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The bulk states of Hermitian systems are believed insensitive to local Hermitian impurities or perturbations
except for a few impurity-induced bound states. Thus, it is important to ask whether local non-Hermiticity
can cause drastic changes to the original Hermitian systems. Here we address this issue affirmatively and
present exact solutions for the double chain model with local non-Hermitian terms possessing parity-time (PT )
symmetry. Induced by the non-Hermiticity, the system undergoes a sequence of PT -symmetry breakings,
after which the eigenenergies appear in complex conjugate pairs. The associated extended bulk states then
become scale-free localized and unidirectionally accumulated around the impurity. There exist mobility edges
separating the residual extended states until a full scale-free localization of all eigenstates. Further increasing the
non-Hermitity counterintuitively brings the system to a PT -restoration regime with fully real spectra except for
a pair of complex bound states. We demonstrate that the local non-Hermiticity generated scale-free localization
is a general phenomenon and can even survive the quasiperiodic disorder. Our results indicate that the bulk
properties of the original Hermitian system can be globally reshaped by local non-Hermiticity.
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I. INTRODUCTION

An essential subject of band theory is the study of the
sensitivity of the energy spectrum and eigenstate to local per-
turbations, such as impurities or defects and various boundary
conditions. Generally speaking, a local impurity or domain
wall would only induce a few bound states for Hermitian
systems. The bulk energy spectra are insensitive to such lo-
cal perturbations, with the eigenstates’ localization properties
staying unchanged. In topological phases of matter, nontrivial
in-gap modes residing at the impurities/defects or system
boundaries may appear, governed by certain bulk topolog-
ical invariants. However, such an intuitive physical picture
breaks down for some non-Hermitian systems. As a paradigm,
the non-Hermitian skin effect (NHSE), i.e., the extreme sen-
sitivity of energy spectra and eigenstates to the change of
boundary conditions, has attracted intensive studies in the
past few years [1–23]. Without any Hermitian counterparts,
it is featured by the entirely distinct energy spectra under
different boundary conditions and the condensation of eigen-
states at system boundaries [1–23], domain walls [24–26], or
impurities [27–29].

The NHSE necessitates the extension of band theory to
its non-Bloch form by introducing the so-called generalized
Brillouin zone [1–4]. In this context, most previous studies
focused on non-Hermitian systems with either global (i.e.,
the non-Hermitian terms have support on the whole lat-
tice) nonreciprocal hoppings or gain/loss. A few exceptions
include studies on the dynamical properties of quantum sys-
tems dissipatively coupled to baths at the boundary [30] or
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subject to local loss [31–37]. Two fundamental and interesting
questions naturally arise: (i) Is there any paradigmatic and
universal phenomenon akin to the NHSE to emerge from
local non-Hermiticity? (ii) can a local non-Hermitian term
(i.e., has support only on a few lattice sites) cause dramatic
changes to the energy spectra and eigenstates for an otherwise
Hermitian system? Addressing these issues would bridge a
comprehensive understanding of both the Bloch and non-
Bloch band theory and is also experimentally relevant thanks
to the feasibility of local manipulations of non-Hermiticity
(e.g., nonreciprocity and gain/loss) in various classical and
quantum simulation platforms.

In this work, we give affirmative answers to these ques-
tions by analytically solving a PT -symmetric double chain
model with a local gain/loss term [it equally describes a Su-
Schrieffer-Heeger (SSH) lattice with a single asymmetrical
hopping]. We show that increasing the strength of gain/loss
(γ ) drives the system from the PT -unbroken regime with
entirely real spectra into a PT -broken regime with the ap-
pearance of paired complex-conjugated eigenenergies. The
PT transition is through a sequence of exceptional points
accompanied by the formation of scale-free localized (SFL)
eigenstates. These SFL states, unidirectionally accumulated
near the impurity, have localization length of the order of
system size [38]. Separated by mobility edges, the SFL states
and residual extended states coexist until a full scale-free
localization of all eigenstates occurs. Further increasing γ , the
complex eigenenergies gradually coalesce into real eigenen-
ergies, with their associated eigenstates changing from SFL
to extended. Last, the system enters into a PT -restoration
regime with entirely real spectra except for a pair of complex
bound states.

We demonstrate that the local non-Hermiticity-induced
scale-free localization is a general phenomenon, regardless
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FIG. 1. (a) Sketch of the double chain model described in Eq. (1).
The red and green circles represent the A and B sublattice, respec-
tively. The gain and loss terms are added only in the mth unit cell.
(b) SSH model with nonreciprocal hopping on a single bond. The
two models are related by a similarity transformation.

of the specific models, the underlying PT symmetry, the
coalescence of eigenstates, or even a priori Bloch-band de-
scription of the underlying Hermitian systems, as verified
in the quasiperiodic Aubry-André (AA) model and a single-
impurity chain. We note the key differences between the SFL
states and the non-Hermitian skin modes. With its localization
length proportional to system size, the emergence of SFL
states only requires local non-Hermiticity and goes beyond
both Bloch and non-Bloch band descriptions.

The rest of the paper is organized as follows. In Sec. II, we
demonstrate in details how scale-free localization is induced
by local non-Hermiticity by exactly solving the double chain
model and SSH model with local non-Hermiticity. In Sec. III,
we unveil the generality of SFL states by studying the model
of single-impurity chain with an imaginary on-site potential
and the quasiperiodic AA model with local non-Hermiticity.
Conclusions and discussions are given in the last section.

II. SCALE-FREE LOCALIZATION INDUCED BY LOCAL
NON-HERMITICITY

A. Models and solutions

We start from a closed double chain model with an on-site
gain/loss term of strength γ ∈ R residing on a single rung, as
depicted in Fig. 1(a). The Hamiltonian is expressed as

Ĥdc = Ĥ0 + iγ ĉ†
mAĉmA − iγ ĉ†

mBĉmB, (1)

where m is the position of the impurity rung. Ĥ0 is the tight-
binding Hermitian Hamiltonian described by

Ĥ0 = t1
∑
n �=m

(ĉ†
nAĉnB + H.c.) + δ(ĉ†

mAĉmB + H.c.)

+ t2
2

N∑
n=1

(ĉ†
n+1,BĉnA + ĉ†

n+1,AĉnB + H.c.)

+ t2
2

N∑
n=1

(iĉ†
n+1,AĉnA − iĉ†

n+1,BĉnB + H.c.). (2)

Here ĉ†
n,A/B (ĉn,A/B) is the particle creation (annihilation) op-

erator at the A/B sublattice of the nth cell, and N is the
number of unit cells. t1 ∈ R is the intracell hopping strength
except for the mth rung with δ ∈ R. t2 ∈ R is the intercell
hopping. The non-Hermiticity is introduced solely through
the local gain/loss on the mth rung. For convenience, we set
γ > 0, t2 > 0, δ > 0 without loss of generality and t1 = 1 as
energy unit.

The double chain model possesses PT symmetry [39]
(PT )Ĥdc(PT )−1 = Ĥdc with P = ⊕N

n=1 σ x
n and T the

complex conjugate. Ĥdc also has a sublattice symmetry
�Ĥdc�

−1 = −Ĥdc with � = ⊕N
n=1 σ

y
n . Here, σ x

n and σ
y
n are

Pauli matrices for the nth unit cell,
⊕

is the direct sum.
A similarity transformation S = ⊕N

n=1 Sn
σ with Sn

σ = ei π
4 σ n

x

brings the Hamiltonian to the more familiar SSH model as
depicted in Fig. 1(b). The explicit form of the non-Hermitian
SSH model is written as

ĤSSH = t1
∑
n �=m

(ĉ†
nBĉnA + H.c.)

+ t2

N∑
n=1

(ĉ†
n+1,AĉnB + H.c.)

+ (δ + γ )ĉ†
mAĉmB + (δ − γ )ĉ†

mBĉmA. (3)

Clearly, the local gain/loss term is transformed to the nonre-
ciprocal hopping term inside the mth unit cell. The symmetries
ensure that the eigenvalues of Ĥdc and ĤSSH appear in quartet
of (E ,−E , E∗,−E∗) (see Appendix A).

In the following, we focus on the double chain model Ĥdc

and analyze its spectral properties. Using the method devel-
oped in Ref. [8] (see Appendix B), the eigenenergies can be
expressed as

E = ±
√

2t1t2 cos θ + t2
1 + t2

2 , (4)

with the complex variable θ determined by the condition

sin[(N + 1)θ ] + η3 sin(Nθ )

− η2 sin[(N − 1)θ ] − η1 sin θ = 0. (5)

Here η1 = 2δ
t1

, η2 = δ2−γ 2

t2
1

, η3 = t2
1 −δ2+γ 2

t1t2
. The eigenfunctions

are 	 = S−1(. . . , ψn,A, ψn,B, . . .), taking the superposition
form:

ψn,A = c1ei(N−ñ)θφ
(1)
A + c2e−i(N−ñ)θφ

(2)
A ,

ψn,B = c1ei(N−ñ+1)θφ
(1)
B + c2e−i(N−ñ+1)θφ

(2)
B .

(6)

Here ñ is the distance from the impurity from the left side [40].
It is clear that the imaginary part of θ determines the localiza-
tion properties of eigenfunctions. To grasp the main physics,
we first consider the t2 = t1 = t case where the eigenvalues
reduce to

E = ±2t cos
θ

2
, (7)

and leave the discussions on generic cases to the Appendix C.
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FIG. 2. (a) Phase diagram of the double chain model Eq. (1). The phase boundaries (in gray lines) between the three regimes are given
by Eq. (8). The number of complex eigenenergies is coded in colors for lattice size 2N = 40. At γ = γa = √

δ2 − t2 (pink line), there are
NIm = 2(N − 1) complex eigenenergies and all eigenstates are scale-free localized (SFL). (b) Energy spectra with respect to γ for δ = 4t
[the brown line in (a)]. The real/imaginary parts of eigenenergies are marked in red/cyan. (a1)–(e1) Spectra on the complex-energy plane for
γ = 1, 3.2,

√
15, 4.3, 6.5, corresponding to dots a–e in (a), respectively. (a2)–(e2) Spatial profiles of all eigenstates for the same parameters

as (a1)–(e1). The inset in (c2) plots the wave function for the related SSH model ĤSSH. In (a1)–(e1), (a2)–(e2), the extended/bound/SFL states
are marked in magenta/blue/green, respectively. The impurity rung is set at m = 11.

B. Sequential breaking of PT symmetry
and spectral coalescence

We investigate the evolution of energy spectra and the PT
transition with respect to varying gain/loss strength γ by
solving Eq. (5). The phase diagram is summarized in Fig. 2(a).
There exist three distinct regimes, dubbed PT unbroken, PT
broken, and PT restoration, respectively. Their boundaries
are determined by

γc1 = |δ − t |, γc2 = δ + t, (8)

as marked in gray lines in Fig. 2(a). As an example, Fig. 2(b)
plots the spectra versus γ with fixed δ = 4t . When γ < γc1 ,
Eq. (5) has (N − 1) real roots corresponding to 2(N − 1) ex-
tended bulk states, and a purely imaginary root corresponding
to a pair of real-energy bound states residing at the impurity
rung [see Figs. 2(a1) and 2(a2)]. In this regime, all eigenval-
ues are real, and the system is in the PT -unbroken phase.
Increasing γ to exceed γc1 , θ starts to take complex roots and
the corresponding eigenvalues become complex. The system
enters into the PT -broken phase. The number of real roots of
θ shrinks first, and reaches its minimum at γ = γa with γa =√

δ2 − t2 [see the pink line in Fig. 2(a)] and then increases.
The PT -symmetry breakings start from the band center at
Re(E ) = 0 to the band edges for γc1 < γ < γa, through a
sequence of exceptional points where two nearby real eigen-
values coalesce. For γa < γ < γc2 , two complex eigenvalues
coalesce again and their eigenstates restore the PT symmetry.
When γ > γc2 , we regain (N − 1) real roots and a complex

root for θ . They correspond to 2(N − 1) extended bulk states
of real eigenvalues and two bound states of purely imagi-
nary eigenvalues, as shown in Figs. 2(e1) and 2(e2). We dub
this regime the PT -restoration phase. In the PT -unbroken
regime with δ < t , no bound states exist as Eq. (5) has N
real roots. Notably at δ = t , an arbitrarily small gain/loss
or nonreciprocity induces the PT -symmetry breakings and
drastically changes all the eigenstates as will be discussed
later.

C. Scale-free localization

We proceed to consider the spatial distributions of
eigenstates in the PT -broken regime γc1 < γ < γc2 , where
complex eigenvalues (corresponding to complex roots of θ )
emerge. We start from the γ = γa case. There are 2(N − 1)
complex eigenvalues and two real eigenvalues forming an oval
on the complex-energy plane [see Fig. 2(c1)]. The θ solutions
are

θ = θR + iθI = 2lπ

N
− i

log μ

N

with μ = δ/t +
√

(δ/t )2 − 1, l = 0, 1, · · · , N − 1. There-
fore, we have

|Im(E )| = (μ1/(2N ) − μ−1/(2N ) )| sin θR| ≈ log μ

N
| sin θR|.

Obviously, the local non-Hermitian term contributes a 1/N-
order correction to the imaginary part of the θ roots as well as
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FIG. 3. (a) Rescaled spatial distributions of all eigenstates for the
SSH model in Fig. 1(b) with γ = γa. (b) Rescaled spatial distribution
of the eigenstate with the largest imaginary part of eigenvalue for
various system sizes, γ = 3.4. The localization lengths divided by
system sizes are equal. (c) Mobility edges (dashed lines) extracted
from the quantity χ for different eigenstates, γ = 3.2, 2N = 80. For
(a)–(c), δ = 4t , and the impurity resides at m = N/2 + 1 for various
system sizes.

the eigenenergies. Further, all eigenstates have the same spa-
tial distributions. Formally, the moduli of all wave functions
are

|ψx| =
{

μ
x−xmA

2N +1, x � xmA;
μ

x−xmA
2N , x > xmA.

(9)

Here xmA = 2m − 1, x = 2n − 1 or 2n represent the A or B
sublattice of the nth unit cell. The localization length of these
wave functions is

ξ = 2N

log μ
, (10)

which is proportional to the system size. As plotted in
Fig. 2(c2), the spatial profiles of all eigenstates decay away
from the impurity in a unidirectional way. The linear depen-
dence of ξ on the system size suggests that such unidirectional
accumulation is the scale-free localization [38,41]. Note the
difference from the usual non-Hermitian skin modes of finite
localization length independent of N . As a striking feature, the
rescaled spatial profiles of SFL states (by the system size) stay
intact varying system sizes, as depicted in Fig. 3(a).

The emergence of SFL states is not limited to the special
parameter γ = γa. When γ deviates from γa, the extended
states associated with real eigenvalues and SFL states as-
sociated with complex eigenvalues coexist, as shown in
Figs. 2(b1), 2(b2), 2(d1), and 2(d2). Figure 3(b) further plots
the rescaled profiles of a chosen complex-energy eigenstate
for γ �= γa. The scale-free localization accompanied by the
PT -symmetry breaking can be understood from the disper-
sion relation Eq. (4). Heuristically, the local non-Hermitian
term contributes a 1/N-order correction to both the imaginary
part of eigenenergies and roots of θ in the wave functions,
yielding localization length of the order of system size N .

In the PT -broken regime, the extended and SFL states are
separated by mobility edges. They can be distinguished by an
ad hoc quantity

χ =
∑

x∈left |ψx|2∑
x∈right |ψx|2

, (11)

where x ∈ left/right labels lattice sites on the left/right half
side of the impurity. The positions of mobility edges can be
read out from the discontinuity of χ (for extended states,
χ ≈ 1 and for SFL states χ > 1), as shown in Fig. 3(c).
For the general case of t1 �= t2, SFL states appear after the
PT transition. A full scale-free localization of all eigenstates
occurs when γ =

√
δ2 − t2

1 (see Appendix C).

III. GENERALITY OF SFL STATES

The above double-stranded or SSH model is for il-
lustrative purposes. Roughly, the PT symmetry imposes
a threshold of the strength of non-Hermiticity to induce
scale-free localization. Yet, we emphasize that the local
non-Hermiticity-induced scale-free localization is a general
phenomenon. It exists in a much broader context, regardless
of the PT symmetry and coalescence of extended eigenstates
or even a priori Bloch-band description of the underlying
Hermitian system. In this section, we demonstrate that the
SFL states can be induced by a single lossy impurity and may
survive even when incommensurate lattice potential is added.

A. Scale-free localization induced by local
on-site imaginary potential

We consider the model of a closed chain with the lo-
cal non-Hermiticity given by an imaginary on-site potential
(a single lossy impurity). Explicitly, the Hamiltonian of the
single-impurity model is given by

Ĥ =
L∑

n=1

[t (ĉ†
n+1ĉn + H.c.) + iγ ĉ†

mĉm]. (12)

This model can be analytically solved by following the same
method in Refs. [8,27]. (The detailed derivation is given in
Appendix D.) The eigenvalues are given by

E = 2t cos θ, (13)

where θ is determined by

sin(Lθ/2)[2t sin θ sin(Lθ/2) + iγ cos(Lθ/2)] = 0. (14)

The wave function of the single-impurity model can be ob-
tained as 	 = (ψ1, ψ2, · · · , ψm, · · · , ψL−1, ψL )T with the
superposition form:

ψn =
{

c1ei(L−m+n)θ + c2e−i(L−m+n)θ , 1 � n � j;
c1ei(n−m)θ + c2e−i(n−m)θ , j < n � L.

(15)

Obviously, the localization properties of eigenfunctions are
determined by the imaginary part of θ . There are two types
of solutions for the Eq. (14). The first type is from

sin(Lθ/2) = 0. (16)

The roots of Eq. (16) are θ = 2lπ
L with l = 1, 2, · · · , L/2 − 1

for even L, and l = 1, 2, · · · , (L − 1)/2 for odd L. Thus there
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FIG. 4. (a) Energy spectra versus γ /t for the single-impurity
model on a closed chain. Red/cyan curved lines represent
real/imaginary parts of eigenenergies. The dotted brown line sepa-
rates the two regions with or without a bound state. (a1)–(c1) Energy
spectra on the complex energy plane for the single-impurity model
with γ = 1, 2, 2.05, respectively. (a2)–(c2) Spatial distributions of
the chosen eigenstates marked by green circles in (a1)–(c1). The
insets in (a2)–(c2) plot the wave functions of the chosen eigenstates
marked by black circles in (a1)–(c1). The parameters are chosen as
L = 40, m = 20, t = 1.

are L/2 − 1 real eigenenergies for L ∈ even, and (L − 1)/2
real eigenenergies for L ∈ odd. Their corresponding eigen-
states with odd parity are all extended and unaffected by the
local on-site imaginary potential.

The other eigenstates come from the second type of
solutions:

2t sin θ sin(Lθ/2) + iγ cos(Lθ/2) = 0, (17)

and the corresponding roots θ are complex denoted as θ =
θR + iθI . Equation (17) has a root with θI ∝ L0 only if γ > 2t .
Explicitly, the solution is written as

θ = π

2
+ iarcosh

(
γ

2t

)
, (18)

which is associated with a bound state. In short, there is
only a bound state with θ = π

2 + arcosh( γ

2t ) when γ > 2t , as
shown in Fig. 4. For the other complex roots of Eq. (17), their
imaginary parts satisfy θI ∝ 1

L . In other words, the localization
length of these eigenstates (except for bound states) with
complex roots is proportional to the system size ξ ∝ L, and
these eigenstates are SFL states.

In Fig. 4(a), we show the energy spectra of the single-
impurity model as γ /t varies. A bound state appears when
γ > 2t as expected. The energy spectra and spatial profiles of

the eigenstates with γ = 1, 2, 2.05 are plotted, respectively,
in Figs. 4(a1)–4(c1) and 4(a2)–4(c2). Clearly, nearly half of
all eigenstates are SFL or extended, consistent with our exact
solutions. Almost all of the SFL states accumulate around
the impurity, except for a pair of states with a very small
imaginary part of eigenvalue, as displayed in the insets of
Figs. 4(a2)–4(c2). Therefore, for the single-impurity model,
only half of all eigenstates determined by Eq. (17) are affected
by the impurity, and the other half determined by Eq. (16)
are irrelevant to the impurity strength due to their odd parity.
Except for a bound state, the other even-parity states become
SFL states.

B. Non-Hermitian AA model with local nonreciprocal hopping

Now we demonstrate that the SFL states can survive even
when incommensurate lattice potential is added. To be ex-
plicit, we consider the one-dimensional (1D) quasiperiodic
lattice described by the non-Hermitian AA model with a local
non-Hermitian term. The Hamiltonian is

Ĥ = ĤAA + ĤNH , (19)

with

ĤAA =
L∑

n=1

[t (ĉ†
n+1ĉn + H.c.) + 2λ cos(2παn)ĉ†

nĉn], (20)

here α = (
√

5 − 1)/2 is an irrational number. In the follow-
ing, we discuss the case with different forms of the local
non-Hermitian term separately by using examples such as
nonreciprocal hopping or imaginary on-site potential.

Here, we consider the non-Hermitian AA model of
(19) with the local non-Hermiticity given by nonreciprocal
hopping

ĤNH = (δ + γ − t )ĉ†
mĉm+1 + (δ − γ − t )ĉ†

m+1ĉm. (21)

The case of λ = 0 has been studied in Fig. 2. Note that the
AA model ĤAA undergoes a delocalization/localization phase
transition at the critical strength of quasiperiodic potential
λ = t [42].

We expect the SFL states to survive in the delocalization
regime, for which all the unperturbed eigenstates of ĤAA are
extended. In particular, when γ = √

δ2 − t2, a full scale-free
localization persists for all eigenstates even in the presence of
on-site incommensurate potential, as verified by our numer-
ical results in Fig. 5. The eigenenergies and their associated
SFL eigenstates, which decay away from the impurity, are
shown in Figs. 5(a) and 5(b) with λ = 0.1, and in Figs. 5(c)
and 5(d) with λ = 0.2. In Figs. 6(a) and 6(b) we further plot
the rescaled spatial profiles of the eigenstate with the largest
imaginary part of eigenenergies for various system sizes. They
coincide with each other, indicating their scale-free nature.

In contrast, when λ lies in the localized regime, the eigen-
states of the non-Hermitian AA model are insensitive to the
non-Hermiticity, and no SFL state is observed. As shown in
Figs. 6(c) and 6(d) with a large incommensurate potential
λ = 1.4, all eigenstates become localized.
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the eigenstates for the non-Hermitian AA model with local non-
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63.

C. Non-Hermitian AA model with local
on-site imaginary potential

Next we consider the non-Hermitian AA model of (19)
with the local non-Hermiticity described by the local on-site
imaginary potential, i.e.,

ĤNH = iγ ĉ†
mĉm. (22)

The case of λ = 0 reduces to the model of (12). For λ �= 0,
we can numerically diagonalize the Hamiltonian. Our numer-
ical results verify that the SFL states can survive for small
incommensurate potential strength λ. In Fig. 7, we present
the numerical results for four typical λ (i.e., the strength of
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FIG. 6. (a), (b) Rescaled spatial distributions of the eigenstates
with the largest imaginary part of eigenenergies for the non-
Hermitian AA model with local nonreciprocal hopping. The system
size takes L = 20, 40, 80, and the impurity is located at m = L/2 +
1. (a) λ = 0.05; (b) λ = 0.1. (c), (d) Energy spectra and spatial
distributions of several chosen eigenstates for the non-Hermitian
AA model with local nonreciprocal hopping for λ = 1.4, L = 34,
m = 17. Common parameters: t = 1, δ = 8, γ = √

δ2 − t2 = √
63.
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FIG. 7. (a1)–(d1) Energy spectra of the non-Hermitian
AA model with local on-site imaginary potential for
λ = 0, 0.05, 0.1, 0.15, respectively. (a2)–(d2) Spatial distributions
of the ten chosen eigenstates with largest imaginary parts
of eigenenergies [marked by green dots in (a1)–(d1)] for
λ = 0, 0.05, 0.1, 0.15, respectively. Common parameters:
L = 40, m = 20, t = 1, γ = 1.

incommensurate potential) for the non-Hermitian AA model
with imaginary on-site potential. We can clearly see that the
SFL states survive a finite λ. Then we show the rescaled
spatial distributions in Fig. 8 for the specific eigenstate with
the largest imaginary of eigenvalue. The spatial distributions
for different system sizes almost coincide with each other,
indicating that they are SFL states.

IV. CONCLUSIONS AND DISCUSSIONS

To summarize, we have unveiled the emergence of lo-
cal non-Hermiticity-induced SFL states by presenting exact
solutions for the double chain model. The non-Hermitian

-0.5 0 0.5
(x-xm)/L

0

1

|
|2

L=100
L=80
L=60

-0.5 0 0.5
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0
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(b) (c)(a)

FIG. 8. Rescaled spatial distributions of the eigenstate with the
largest imaginary part of eigenenergy for the non-Hermitian AA
model with an on-site imaginary potential. The system sizes take
L = 60, 80, 100. (a) λ = 0; (b) λ = 0.05; (c) λ = 0.1. Other param-
eters are m = L/2, t = 1, γ = 1.

134121-6



ACCUMULATION OF SCALE-FREE LOCALIZED STATES … PHYSICAL REVIEW B 107, 134121 (2023)

term drives the system through a sequence of PT -symmetry
breakings, accompanied by the appearance of complex
eigenenergies and SFL states. Mobility edges separate the
residual extended states and SFL states till a full scale-free lo-
calization occurs. We have further demonstrated the generality
and robustness of local non-Hermiticity-induced scale-free
localization regardless of, e.g., the PT symmetry and the
incommensurate lattice potential.

The lattice Hamiltonian with local non-Hermiticity (in-
cluding both the nonreciprocity and gain/loss) should be
readily implemented in various classical/quantum simulation
platforms such as electric circuits [43,44], optical [45–47] or
acoustic cavities [48], quantum walks [26,49,50], and cold
atoms [51–54]. The induced scale-free localization could thus
be identified through the spectral measurement and spatial
distributions of eigenstates in these platforms. Our results
indicate that local non-Hermiticity drastically alters the bulk
spectral properties. The next step is to investigate its in-
fluence on the macroscopic observables, phase transitions,
and dynamical properties. Other important issues include
extending the studies to higher dimensions and continuum
systems (without lattices), and exploring the intriguing inter-
play between local non-Hermiticity, long-ranged couplings,
many-body interactions, and other localization mechanisms.
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APPENDIX A: SYMMETRY ANALYSIS OF THE
NON-HERMITIAN SSH MODEL

The non-Hermitian Su-Schrieffer-Heeger (SSH) model (3)
is related to the double chain model through the similar-
ity transformation SĤdcS−1 = ĤSSH. The PT symmetry and
sublattice symmetry of the double chain model correspond,
respectively, to pseudo-Hermitian symmetry and sublattice
symmetry of the non-Hermitian SSH model. The pseudo-
Hermitian symmetry, which guarantees that the eigenvalues
appear in (E , E∗) pair takes

ηĤSSHη−1 = Ĥ†
SSH, (A1)

where

η = ĪL1×L1

⊕
ĪL2×L2 , (A2)

and ĪL1/2×L1/2 denotes the L1/2 × L1/2 matrix whose subdi-
agonal entries are all 1 and other entries are 0. Explicitly,
we have L1 = 2(2m − 1), L2 = 2(N − 2m + 1) if m � N+1

2
while L1 = 2(2m − N − 1), L2 = 2(2(N − m) + 1) for m >
N+1

2 . The sublattice symmetry reads

�ĤSSH�
−1 = −ĤSSH (A3)

with � = ⊕N
n=1 σ n

z . It ensures the eigenvalues appear in
(E ,−E ) pair. Therefore, the eigenvalues of ĤSSH and Ĥdc

appear in quartet of (E ,−E , E∗,−E∗).

APPENDIX B: EXACT SOLUTIONS
OF THE DOUBLE CHAIN MODEL

1. Solutions for the generic case

Here we detail the exact solutions of the two models Ĥdc

and ĤSSH depicted in Fig. 1. For the double chain model, the
eigenvalue equation is

Ĥdc|	〉 = E |	〉, (B1)

with

|	〉 =
N∑

n=1

(ψn,Aĉ†
nA + ψn,Bĉ†

nB)|0〉. (B2)

In its components,

	 = (ψ1A, ψ1B, ψ2A, . . . , ψmA, ψmB, . . . , ψNA, ψNB)T . (B3)

For the non-Hermitian SSH model, the eigenvalue equation is

ĤSSH|	〉 = E |	〉, (B4)

where

	 = (ψ1A, ψ1B, ψ2A, . . . , ψmA, ψmB, . . . , ψNA, ψNB)T .

(B5)
As mentioned in the main text, the two models are related
by a similarity transformation. Hence they have the same
energy spectra E = E , with their wave functions related by
the similar transformation, i.e.,

|	〉 = S−1|	〉. (B6)

In the following, we focus on the non-Hermitian SSH
model and obtain its solutions. Formally, for the bulk lattice
sites, the eigenvalue equation takes

t1ψ sA − Eψ sB + t2ψ s+1,A = 0, (B7)

with s = 1, . . . , m − 1, m + 1, . . . , N , and

t2ψ sB − Eψ s+1,A + t1ψ s+1,B = 0, (B8)

with s = 1, . . . , m − 2, m, . . . , N . For the impurity site, we
have

(δ − γ )ψmA − EψmB + t2ψm+1,A = 0, (B9)

t2ψm−1,B − EψmA + (δ + γ )ψmB = 0. (B10)

We take an ansatz wave function satisfying the bulk Eqs. (B7),
(B8) as follows:

	 i = (
zN−m+1

i φ
(i)
A , zN−m+2

i φ
(i)
B , zN−m+2

i φ
(i)
A , zN−m+3

i φ
(i)
B ,

. . . , zN
i φ

(i)
A , ziφ

(i)
B , . . . , zN−m

i φ
(i)
A , zN−m+1

i φ
(i)
B

)T
.

(B11)

Inserting the ansatz into Eqs. (B7), (B8) yields the expression
of eigenvalue in terms of zi:

E = ±
√

t1t2
zi

+ t1t2zi + t2
1 + t2

2 , (B12)
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and the relation between φ
(i)
A and φ

(i)
B :

φ
(i)
B = E

(t2 + t1zi )
φ

(i)
A = (t1 + t2zi )

Ezi
φ

(i)
A . (B13)

Obviously, there are two solutions zi (denoted as z1, z2) for a
given E from Eq. (B12) satisfying the constraint:

z1z2 = 1. (B14)

The eigenfunction in general takes the form of the super-
position:

	 = c1	1 + c2	2

≡ (ψ1A, ψ1B, ψ2A, . . . , ψmA, ψmB, . . . , ψNA, ψNB)T ,

(B15)

where

ψn,A =
⎧⎨
⎩

∑2
i=1

(
ciz

N−m+n
i φ

(i)
A

)
, 1 � n � m;∑2

i=1

(
ciz

n−m
i φ

(i)
A

)
, m < n � N ;

ψn,B =
⎧⎨
⎩

∑2
i=1

(
ciz

N−m+1+n
i φ

(i)
B

)
, 1 � n < m;∑2

i=1

(
ciz

n−m+1
i φ

(i)
B

)
, m � n � N .

(B16)

Further substituting Eq. (B15) into the impurity conditions
Eqs. (B9), (B10) and combining Eqs. (B12), (B13), we obtain
the constraints on the superposition coefficients:

HB

(
c1

c2

)
= 0 (B17)

with

HB =
( (

t1 − (δ − γ )zN
1

)
φ

(1)
A

(
t1 − (δ − γ )zN

2

)
φ

(2)
A(

t1zN
1 − (δ + γ )

)
z1φ

(1)
B

(
t1zN

2 − (δ + γ )
)
z2φ

(2)
B

)
.

(B18)

For nontrivial solutions of (c1, c2), det[HB] = 0 yields the
following condition:

η1(z1 − z2) + η2
(
zN−1

1 − zN−1
2

) − η3
(
zN

1 − zN
2

)
= (

zN+1
1 − zN+1

2

)
, (B19)

where η1 = 2δ
t1

, η2 = δ2−γ 2

t2
1

, η3 = t2
1 −δ2+γ 2

t1t2
. Equation (B19)

together with Eq. (B14) determines the solutions of z1 and
z2. From Eq. (B14), we set z1 = eiθ , z2 = e−iθ . The energy
spectrum Eq. (B12) then becomes

E = ±
√

2t1t2 cos θ + t2
1 + t2

2 . (B20)

And Eq. (B19) reduces to

sin[(N + 1)θ ] + η3 sin(Nθ ) − η2 sin[(N − 1)θ ]

− η1 sin[θ ] = 0. (B21)

Depending on η1, η2, and η3, the solution of θ of the above
equation may take real or complex values.

It is worth discussing the special case with c2 = 0, i.e.,
the eigenfunction contains only the z1 solution. From the
constraint Eq. (B17), we have

zN
1 = t1

(δ − γ )
, zN

1 = (δ + γ )

t1
. (B22)

This condition can only be satisfied when

γ 2 = δ2 − t2
1 , (B23)

which is equal to γ = γa =
√

δ2 − t2
1 . The solution of z1 is

then

z1 = eiθ = N
√

μei 2lπ
N , (B24)

where μ = δ
t1

+
√

( δ
t1

)2 − 1, l = 0, 1, 2, . . . , N − 1, and θ =
θR + iθI = 2lπ

N − i log μ

N . The energy spectrum is given by

E = ±
√

t1t2

(
N
√

μeiθR + 1
N
√

μ
e−iθR

)
+ t2

1 + t2
2 , (B25)

with θR = 2lπ
N (l = 0, 1, 2, · · · , N − 1). All θ solutions are

complex with θI = − log μ

N ∝ 1
N . The eigenvalues are complex

except for θR = 0. Thus, there are 2(N − 1) complex eigenen-
ergies and two real energies. The eigenstates can be expressed
as

	 = [
( N
√

μeiθR )N−m+1φ
(i)
A , ( N

√
μeiθR )N−m+2φ

(i)
B ,

. . . , ( N
√

μeiθR )Nφ
(i)
A , N

√
μeiθRφ

(i)
B ,

. . . , ( N
√

μeiθR )N−mφ
(i)
A , ( N

√
μeiθR )N−m+1φ

(i)
B

]T
. (B26)

As |z1| = | N
√

μ| �= 1, the spatial profiles of all eigenstates
decay away from the impurity in a unidirectional way.

2. Solutions for the case of t1 = t2

We specify the simple case with t1 = t2 = t in this subsec-
tion. Without loss of generality, we set t > 0, δ > 0, γ > 0.
For this case, η3 = 1 − η2. The eigenvalues can be reduced to

E = ±2t cos

(
θ

2

)
. (B27)

Equation (B21) reduces to

sin

[(
N + 1

2

)
θ

]
− η1 sin

(
θ

2

)
− η2 sin

[(
N − 1

2

)
θ

]
= 0,

(B28)
where η1 = 2δ

t , η2 = δ2−γ 2

t2 . The solution θ = θR + iθI of
Eq. (B28) may take real or complex values depending on η1,
and η2. If θ ∈ R, we have E ∈ R and |z1| = |z2| = 1, which
indicates that the corresponding eigenstate is an extended
state. If θ ∈ C, we have E ∈ C (except for θR = 0) and |z1| �=
1, |z2| �= 1, which indicates that the corresponding eigenstate
is not extended. By inserting Eq. (B27) into Eq. (B13), we
have

φ
(i)
B = ±z−1/2

i φ
(i)
A . (B29)

Here the “±” sign is consistent with “±” in the expression of
E . The ansatz wave function 	 i can be rewritten as

	 i = (
zN−m+1

i ,±zN−m+3/2
i , zN−m+2

i ,±zN−m+5/2
i ,

. . . , zN
i ,±z1/2

i , . . . , zN−m
i ,±zN−m+1/2

i

)T
φ

(i)
A . (B30)

Obviously, the wave function is extended when |zi| = 1.
For the superimposed eigenstate described by Eq. (B15), its
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FIG. 9. Function f1(θ ) and f2(θ ) and their intersections. (a) N =
10, t = 1, δ = 0.5, γ = 0.1. (b) N = 10, t = 1, δ = 3, γ = 1.

spatial component can be rewritten as

ψn,A =
{∑2

i=1

(
ciz

N−m+n
i

)
, 1 � n � m;∑2

i=1

(
ciz

n−m
i

)
, m < n � N ;

ψn,B =
{±∑2

i=1

(
ciz

N−m+n+1/2
i

)
, 1 � n < m;

±∑2
i=1

(
ciz

n−m+1/2
i

)
, m � n � N ;

(B31)

with ci = ciφ
(i)
A .

In the following, we analyze the solution of θ in Eq. (B28)
as the non-Hermitian strength γ varies. We set f1(θ ) =
sin[(N + 1

2 )θ ] − η2 sin[(N − 1
2 )θ ] and f2(θ ) = η1 sin( θ

2 ), and
Eq. (B28) reduces to

f1(θ ) = f2(θ ). (B32)

The intersections of f1 and f2 determine the real solutions
of θ , as exemplified in Fig. 9. For small γ , there are N
real roots in θ ∈ (0, π ) corresponding to extended bulk states
when δ < t , as depicted in Fig. 9(a), while there are at most
(N − 1) real roots of θ in θ ∈ (0, π ) when δ > t , as depicted
in Fig. 9(b). As γ increases, the number of intersections of f1

and f2, i.e., the real solutions of θ , will shrink first, reach its
minimum and then increase. The first disappearance and the
last reemergence of the intersections occurs at θ = π . Thus,
the condition of N real roots (for δ < t) and (N − 1) real
roots (for δ > t) is determined by | f1(θ = π )| > | f2(θ = π )|,
yielding |1 + η2| > η1. This condition is satisfied when

γ < γc1 and γ > γc2 , (B33)

with γc1 = |δ − t | and γc2 = δ + t . As long as Eq. (B33) is
satisfied, there are at least (N − 1) real roots for Eq. (B32).
Further, we discuss the region with all complex θ solutions. As
γ increases, the last disappearance and the first reemergence
of the intersections occurs nearly θ = 0. Thus, the condition
of N complex roots is determined by | f ′

1(θ = 0)| < | f ′
2(θ =

0)| with f ′
i = ∂ fi

∂θ
, giving rise to |N (1 − η2) + 1

2 (1 + η2)| <

η1. When η2 = 1 (i.e., γ = γa = √
δ2 − t2), the condition

always is satisfied independent of N . In fact, this condition is
satisfied in a narrow region near γ = γa for finite N , and the
narrow region shrinks to γ = γa in the thermodynamic limit.

We proceed to study the PT transitions of the system as γ

increase for fixed t and δ. There are three difference cases as
listed below.

(i) PT -unbroken regime, γ < γc1 . (i) First, if δ > t
and γ = 0 (Hermitian limit), Eq. (B32) has (N − 1) real
roots corresponding to extended bulk states and a complex
root with θR = 0 corresponding to a pair of bound states

residing at the impurity. As expected for the Hermitian impu-
rity, all eigenenergies are real. There are (2N − 2) extended
bulk states except for a pair of bound states. The scenario
persists even for γ �= 0, provided that γ < γc1 is satisfied.
(ii) Second, if δ < t , as long as γ < γc1 , Eq. (B32) has N
real roots corresponding to extended bulk states (no bound
state exists), and all eigenvalues are real. Combining (i), (ii),
all eigenvalues are real when γ < γc1 , the system is in the
PT -unbroken phase, with at least 2(N − 1) extended bulk
states and at most two bound states.

(ii) PT -broken regime, γc1 < γ < γc2 . Increasing γ to en-
ter this regime, the number of real roots shrinks first, reaches
its minimum and then increases. The complex roots of θ give
rise to complex eigenenergies and the system is in the PT -
broken phase. The number of complex eigenenergies reaches
its maximum 2(N − 2) at γ = γa ≡ √

δ2 − t2. Based on the
discussions in the previous section, the solutions of z1 are z1 =
eiθ = N

√
μei 2lπ

N , (l = 0, 1, 2, . . . , N − 1), with μ = δ
t +√

( δ
t )2 − 1, and θ = θR + iθI = 2lπ

N − i log μ

N . The eigenener-
gies are given by E = ±2t cos[ 2lπ

N − i log( N
√

μ)], and we have
|Im(E )| = (μ1/(2N ) − μ−1/(2N ) )| sin θR| ≈ log μ

N | sin θR|. Obvi-
ously, the local non-Hermitian term contributes a 1/N-order
correction to the imaginary part of the θ roots as well as
the eigenenergies (except for θR = 0). The associated wave
function 	 for the non-Hermitian SSH model is

	 ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

( N
√

μeiθR )N−m+1

±( N
√

μeiθR )N−m+3/2

( N
√

μeiθR )N−m+2

±( N
√

μeiθR )N−m+5/2

...

( N
√

μeiθR )N−1

±( N
√

μeiθR )N−1/2

( N
√

μeiθR )N

±( N
√

μeiθR )1/2

( N
√

μeiθR )
±( N

√
μeiθR )3/2

...

( N
√

μeiθR )N−m

±( N
√

μeiθR )N−m+1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B34)

Thus all wave functions have the same spatial profiles:

|ψx| =
{

μ
x−xmA

2N +1, x � xmA;
μ

x−xmA
2N , x > xmA;

(B35)

where x = 1, . . . , 2N , and xmA = 2m − 1. Denote ξ as the

localization length of the eigenstate: |ψx| ∼ e
x−xmA

ξ . It is easy
to see ξ = 2N

log μ
, which is proportional to the system size.

These eigenstates are dubbed scale-free localized (SFL) states
in the main text, which decay away from the impurity in a
unidirectional way. They differ from the usual non-Hermitian
skin modes that have finite localization length even when
N → ∞. The eigenstates for the double chain model can be
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FIG. 10. (a) Phase diagram for the double chain model. Boundaries of different regimes are marked by gray lines. In different phase
regimes, The color-coded numbers represent the number of complex eigenenergies for a finite-size lattice with 2N = 40. Along the pink
line γ = γa = √

δ2 − t2
1 , all eigenstates are SFL states. (b) Energy spectra for the double chain model versus γ with fixed δ/t1 = 4 [See the

brown line in (A)]. Red/cyan lines represent real/imaginary parts of eigenenergies. (a1)–(e1) Energy spectra on the complex-energy plane
with γ = 1, 3.2,

√
15, 4.3, 6.5 corresponding to dots a–e in (a), respectively. (a2)–(e2) The associated spatial profiles of all eigenstates. The

inset in (c2) plots the spatial profiles of eigenstates for the non-Hermitian SSH model with the same parameters. In (a1)–(e1), (a2)–(e2), the
blue/magenta/green data represent bound states/extended states/SFL states, respectively. Other parameters are 2N = 40, t1 = 1, t2 = 2, and
the impurity rung is set at m = N/2 + 1.

easily obtained by the transformation |	〉 = S−1|	〉 as

	 ∼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

( N
√

μeiθR )N−m+1 ∓ i( N
√

μeiθR )N−m+3/2

−i( N
√

μeiθR )N−m+1 ± ( N
√

μeiθR )N−m+3/2

...

( N
√

μeiθR )N−1 ∓ i( N
√

μeiθR )N−1/2

−i( N
√

μeiθR )N−1 ± ( N
√

μeiθR )N−1/2

( N
√

μeiθR )N ∓ i( N
√

μeiθR )1/2

−i( N
√

μeiθR )N ± ( N
√

μeiθR )1/2

( N
√

μeiθR ) ∓ i( N
√

μeiθR )3/2

−i( N
√

μeiθR ) ± ( N
√

μeiθR )3/2

...

( N
√

μeiθR )N−m ∓ i( N
√

μeiθR )N−m+1/2

−i( N
√

μeiθR )N−m ± ( N
√

μeiθR )N−m+1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B36)

To conclude, in the PT -broken regime, the number of
complex eigenenergies ranges from 2 to 2(N − 1), with their
associated eigenstates being SFL states. In particular, when
γ = γa (in fact, in a narrow region near γa for finite N),
the number of complex eigenenergies reaches its maximum
2(N − 1) and all eigenstates are SFL states.

(iii) PT -restoration regime, γ > γc2 . In this regime, the
number of real roots of Eq. (B32) recovers to (N − 1).

Besides, there is a complex root with θR = π correspond-
ing to a pair of bound states with complex eigenenergies.
Therefore, there are 2(N − 1) real eigenenergies correspond-
ing to extended bulk states and two bound states with complex
eigenenergies.

APPENDIX C: EMERGENCE OF SFL STATES OF THE
DOUBLE CHAIN MODEL FOR THE t1 �= t2 CASE

In the main text, we have demonstrated the phase diagram
[See Fig. 1(a)] and PT -symmetry breaking for t1 = t2. Here
we turn to the generic case with t1 �= t2 and show that the
PT -symmetry breaking and the emergence of SFL states
also occur. In Fig. 10, we display the phase diagram for
the double chain model with t1 = 1, t2 = 2. There also exist
three distinct regimes, i.e., PT unbroken, PT broken, and
PT restoration with a little subtlety. Their boundaries are
determined by γc1 = |δ − t1|, γc2 = δ + t1, as marked in gray
lines in Fig. 10(a). Figure 10(b) plots the spectrum versus
γ by fixing δ/t1 = 4. In the PT -unbroken regime with γ <

γc1 , there are 2(N − 2) extended bulk states corresponding to
N − 2 real roots of Eq. (B21) and two pairs of bound states
located at impurity corresponding to two pure imaginary
roots. All eigenenergies are real as shown in Figs. 10(a1) and
10(a2). The system is in PT -broken phase when γc1 < γ <

γc2 , where θ has complex roots corresponding to complex
eigenenergies. In this regime, the number of real roots of θ
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FIG. 11. Phase diagram for the double chain model with different t2. Along the pink line γ = γa = √
δ2 − t2

1 , all eigenstates are SFL states,
whose spatial profiles decay away from the impurity in a unidirectional way. (a) t2 = 10; (b) t2 = 2; (c) t2 = 1; (d) t2 = 0.8; (e) t2 = 0.5; (f)
t2 = 0.1. The common parameters: 2N = 40, t1 = 1, and the impurity rung is set at m = N/2 + 1.

decreases first, reaches its minimum at γ = γa =
√

δ2 − t2
1

and then increases with increasing γ . At γ = γa, the eigen-
function contains only the z1 solution due to c2 = 0, and

|z1| = | N
√

μ| = N

√
δ
t1

+
√

( δ
t1

)2 − 1 > 1. Thus all eigenstates

are SFL states, decaying away from the impurity in a uni-
directional way as depicted in Figs. 10(c1) and 10(c2). For
γ �= γa in the PT -broken regime, the extended state with
real eigenenergies and SFL states with complex eigenenergies
coexist as shown in Figs. 10(b1), 10(b2), 10(d1), and 10(d2).
In short, the number of complex eigenenergies NIm = 4 ∼
2(N − 2), and there are (4 ∼ 2N ) SFL states in the PT -
broken regime. In the PT -restoration regime with γ > γc2 ,
the number of real roots of Eq. (B21) recovers to (N − 2). In
addition, there are two complex roots of Eq. (B21). Thus, there
are 2(N − 2) extended bulk states with real eigenenergies and
four bound states at the impurity with complex eigenenergies,
as shown in Figs. 10(e1) and 10(e2).

In Fig. 11, we display phase diagram for the double chain
model with different t2. Except for the extreme case t2 = 0,
there always exists a PT -broken regime surrounding γ = γa,
accompanied by the emergence of SFL states, for various t2
as displayed in Fig. 11. In particular, when γ = γa, all eigen-
states are SFL states, whose spatial profiles decay away from
the impurity in a unidirectional way. Explicitly, when t2 � t1,
the phase boundary is determined by γc1 = |δ − t1|, γc2 =
δ + t1. When t2 < t1, the PT -broken region with SFL states
gradually decrease as t2 decreases, and this region gets closer
and closer around γ = γa. Imagining the extreme situation
with t2 = 0, there is no SFL state as expected because the part
of local non-Hermitian is not connected to other parts of bulk.
In addition, the emergence of SFL states requires that δ can
not be too small when t2 < t1. Our results reveal that local

non-Hermiticity generated scale-free localization is a general
phenomenon even for multiband systems.

APPENDIX D: EXACT SOLUTIONS OF THE
SINGLE-IMPURITY MODEL

The Hamiltonian of the single-impurity model is given by
Eq. (12). The corresponding eigenproblem reads

Ĥ |	〉 = E |	〉, (D1)

with |	〉 = ∑L
n=1(ψnĉ†

n )|0〉. In the form of its component,
	 = (ψ1, ψ2, . . . , ψm, . . . , ψL−1, ψL )T . Equation (D1) con-
sists of a series of bulk equations and the impurity equations.
The bulk equations are given by

tψs−1 − Eψs + tψs+1 = 0 (D2)

with s = 1, . . . , m − 1, m + 2, . . . , L. The impurity equa-
tions are given by

tψm−1 − (E − iγ )ψm + tψm+1 = 0, (D3)

tψm − Eψm+1 + tψm+2 = 0. (D4)

We take the ansatz wave function 	i satisfying the bulk
Eq. (D2) as follows:

	i = (
zL−m+1

i , zL−m+2
i , . . . , zL−1

i , zL
i , zi,

. . . , zL−m−1
i , zL−m

i

)T
. (D5)

Inserting Eq. (D5) into the Eq. (D2) yields the expression of
eigenvalue in terms of zi:

E = t

(
z + 1

z

)
. (D6)
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For a given E , there are two solutions of zi (denoted as z1, z2)
and they fulfill the constraint:

z1z2 = 1. (D7)

The wave function should be the superposition:

	 = c1	1 + c2	2 = (ψ1, ψ2, . . . , ψm, . . . , ψL−1, ψL )T ,

(D8)

where

ψn =
{∑2

i=1

(
ciz

L−m+n
i

)
, 1 � n � j;∑2

i=1

(
ciz

n−m
i

)
, j < n � L.

(D9)

By inserting it into Eqs. (D3), (D4) and combining Eq. (D6),
the impurity equation transforms into

HB

(
c1

c2

)
= 0 (D10)

with

HB =
(

1 − zL
1 1 − zL

2
tz1

(
1 − zL

1

) + iγ zL
1 tz2

(
1 − zL

2

) + iγ zL
2

)
. (D11)

The nontrivial solutions of (c1, c2) are determined by
det[HB] = 0, yielding

t
(
2 − zL

1 − zL
2

)
(z1 − z2) + iγ

(
zL

1 − zL
2

) = 0. (D12)

Equation (D12) and Eq. (D7) together determine the solutions
of z1 and z2. From Eq. (D7), we set z1 = eiθ , z2 = e−iθ , then
Eq. (D12) becomes

sin

(
Lθ

2

)[
2t sin θ sin

(
Lθ

2

)
+ iγ cos

(
L

2
θ

)]
= 0. (D13)

And the corresponding eigenenergies are expressed as

E = 2t cos θ. (D14)

By observing Eq. (D13), we have two types of solutions. The
first type is from sin ( Lθ

2 ) = 0. The roots are θ = 2lπ
L with

l = 1, 2, . . . , L/2 − 1 for even L, and l = 1, 2, . . . , (L − 1)/2
for odd L. Thus there are L/2 − 1 real eigenenergies for
L ∈ even, and (L − 1)/2 real eigenenergies for L ∈ odd. Their
corresponding eigenstates are all extended and unaffected by
the local on-site imaginary potential.

The other eigenstates come from the second type of solu-
tions:

2t sin θ sin

(
Lθ

2

)
+ iγ cos

(
L

2
θ

)
= 0. (D15)

The solutions θ of above equation has complex roots, denoted
as θ = θR + iθI . The number of complex eigenenergies are
L/2 + 1 for even L and (L + 1)/2 for odd L. To obtain them,
let us first assume θI ∝ L0, then we have

sin

(
Lθ

2

)
≈ i

2
sgn(θI )e− i

2 sgn(θI )Lθ ,

cos

(
Lθ

2

)
≈ 1

2
e− i

2 sgn(θI )Lθ

(D16)

for large L. Inserting Eq. (D16) into Eq. (D15), we get
2t sin θsgn(θI ) + γ = 0. It has a root with θI < 0 only if
γ

2t > 1. Explicitly, the solution is written as

θ = π

2
+ iarcosh

(
γ

2t

)
, (D17)

which satisfies θI ∝ L0. This solution is associated with a
bound state.

Let us then assume θI ∝ L−1, we have sin θ ≈ sin θR for
large L. The real and imaginary parts of Eq. (D15) become

sin

(
LθR

2

)
cosh

(
LθI

2

)[
2t sin θR + γ tanh

(
LθI

2

)]
= 0,

cos

(
LθR

2

)
cosh

(
LθI

2

)[
2t sin θR tanh

(
LθI

2

)
+ γ

]
= 0.

(D18)

Hence we have either

cos

(
LθR

2

)
= 0, tanh

(
LθI

2

)
= −2t

γ
sin θR, (D19)

or

sin

(
LθR

2

)
= 0, tanh

(
LθI

2

)
= − γ

2t
(sin θR)−1. (D20)

The solutions of Eqs. (D19), (D20) are, respectively,

θ = (2l + 1)π

L
+ i

2

L
artanh

[
− 2t

γ
sin

[
(2l + 1)π

L

]]
;

(D21)

θ = 2lπ

L
+ i

2

L
artanh

[
− γ

2t

[
sin

(
2lπ

L

)]−1]
. (D22)

It is clear that the imaginary part of the complex roots sat-
isfy θI ∝ 1

L . In other words, the localization length of these
eigenstates (except for bound states) with complex roots is
proportional to the system size ξ ∝ L, and these eigenstates
are SFL states.

[1] S. Yao and Z. Wang, Edge States and Topological Invariants of
Non-Hermitian Systems, Phys. Rev. Lett. 121, 086803 (2018).

[2] K. Yokomizo and S. Murakami, Non-Bloch Band Theory of
Non-Hermitian Systems, Phys. Rev. Lett. 123, 066404 (2019).

[3] K. Zhang, Z. Yang, and C. Fang, Correspondence between
Winding Numbers and Skin Modes in Non-Hermitian Systems,
Phys. Rev. Lett. 125, 126402 (2020).

[4] N. Okuma, K. Kawabata, K. Shiozaki, and M. Sato, Topological
Origin of Non-Hermitian Skin Effects, Phys. Rev. Lett. 124,
086801 (2020).

[5] T. E. Lee, Anomalous Edge State in a Non-Hermitian Lattice,
Phys. Rev. Lett. 116, 133903 (2016).

[6] C. H. Lee and R. Thomale, Anatomy of skin modes and topol-
ogy in non-Hermitian systems, Phys. Rev. B 99, 201103(R)
(2019).

[7] D. S. Borgnia, A. J. Kruchkov, and R.-J. Slager, Non-Hermitian
Boundary Modes and Topology, Phys. Rev. Lett. 124, 056802
(2020).

[8] C.-X. Guo, C.-H. Liu, X.-M. Zhao, Y. Liu, and S. Chen,
Exact Solution of Non-Hermitian Systems with Generalized

134121-12

https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.123.066404
https://doi.org/10.1103/PhysRevLett.125.126402
https://doi.org/10.1103/PhysRevLett.124.086801
https://doi.org/10.1103/PhysRevLett.116.133903
https://doi.org/10.1103/PhysRevB.99.201103
https://doi.org/10.1103/PhysRevLett.124.056802


ACCUMULATION OF SCALE-FREE LOCALIZED STATES … PHYSICAL REVIEW B 107, 134121 (2023)

Boundary Conditions: Size-Dependent Boundary Effect and
Fragility of the Skin Effect, Phys. Rev. Lett. 127, 116801
(2021).

[9] N. Hatano and D. R. Nelson, Localization Transitions in
Non-Hermitian Quantum Mechanics, Phys. Rev. Lett. 77, 570
(1996).

[10] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa,
and M. Ueda, Topological Phases of Non-Hermitian Systems,
Phys. Rev. X 8, 031079 (2018).

[11] F. K. Kunst, E. Edvardsson, J. C. Budich, and E. J.
Bergholtz, Biorthogonal Bulk-Boundary Correspondence in
Non-Hermitian Systems, Phys. Rev. Lett. 121, 026808 (2018).

[12] V. M. Martinez Alvarez, J. E. B. Vargas, and L. E. F. F. Torres,
Non-Hermitian robust edge states in one dimension: Anoma-
lous localization and eigenspace condensation at exceptional
points, Phys. Rev. B 97, 121401(R) (2018).

[13] H. Jiang, L. J. Lang, C. Yang, S. L. Zhu, and S. Chen, Inter-
play of non-Hermitian skin effects and Anderson localization in
nonreciprocal quasiperiodic lattices, Phys. Rev. B 100, 054301
(2019).

[14] L. Jin and Z. Song, Bulk-boundary correspondence in a non-
Hermitian system in one dimension with chiral inversion
symmetry, Phys. Rev. B 99, 081103(R) (2019).

[15] S. Longhi, Probing non-Hermitian skin effect and non-Bloch
phase transitions, Phys. Rev. Res. 1, 023013 (2019).

[16] K.-I. Imura and Y. Takane, Generalized bulk-edge correspon-
dence for non-Hermitian topological systems, Phys. Rev. B 100,
165430 (2019).

[17] C. H. Lee, L. Li, and J. Gong, Hybrid Higher-Order Skin-
Topological Modes in Non-Reciprocal Systems, Phys. Rev.
Lett. 123, 016805 (2019).

[18] X. R. Wang, C. X. Guo, and S. P. Kou, Defective edge states
and number-anomalous bulk-boundary correspondence in non-
Hermitian topological systems, Phys. Rev. B 101, 121116(R)
(2020).

[19] Z. Yang, K. Zhang, C. Fang, and J. Hu, Non-Hermitian Bulk-
Boundary Correspondence and Auxiliary Generalized Brillouin
Zone Theory, Phys. Rev. Lett. 125, 226402 (2020).

[20] L. Li, C. H. Lee, S. Mu, and J. Gong, Critical non-Hermitian
skin effect, Nature Commun. 11, 5491 (2020).

[21] Y. Yi and Z. Yang, Non-Hermitian Skin Modes Induced by On-
Site Dissipations and Chiral Tunneling Effect, Phys. Rev. Lett.
125, 186802 (2020).

[22] C.-H. Liu, K. Zhang, Z. Yang, and S. Chen, Helical damping
and dynamical critical non-Hermitian skin effect in open quan-
tum systems, Phys. Rev. Res. 2, 043167 (2020).

[23] F. Song, S. Yao, and Z. Wang, Non-Hermitian Skin Effect and
Chiral Damping in Open Quantum Systems, Phys. Rev. Lett.
123, 170401 (2019).

[24] T. S. Deng and W. Yi, Non-Bloch topological invariants in a
non-Hermitian domain-wall system, Phys. Rev. B 100, 035102
(2019).

[25] S. M. Rafi-Ul-Islam, H. Sahin, Z. B. Siu, and M. B. A. Jalil,
Interfacial skin modes at a non-Hermitian heterojunction, Phys.
Rev. Res. 4, 043021 (2022).

[26] L. Xiao, T. Deng, K. Wang, G. Zhu, Z. Wang, W. Yi, and P. Xue,
Non-Hermitian bulk-boundary correspondence in quantum dy-
namics, Nature Phys. 16, 761 (2020).

[27] Y. Liu, Y. Zeng, L. Li and S. Chen, Exact solution of the single
impurity problem in nonreciprocal lattices: Impurity-induced

size-dependent non-Hermitian skin effect, Phys. Rev. B 104,
085401 (2021).

[28] F. Roccati, Non-Hermitian skin effect as an impurity problem,
Phys. Rev. A 104, 022215 (2021).

[29] Y. Liu and S. Chen, Diagnosis of bulk phase diagram of non-
reciprocal topological lattices by impurity modes, Phys. Rev. B
102, 075404 (2020).

[30] G. T. Landi, D. Poletti, and G. Schaller, Nonequilibrium
boundary-driven quantum systems: Models, methods, and prop-
erties, Rev. Mod. Phys. 94, 045006 (2022).

[31] J. Wiersig, Role of nonorthogonality of energy eigenstates
in quantum systems with localized losses, Phys. Rev. A 98,
052105 (2018).

[32] C. Poli, M. Bellec, U. Kuhl, F. Mortessagne, and H. Schoermus,
Selective enhancement of topologically induced interface states
in a dielectric resonator chain, Nature Commun. 6, 6710
(2015).

[33] G. Barontini, R. Labouvie, F. Stubenrauch, A. Vogler, V.
Guarrera, and H. Ott, Controlling the Dynamics of an Open
Many-Body Quantum System with Localized Dissipation,
Phys. Rev. Lett. 110, 035302 (2013).

[34] H. Fröml, C. Muckel, C. Kollath, A. Chiocchetta, and S. Diehl,
Ultracold quantum wires with localized losses: Many-body
quantum zeno effect, Phys. Rev. B 101, 144301 (2020).

[35] T. Yoshimura, K. Bidzhiev, and H. Saleur, Non-Hermitian
quantum impurity systems in and out of equilibrium: Nonin-
teracting case, Phys. Rev. B 102, 125124 (2020).

[36] P. Wang, K. L. Zhang, and Z. Song, Semilocalization transition
driven by a single asymmetrical tunneling, Phys. Rev. A 101,
022111 (2020).

[37] P. C. Burke, J. Wiersig, and M. Haque, Non-Hermitian scatter-
ing on a tight-binding lattice, Phys. Rev. A 102, 012212 (2020).

[38] L. Li, C. H. Lee, and J. Gong, Impurity induced scale-free
localization, Commun. Phys. 4, 42 (2021).

[39] C. M. Bender and S. Boettcher, Real Spectra in Non-Hermitian
Hamiltonians Having PT Symmetry, Phys. Rev. Lett. 80, 5243
(1998).
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