrete
time tn from

1

z(tn)
= ln[σ (tn)/σ (tn−1)]

ln[tn/tn−1]
. (18)

The previous study on the TFIM investigated the dynamics
of the quasiparticles under the temporally random fields with
the fluctuation time τ [27]. The study showed that, depending

on τ , the dynamical exponents took three different values
corresponding to diffusive, superdiffusive, and nearly ballistic
dynamics. Note that the previous study focused on the spa-
tially homogeneous system.

In this study, we consider the systems with the weakly
quasiperiodic modulation instead of the TFIM. The dynamics
of the quasiparticles are determined by the four parameters
J, AJ , h, and τ , where we set h = 1 to normalize the Hamilto-
nian without loss of generality. Our calculations are performed
in the extended PM region in contact with the TFIM. Here, we
limit the discussion to the line of J = 1 in the phase diagram
(Fig. 1). The remaining independent parameters are given by
AJ and τ .

The system size L is set to 2048 to avoid effects of
the system edges in the time range of the calculation. The
quasiparticle on the center of the system at the initial time
propagates outward to the edges, and then reflects at the edges.
The reflection attributes to the boundary effect, and is not
caused by the property of the bulk of the QP-TFIM. Since
our purpose is to extract the dynamical exponent in the bulk
of the QP-TFIM, the reflection should be omitted from the
calculation. In addition, as the system size increases, the time
till the reflection increases. Thus, the system size need to be
prepared large enough and the time range of the calculation
need to be short enough so that the size effect does not
appear.

We first calculate the dynamical exponent for AJ/h = 0.5
and τ/2π = 1.0–1.4 or 2.2–2.6 to check the dependence on
the fluctuation time τ , as depicted in Fig. 2(a). The dynamics
following the quenches is separated into two time sectors, for
short-time behaviors and long-time behaviors. For long-time
behavior, the dynamical exponents tend to approach the diffu-
sive value 1/z = 0.5 for any τ . In contrast, the dependence
on τ appears in the short-time scale. For τ/2π = 1.2, the
relaxation of the dynamical exponent is slower as compared
with other fluctuation times. The same behavior can be seen
for τ/2π = 2.4, as shown in the inset of Fig. 2(a). We choose
AJ = 0.5 as a representative value, because we have con-
firmed that the same slow relaxations happen for other AJ

values in the extended PM region.
Next, in Fig. 2(b), we show how the nearly ballistic dy-

namics in the TFIM becomes diffusive with increasing AJ .
For AJ/h = 0 and τ = π/2, the dynamical exponent takes
the nearly ballistic value 1/z ∼ 0.9 and never decays, even
in the long-time scale. However, for AJ �= 0, the dynamical
exponent decays to the diffusive value. Figure 2(b) shows
that the decay of the dynamical exponents becomes faster
as AJ increases. As seen in Fig. 2(c), the relaxation of 1/z
in the long-time scale follows a power of the time t . The
slopes of the relaxation curves for all AJ except zero in this
log-log plot correspond to the same value of ∼ − 1.06 in the
long-time scale. The values of the slopes are evaluated by the
least-squares method.

It is shown that the dynamical exponent becomes diffu-
sive in the long-time scale in Fig. 2, but it is still unclear
whether the shape of the probability distribution also becomes
diffusive. To check that, we also analyze the shapes of the
probability distributions in the same setting as that used for
Fig. 2(b). The probability distribution for a diffusive quasipar-
ticle, pl (t ), can be represented by using the diffusive scaling

134201-4



QUASIPARTICLE DYNAMICS IN A QUASIPERIODIC … PHYSICAL REVIEW B 107, 134201 (2023)

FIG. 2. Dynamics of inverse dynamical exponents, where all
calculations were performed with L = 2048, Nsamp = 104. (a) De-
pendence of the fluctuation times τ on the dynamics of 1/z(tn)
at AJ = 0.5. The inverse dynamical exponent 1/z(tn) approaches
to the diffusive value 0.5 for most fluctuation times τ , except for
τ/2π = 1.2, 2.4. (b) Dependence of the quasiperiodic spin couplings
AJ at τ/2π = 0.25. The dynamical exponent at AJ = 0 (TFIM) does
not drop to the diffusive value 0.5. In contrast, the other dynamical
exponents reach the diffusive value in the long-time scale, with the
speed of the decay tending to be faster with increasing AJ . (c) Log-
log plot of the relaxation curves in (b). The dynamical exponents
exhibit power-law decay, and the slopes of the curves become the
same in the long-time scale.

function p̃(x) as

pl (t ) = t−1/2 p̃((l − l0)t−1/2). (19)

We show ln[t1/2 pl (t )] against (l − l0)t−1/2 in Fig. 3. As shown
in Fig. 3(a), for AJ = 0, ln[t1/2 pl (t )] have two symmetric
peaks moving outward over time, and one peak located at

FIG. 3. Scaling of the shapes of the probability distributions for
AJ = 0, 0.1, 0.2 [(a)–(c), respectively]. For AJ = 0 (TFIM), two out-
side peaks can be seen, and the distributions are not on the quadratic
curve of the diffusive scaling. The peaks are suppressed as AJ in-
creasing. For AJ = 0.2, tn/τ = 28, the distribution can be fit by the
quadratic curve.

the center. Although the symmetric peaks get smaller with
time, they remain even in the long-time scale. The shape of
the central peak of ln[t1/2 pl (t )] is time independent and is a
quadratic function of (l − l0)t−1/2 in |(l − l0)t−1/2| � 3. This
quadratic form verifies that the distribution around the central
peak belongs to the same class as particle distributions for
random walks. For finite AJ , as shown in Figs. 3(b) and 3(c),
the outer peaks in ln[t1/2 pl (t )] become indistinct and almost
disappear after a sufficiently long time. In addition, as seen
in Fig. 3(c), the central peak in ln[t1/2 pl (t )] deviates from its
early form and converges to another diffusive scaling func-
tion. It is verified that the quasiparticle becomes diffusive
by the quasiperiodicity not only in the viewpoint of the dy-
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FIG. 4. Time dependence of the spin-spin correlation function
with L = 1024, l = 510, J = 1, AJ = 0.5, h = 1, Nsamp = 1000,
and τ/2π = 1.0–1.4. The inset depicts the time dependence of the
dynamical exponents for the same setting as depicted in Fig. 2(a).

namical exponent but also in the viewpoint of the probability
distribution.

B. Spin-spin correlation function

In the semiclassical framework introduced by Sachdev,
correlation functions are estimated from the classical trajecto-
ries of quasiparticles. To connect the quasiparticle dynamics
analyzed above to the relaxation of correlations, we calculate
a spin-spin correlation function by using Wick’s theorem.
We consider the time dependence of a spin-spin correlation
defined as

Cl (t ) = 〈x|σ̂ x
L/2−l/2(t )σ̂ x

L/2+l/2(t )|x〉. (20)

At the initial time, no transverse field is applied to the sys-
tem, and the state, |x〉, is in one of the degenerate ground
states, giving Cl (0) = 1. At t = 0, the transverse field is sud-
denly switched to a finite value with temporal fluctuation. As
described in Sec. III. A, the quasiparticle propagates superdif-
fusively for certain time intervals in the short-time scale, and
its dynamics becomes to diffusive in the long-time scale. From
the viewpoint of the semiclassical framework, the relaxations
of the correlation functions are expected to have the same
features as those of the quasiparticle dynamics.

The correlation function can be written in the Majorana
representation as

〈x|σ̂ x
i (t )σ̂ x

j (t ) |x〉 ∝ 〈x| γ̂2i(t )γ̂2i+1(t ) · · · γ̂2 j−1(t )|x〉. (21)

Wick’s theorem then enables us to calculate Cl (t ) by the
Pfaffian Pf[X(t )], where the skew matrix X(t ) is defined by

Xi j (t ) =
{

0 (i = j)
〈x| γ̂i(t )γ̂ j (t ) |x〉 (i �= j) . (22)

Figure 4 shows numerical results for several time intervals
τ . Because the decay of the spin-spin correlation function over
time is expected to be

Cl (t ) ∼ e−bta
, (23)

we estimate the exponent a from linear fitting by the least-
squares method. After a long time, the value of a for τ/2π =

1.2 approaches the same value as for the other τ . The exponent
a = 0.724 for τ/2π = 1.2, while a ∼ 0.6 for the other τ

in the short-time scale. These exponents a are close to the
dynamical exponents 1/z(t ), which are depicted in the inset
of Fig. 4, in the short-time scale, ln(t/2π ) � 3.

IV. THEORY OF STROBOSCOPIC EIGENVECTORS

In this section, we review the theory of stroboscopic eigen-
vectors as adapted for the TFIM by Roósz [27], and we
extend the theory to the QP-TFIM. The key to understand-
ing the above results is to grasp how an eigenvector of H±
can be written with eigenvectors of H∓. For the TFIM, the
eigenvectors of H± are spanned by those of H∓ in a simple
manner, which leads to the nondiffusive quasiparticle dynam-
ics. For the QP-TFIM, the finite quasiperiodicity prevents
such a simple manner, and this lack of the simple relation
of overlap between the eigenvectors of H+ and H− leads to
diffusive behavior in the long-time scale for any fluctuation
time.

A. Theory for TFIM

The temporally random fields in question are considered by
choosing either O+ or O− at each duration as a time-evolution
operator. Generally, because an eigenvector of O+ is not an
eigenvector of O−, after the operation of O−, an eigenvector
is no longer an eigenvector of both O+ and O−. After the
random operations of O±, the system exhibits the diffusive
dynamics. In Roósz’s theory, if one of the eigenvectors of H+
is an eigenvector of both O+ and O−, then it will survive even
under random operations of O±. We review this theory more
precisely below.

In this section, Hs and H−s denote the Hamiltonians, where
s represents the sign of h(t ). For the TFIM with the periodic
boundary condition, one can find that the eigenvectors of Hs,
and H−s are related by

us
μ = cνμu−s

ν + cνμu−s
ν . (24)

Here, us
μ, u−s

ν are the respective eigenvectors of Hs, H−s,
and cνμ = (u−s

ν , us
μ), where (·, ·) denotes an inner product as

(a, b) = ∑
n a∗

nbn. The respective eigenvalues corresponding
to u±s

μ are denoted by ε±s
μ , and μ represents the eigenvector

with eigenvalue ε±s
μ = −ε±s

μ .
The correlation functions given by Eq. (10) can be written

in linear combinations of the eigenvectors of H±s. The time
evolution is implemented by random operations of Os or O−s

as in Eq. (7). We now check whether us
μ survives under the

operation of both Os and O−s. The operation of Os = e−iHsτ

only changes a coefficient and does not change the eigenvector
itself. By contrast, O−s = e−iH−sτ operates on us

μ as

O−sus
μ = e−iε−s

ν τ cνμu−s
ν + eiε−s

ν τ cν̄μu−s
ν̄ . (25)

By assuming the relation as

ε−s
ν τ = m−sπ, m−s = 1, 2, . . . , (26)

we obtain us
μ as an eigenvector of the time-evolution operator

O−s even though us
μ, is not an eigenvector of H−s.
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FIG. 5. Density of states (DOS) of the matrix H with L = 2048, h = 1, J = 1, and AJ = 0, 0.2, 0.5, 0.7, 1. The introduction of AJ to
the TFIM (AJ = 0) causes gaps in the continuous density of states. The red arrows in the DOS for AJ = 0.5 depict peaks corresponding to
εμ = ±0.833.

While the Hamiltonian of the TFIM has no eigenvector
satisfying the assumption for τ < π/2, the Hamiltonian does
have eigenvectors whose eigenvalues satisfy the assumption
for τ � π/2, as depicted in Fig. 5(a). For τ � π/2, the cor-
relation function includes the components of the eigenvectors
satisfying the assumption for τ , which are never disturbed by
the temporal noise. Such eigenvectors that survive under the
temporal noise contribute to the nondiffusive dynamics of the
quasiparticles for τ � π/2.

B. Theory for QP-TFIM

For the QP-TFIM, we obtain the nondiffusive dynamics
in the short-time scale and the relaxation of the dynamical
exponents to the diffusive regime in the long-time scale. Here,
we extend Roósz’s theory to the QP-TFIM to explain the dif-
ference between the dynamics in the TFIM and the QP-TFIM.

In the presence of the quasiperiodicity, Eq. (24) no longer
holds. For the QP-TFIM, more than two pairs of the eigenvec-
tors are necessary to describe the eigenvectors of the other
Hamiltonian. To check this expectation, we define overlap

between the eigenvectors of Hs and H−s as

Mμν := ∣∣(us
μ, u−s

ν

)∣∣2 + ∣∣(us
μ, u−s

ν̄

)∣∣2
. (27)

Here, Mμν represents how us
μ is spanned by the pairs of

u−s
ν . Figure 6 shows calculated results of Mμν . In the TFIM

case (AJ = 0.0), we find that a single eigenvector uA
μ has an

amplitude only for a certain ν, which shows that us
μ is spanned

only by the pair {u−s
ν , u−s

ν }. A finite AJ leads to fine structures
in addition to the clear line of the TFIM, and such structures
get smeared with increasing AJ . This result shows that more
than two pairs {u−s

ν , u−s
ν } are necessary to span an eigenvector

us
μ in the QP-TFIM.

Consider the simplest case, in which us
μ is spanned by only

two pairs, {u−s
ν , u−s

ν } and {u−s
λ , u−s

λ
}:

us
μ = cνμu−s

ν + cνμu−s
ν + cλμu−s

λ + cλμu−s
λ

. (28)

The operation of O−s on us
μ leads to

O−sus
μ = cνμe−iε−s

ν τ u−s
ν + cνμeiε−s

ν τ u−s
ν

+ cλμe−iε−s
λ τ u−s

λ + cλμeiε−s
λ τ u−s

λ
. (29)
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FIG. 6. Overlap between the eigenvectors of H+ and H−. The
vertical axis μ and horizontal axis ν represent the numbers of eigen-
vectors of H+ and H−, respectively.

Here, even if either e±iε−s
ν τ or e±iε−s

λ τ equals ±1, the other one
cannot be ±1. In this study, we do not consider the case of
ε−s
λ = nε−s

ν , n ∈ Z. Thus, when us
μ is spanned by multiple

pairs {u−s
ν , u−s

ν }, us
μ cannot be an eigenvector of O−s.

The quasiparticle of the TFIM avoids the diffusive dy-
namics even in the long-time scale. The reason is that the
eigenvector of the TFIM is preserved under the random op-
erations of O± because of the simple overlap shown in Fig. 6.
However, the QP-TFIM has more complex overlap than the
TFIM, and there is no preservation of the eigenvector under
the random operation of O±. Thus, the quasiparticle dynamics
of the QP-TFIM relaxes to the diffusive regime in the long-
time scale.

The relation given by Eqs. (24) and (28) determines the
speed of the relaxation shown in Fig. 2. For small AJ , the
overlap in Fig. 6 shows clear lines, which corresponds to the
dominance of the first and second terms in Eq. (28), where as
the other terms are tiny. Because us

μ is almost the same as the
eigenvector of O−s in the case of small AJ , the single operation
of O−s transforms us

μ to a vector that is slightly different
from us

μ. Such slight changes accumulate through the random
operations of O±, and the eigenvector loses its quantum nature

in the long-time scale. On the other hand, for large AJ , the
third, fourth, and subsequent terms are comparable to the
first and second terms, and even a single operation of O−s

transforms us
μ to a vector that is greatly different from us

μ.
The eigenvector also reaches a mixed state in the long time
scale, where the speed to reach the mixed state is faster than
for small AJ .

Note that we also obtain the slower relaxation of the dy-
namical exponent for τ/2π = 1.2 and 2.4 than for the other
τ . The slower relaxation can be explained by considering
the modification in eigenenergy structures with increasing AJ

in Fig. 5. The corresponding energies with τ/2π = 1.2 and
2.4 are ε−s = 0.833 for m−s = 2 and m−s = 4, respectively.
Small peaks at ε−s = ±0.833 can be seen in Fig. 5. Thus, the
assumption is satisfied for τ/2π = 1.2 and 2.4, but not for the
other τ ; accordingly the superdiffusive dynamics occurs only
for τ/2π = 1.2 and 2.4.

V. SUMMARY

In this paper, we have studied the quasiparticle dynamics
in a quasiperiodic Ising model with temporally random fields
(QP-TFIM). Specifically, we analyzed the stroboscopic time
evolution of the probability distributions of the quasiparticles
after the quenches. Our results can be summarized as follows.
The quasiparticles exhibit the two different behaviors depend-
ing on the time scale. The short-time behavior depends on
the time interval, and the dynamical exponents are higher for
the certain intervals than for the other intervals. In contrast, the
long-time behavior becomes diffusive for any time interval.
We showed the time dependence of the spin-spin correlation
function. The exponents for the relaxation of the correlation
function are consistent with the dynamical exponents of the
quasiparticles. These results can be explained by the overlap
of the eigenvectors of each Hamiltonian. For the TFIM, the
structure of the overlap is simple. For the QP-TFIM, however,
the quasiperiodicity complicates the overlapping structure,
which causes the diffusive dynamics of quasiparticles in the
long-time scale.

As mentioned in Sec. I, both quasiperiodicity and random
disorder are origins of localization, but the energy levels
in these systems have statistical properties different from
each other. The energy levels in quasiperiodic systems are
uniquely determined for a single set of Hamiltonian’s param-
eters, which lead to the slow relaxation of the quasiparticle
dynamics as discussed in this paper. On the other hand, the
energy levels in random disordered systems are not fixed for
certain parameters of the Hamiltonian but depend on con-
figurations of these random potentials. For this reason, we
expect that certain intervals leading to the slow decay of the
dynamical exponent do not exist in random disordered sys-
tems. In this study, we have treated the randomly fluctuating
fields with certain intervals, whose situation is related to that
under periodic drivings, as in Floquet systems [45]. Recently,
the Floquet systems are actively studied in the context of
the thermalization [46–50]. It is worthwhile investigating the
quasiparticle dynamics for the Foquet systems and the overlap
relation between eigenvectors of the time-evolution operators.
These analyses are left for future works.
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