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Single scattering and effective medium description of multilayer cylinder metamaterials:
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Coated and multicoated cylinder systems constitute an appealing metamaterial category, as they allow a very
rich and highly tunable response, resulting from the interplay of the many different geometrical and material
parameters involved. Here we derive and propose an effective medium approach for the detailed description
and analysis of the electromagnetic wave propagation in such systems. In particular, we investigate infinitely-
long multilayered cylinders with additional electric and magnetic surface conductivities at each interface. Our
effective medium approach is based on the well known in the solid state physics community coherent potential
approximation (CPA) method, combined with a transfer matrix-based formulation for cylindrical waves. Em-
ploying this effective medium scheme, we investigate two realistic systems, one comprising of cylindrical tubes
made of uniform tunable graphene sheets and one of cylinders/tubes formed of metasurfaces exhibiting both
electric and magnetic sheet conductivities. Both systems show a rich palette of engineerable electromagnetic
features, including tunable hyperbolic response, double negative response, and ε-near-zero and μ-near-zero
response regions.
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I. INTRODUCTION

Electromagnetic metamaterials are artificial, structured
materials comprising of subwavelength resonant building
blocks, the meta-atoms. Due to their versatile nature, meta-
materials offer the possibility of novel and unconventional
electromagnetic wave control, and thus advancements in a
large variety of wave-control-related applications, including
imaging, sensing, communications, etc. [1–4]. Metamateri-
als’ exceptional electromagnetic properties stem to a larger
degree from the architecture of the meta-atoms; through this
architecture, the distribution of the local currents excited by
an impinging electromagnetic wave is engineered, providing
the desired response. Particularly known forms of meta-atoms
are properly aligned metallic short wires, behaving as macro-
scopic resonant electric dipoles and producing a resonant
electric response (resonant permittivity), and metallic spilt
ring resonators, leading to resonant circulating currents and
the emergence of a resonant magnetic response [5]. An-
other approach to create resonant electric and/or magnetic
response is by exploiting the Mie-based resonances in high
index dielectric (or semiconducting) meta-atoms; this ap-
proach is typically proposed for applications in high (IR and
optical) frequencies [6–8], where metals experience detri-
mentally high losses. Through tunable resonant magnetic
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and/or electric response one can engineer a plethora of dif-
ferent and peculiar metamaterial properties, such as negative,
near-zero permittivity and/or permeability, negative refractive
index, peculiar anisotropy, asymmetric effects and many more
[9–12] (Note that because of the subwavelength meta-atom
size metamaterials provide homogeneous-medium-like (effec-
tive) properties and response).

Besides bulk (three-dimensional) metamaterials, many ad-
ditional exciting functionalities stem from the electromagnetic
wave interaction with thin meta-atom layers, known as
metasurfaces, which attract a constantly growing research
attention. Metasurfaces, by allowing modulation of the meta-
atoms along them, allow the engineering of both phase and
amplitude of the electromagnetic fields impinging on them,
acquiring thus the ability to replace bulk, heavy and difficult
to use conventional optical elements (mirrors, lenses, etc.).
Due to their ultrathin nature and the subwavelentg meta-atom
size, metasurfaces can be conveniently described as effective
electromagnetic sheets [13], through appropriate sheet con-
ductivities. Metasurfaces comprising of a thin layer sustaining
orthogonal electric and magnetic dipoles have been utilized
for applications as reflect-arrays, transmit-arrays, holographic
surfaces and others [14]. Moreover, metasurfaces’ fine elec-
tromagnetic features have been shown to enable enhanced
detection and sensing, thin film polarizers, shielding, beam
shaping and other useful functionalities [15–21].

As mentioned, metamaterials and metasurfaces can be
made of metallic, dielectric or semiconducting components.
They can be also made of a combination of dielectric,
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semiconducting and metallic parts in a properly designed
meta-atom architecture and cluster arrangement. A scheme
that has gained significant popularity is structures composed
of coated (or even multicoated) cylinders or spheres. Such
structures are characterized by a relatively straightforward de-
sign and have been proposed for a variety of applications due
to the increased degree of design freedom related to the thick-
nesses and constituent materials in each layer. With proper
selection of geometry and materials, coated cylinders or
spheres can lead to overlapping of different resonances, which
is crucial in metasurfaces since it can offer full transmission
or reflection and 2π phase modulation (allowing in princi-
ple arbitrary wavefront control), resonances with engineered
quality factors, etc. Applications of such structures include su-
perscattering [22–27], electromagnetic cloaking [25,28–35],
lenses and many others [36]. Moreover, metamaterials made
of cylindrical meta-atoms, which are the system of interest
in the present work, are inherently anisotropic, allowing the
possibility of hyperbolic dispersion relation and anisotropic
negative or near-zero refractive index [37]. Such structures
can be experimentally realized following the progress of mi-
cro and nanotechnology; for example emerging technologies
focused on the implementation of carbon nanotubes have
given already metamaterial and photonic crystal orientated
developments [38–41]. Even more interesting electromagnetic
features can occur in cylindrical meta-atoms coated with
tunable sheets bearing individual electric and/or magnetic
resonances to be combined with the response of the coated
atom. Such coatings may involve, for example, a 2D mate-
rial, like uniform graphene or structured (patterned) graphene,
or an electromagnetically thin sheet of cut wires or split
ring resonators [28,34,42–44], e.g., in a flexible metasur-
face implementation [45,46]. It should be mentioned here
that graphene in particular, either in a patterned metasurface
form or as a uniform sheet, is very appealing as a coating
material due to its intrinsic ultrathin nature and the excep-
tionally tunable electromagnetic properties, especially in the
THz wavelengths where its EM behavior is dominated by a
Drude-like response [47–50].

It is clear that an analytical assessment of the electro-
magnetic response of coated and multicoated cylinder-based
metamaterial structures is important, as it gives the possibility
for the in-depth understanding of the physical mechanisms
that lead to the resonant structure response, and, subsequently,
for engineering of this response through structure engineering
and optimization, targeting advanced electromagnetic func-
tionalities and applications. Assemblies of resonant cylinders
can be treated as an effective homogeneous material in the
limit of small characteristic lengths (radius, unit cell size)
compared to the wavelength of interest and (in most of the
cases) in the far-field limit. Homogenization approaches ap-
plied in systems of coated spheres and cylinders have shown
that coatings can provide many interesting effects, as for ex-
ample an increased bandwidth of negative permittivity and
permeability in comparison with their noncoated counterparts
[51]. However, to our knowledge, an analytic homogenization
approach that can incorporate an arbitrary number (larger than
one) of coatings for each cylinder has not been reported in the
literature yet. Additionally, although the scattering properties
of cylinders and spheres coated with graphene metasurfaces

have been quite extensively studied, coatings/sheets showing
arbitrary resonant electric and/or resonant magnetic response
(representing more complex metasurface-coatings and al-
lowing delicate interplay of electric and magnetic dipoles,
resulting to additional advanced functionalities) [52–59] are
much less explored.

The aim of this work is to develop a framework/formalism
to analyze in detail the resonant behavior and wave propa-
gation in systems of multilayer cylinders coated also with
conducting sheets (metasurfaces) of both electric and mag-
netic response, as well as to apply this framework to cases
of high foreseen theoretical or practical interest. Towards
this direction, we derive an homogeneous effective medium
approach for systems of infinitely-long multilayer cylinders,
with an arbitrary number of layers (coatings; of metallic,
high-index dielectric or even resonant materials) and with
the incorporation of both electric and magnetic sheet con-
ductivities at each interface (i.e., between coatings). Our
homogenization approach is based on the well known in
the solid state physics community coherent potential ap-
proximation, CPA [60–64], suitable also quite beyond the
long-wavelength limit. To calculate the single cylinder scat-
tering amplitudes for the multilayer cylinders, which is an
essential step in the CPA application, we develop a Transfer
Matrix Method (TMM) for cylindrical waves, connecting the
wave amplitudes at the different layers. We apply the devel-
oped formalism in two different systems/metamaterials: (i)
of cylinders (nanotubes) of uniform graphene sheets, with
tunable response and (ii) of cylinders formed of metasurfaces
with arbitrary electric and magnetic resonances in the meta-
surface conductivity. In both systems, we study the single
meta-atom (multicoated cylinder) scattering and the effective
medium response, which unveils the existence of rich elec-
tromagnetic features, i.e., controllable hyperbolic response of
both types I and II, double negative response, and epsilon-
near-zero and mu-near-zero response. The paper is organized
as follows. In Sec. II we present our method, i.e., starting
from the single meta-atom scattering we derive the relations
for the effective electric permittivity and magnetic permeabil-
ity tensor components for the corresponding metamaterial.
In Secs. III A and III B, we apply the method in systems
of single- and double-layer/wall cylindrical nanotubes made
of (a) tunable graphene sheets and (b) metasurfaces with
both electric and magnetic surface conductivity. The first
case approximates systems of single and double-wall carbon
nanotubes, which are systems of high technological interest.
The second system can approximate, among others, meta-
materials of cylinders coated with a structured 2D material,
e.g., graphene, transition metal dichalcogenide monolayers,
etc. In both cases, we demonstrate the engineerable effec-
tive electric permittivity and magnetic permeability response,
leading to the emergence of various interesting optical phases
and possibilities. Finally we present the conclusions on our
work.

II. METHODS

We begin our analysis from the methods derived and em-
ployed in this work for the system shown in Fig. 1. In the
first part, we present the THz electric and magnetic sheet
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FIG. 1. (a) Top view schematic of the more general meta-atom geometry investigated in this work: A cylinder of N cocentric bulk layers,
separated by metasurfaces. Each bulk layer is characterized by relative electric permittivity ε� and magnetic permeability μ�. The interface
between the �th and the (� + 1)th layer is coated with a metasurface with electric conductivity σe(�) and magnetic conductivity σm(�). The
polarization definition is also shown, where we assume normal incidence. (b) Schematic of the setup for the effective medium derivation.
The original cylinder [of panel (a)] is coated with a cylindrical layer of the host material (white color), with radius RN+1 = RN/

√
f , where

f is the filling ratio of the cylinders in the metamaterial under investigation, and is embedded in the homogeneous effective medium under
determination (with relative permittivity εeff and permeability μeff). (c) Three-dimensional view of the metamaterial under investigation: an
array of multilayered cylinders.

conductivities of the metasurfaces considered in the applica-
tion cases discussed here. In the second part we present first
the derivation of a transfer matrix method, which allows us to
calculate the scattering properties of a cylinder composed of
N cocentered layers of different materials, with metasurfaces
at the interfaces of these layers. Next, we derive the CPA-
based effective medium model for two-dimensional arrays of
such multilayered cylinders, based on the single scattering
calculations.

A. 2D conductivities

In this section, we present the electromagnetic properties
of the 2D sheets/coatings of the examples considered in this
work, i.e., the uniform graphene sheet and the metasurface
exhibiting both electric and magnetic resonance.

For the graphene case, the conductivity σg as a function of
the Fermi energy EF and the temperature T was obtained by
Kubo formula, derived in the context of rapid phase approxi-
mation (RPA) [65]; it reads as

σg(ω) = σintra + σinter, (1)

where the intraband contribution is

σintra(ω) = 2e2kBT

π h̄2

i

ω + iτ−1
ln

[
2 cosh

(
EF

2kBT

)]
(2)

and the interband contribution is

σinter(ω) = e2

4h̄

{
1

2
+ 1

π
arctan

(
h̄ω − 2EF

2kBT

)

− i

2π
ln

[
(h̄ω + 2EF )2

(h̄ω − 2EF )2 + (2kBT )2

]}
. (3)

Here ω is the angular frequency, h̄ = 1.055 × 10−34 J s the
reduced Planck constant, kB = 1.38 × 10−23 J K−1 the Boltz-
mann constant, e = 1.602 × 10−19 C the electron charge and
τ the electrons’ relaxation time. Unless otherwise stated, in
this paper we use a Fermi level EF = 0.2 eV and a typical
relaxation time τ = 1 ps. The real and imaginary parts of the

graphene conductivity for these values and for our frequency
region of interest are shown in Fig. 2(a).

Regarding the metasurface coatings employed, usually
in the literature their response is approximated by a sheet
material with effective electric and magnetic 2D conductiv-
ities consisting of a summation of Lorentzian resonances

FIG. 2. (a) Real part (times 100) (left axis, blue line) and imagi-
nary part (right axis, red line) of the sheet conductivity of a uniform
graphene sheet modelled by Eq. (1), assuming Fermi level EF =
0.2 eV and relaxation time τ = 1 ps. (b) Normalized real (solid
lines) and imaginary (dashed lines) parts of electric (se) and magnetic
(sm) sheet conductivities calculated using Eqs. (4) and (5), assuming
parameters ωe/2π = 21 THz, 	e/2π = 	m/2π = 2 THz, κe/2π =
κm/2π = 1 THz, and ωm/2π = 18 THz; for the definition of those
parameters see main text. η0 is the free-space impedance.
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[57–59,66,67]. To simplify our analysis we consider here a
metasurface with isotropic surface conductivities and a single
electric and magnetic resonance:

se = σeη0 = iκeω

ω2 − ω2
e + iω	e

, (4)

sm = σm

η0
= iκmω

ω2 − ω2
m + iω	m

, (5)

where η0 is the free-space impedance, ωe/m are the resonance
frequencies, κe/m and 	e/m are parameters of the lorentzians.
For the purpose of the present analysis we have chosen the
values of the parameters involved in the conductivities as
fe = ωe/2π = 21 THz, 	e/2π = 	m/2π = 1 THz, κe/2π =
κm/2π = 2 THz, and fm = ωm/2π = 18 THz. The real and
imaginary part of the corresponding electric and magnetic
conductivities are shown in Fig. 2(b).

B. Single scattering

Having defined the sheet conductivities of the graphene
and metasurface coatings, we move to the investigation of a
single cylinder system. We consider an infinitely-long cylin-
der consisting of N cocentered layers. The system is shown
in Fig. 1(a). The �th layer is characterized by its thickness
�� = R� − R�−1 (R0 = 0), where R� is the distance from the
center to the perimeter of the �th layer; its relative electric
permittivity is ε�, the relative magnetic permeability is μ�, the
electric surface conductivity is σe(�) and the magnetic surface
conductivity is σm(�). The cylinder is embedded in a host
material with relative electric permittivity εh and magnetic
permeability μh. We consider wave propagation perpendicular
to the cylinder axis. Since the cylinder is infinitely-long and
there is no propagation component parallel to its axis, the
problem is two dimensional and can be decoupled into two
separate polarizations, the transverse electric (TE), with the
electric field normal to the cylinder axis, and the transverse
magnetic (TM) polarization, with the magnetic field normal to
the cylinder axis. In each layer, the fields can be expanded on
the basis of cylindrical vector harmonics. In the �th layer the
field F = {E, H} (electic or magnetic) parallel to the cylinder
axis (z direction) will be

F� ∼
∑

ν

[
c�νN(outward)

eνk�
+ d�νN(inward)

eνk�

]
, (6)

with N(outward)
eνk�

∼ Hν (k�r) and N(inward)
eνk�

∼ Jν (k�r) standing for
the outgoing and ingoing cylindrical harmonics respectively
[68]. The functions Jν (·) and Hν (·) are the Bessel and the
first kind Hankel function of order ν, and k� = √

ε�μ�ω/c.
The expansion coefficients c�ν and d�ν can be calculated by
imposing the appropriate boundary conditions at the interface
r = R� [69–71]:

ρ̂ × [E�+1 − E�] = −jm(�) = −σm(�)
H� + H�+1

2
, (7)

ρ̂ × [H�+1 − H�] = je(�) = σe(�)
E� + E�+1

2
, (8)

where ρ̂ is the unit vector along the radial direction. Here we
have chosen a set of Bessel functions for our descriptions that
is not linearly independent, i.e., Jν (·) and Hν (·) instead of Jν (·)
and Yν (·) that are commonly used in the literature, because

it is more convenient for the effective medium description in
Sec. II C.

By applying the boundary conditions, Eqs. (7) and (8),
at each of the interfaces of the N layers of the cylinder, we
construct a matrix equation which connects the fields in the
innermost layer with the fields outside the cylinder (incident
plus scattered field), for each cylindrical wave/harmonic (ν)
excited. This transfer matrix equation reads

MP
(N ),ν

(
bν

0

)
=

(
1
aν

)
, (9)

where MP
(N ),ν is the total transfer matrix for polarization P =

{TE, TM}. With aν ≡ c(N+1),ν we denote the scattering coeffi-
cient of the scattered wave (for coefficient 1 ≡ d(N+1),ν of the
incident wave) and with bν = d1ν the coefficient (inwards) for
the core (innermost) layer, while ν stands for the excited mode
(cylindrical harmonic).

The total transfer matrix MP
(N ),ν is derived through the

transfer matrices connecting the fields at neighboring layers.
For polarization P = {TE, TM}, the transfer matrix T P

�ν which
transfers the fields from the (�)th layer to the fields in the
(� + 1)th layer can be written as

T P
�ν

(
d�ν

c�ν

)
=

(
d(�+1),ν

c(�+1),ν

)
. (10)

For TE polarization, the matrix TTE
�ν has the form

TTE
�ν = [

DTE
(�+1)ν (R�)

]−1 · [X+
� ]−1 · X−

� · DTE
�ν (R�), (11)

where

DTE
�ν (R�) =

(
J ′
ν (k�R�) H ′

ν (k�R�)
1
η�

Jν (k�R�) 1
η�

Hν (k�R�)

)
(12)

and the surface conductivity matrices (X) are

X±
� =

(
1 ±iσm(�)/2η0

∓iσe(�)η0/2 1

)
, (13)

where η� = √
μ�/ε� is the impedance of the �th layer and

η0 = √
μ0/ε0 is the vacuum impedance.

For TM polarization, we get

TTM
�ν = [

DTM
(�+1)ν (R�)

]−1 · [X−
� ]−1 · X+

� · DTM
�ν (R�), (14)

DTM
�ν (R�) =

(
Jν (k�R�) Hν (k�R�)

1
η�

J ′
ν (k�R�) 1

η�
H ′

ν (k�R�)

)
. (15)

The details of the calculations are presented in Appendix A 1.
The total transfer matrix reads as

MP
(N ),ν =

1∏
�=N

T P
�ν . (16)

From Eq. (9) we can calculate the coefficients bν (of the field
in the core layer) and aν (scattered field coefficient) as

bν = 1

M(11)
(N ),ν

, (17)

aν = M(21)
(N ),νbν = M(21)

(N ),ν

M(11)
(N ),ν

. (18)
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The scattering and extinction efficiencies of the whole cylin-
der can all be written in terms of aν as

QP
ext = − 2

|khRN |Re

[
aP0 + 2

∞∑
ν=1

aPν

]
, (19)

QP
sc = 2

|khRN |

[∣∣aP0∣∣2 + 2
∞∑

ν=1

∣∣aPν ∣∣2

]
. (20)

Limiting expressions for a metasurface-covered cylinder.
Having the above equations, one can derive limiting expres-
sions for different systems of practical or theoretical interest.
Here, we derive expressions for the resonance frequencies
(poles) of the ν = 1 mode of a single-layer cylinder coated
with a metasurface. For a single cylindrical layer (N = 1) with
radius R1 = R coated with a surface with conductivities σe

and σm in a host material with electric permittivity εh and
magnetic permeability μh, the scattering coefficients will be
given based on Eq. (18). In the limit khR � 1 and ignoring
terms containing the product term σeσm, the poles of the TE1

mode can be found from the expression

1

η1

J1(k1R)

J ′
1(k1R)

= σeη0ηh − ikhR

iηh + khRσmη−1
0

. (21)

Further, if we take the quasistatic limit of khR � 1 and k1R �
1, we find

ε1
ω

c
R = iσeη0 + εh

ω
c R

εhiσmη−1
0

ω
c R − 1

(22)

or

ε1εhiσmη−1
0

(ω

c
R
)2

− (ε1 + εh)
ω

c
R = iσeη0. (23)

For the sake of our analysis, we ignore the damping term in
the conductivities [see Eqs. (4) and (5)], i.e., we consider

se/m = iκe/mω

ω2 − ω2
e/m

. (24)

For x = k0R = ωR/c � 1, we can write the magnetic sheet
conductivity as sm = σmη−1

0 	 iκm(−(c/R) · x/ω2
m − (c/R)3 ·

x3/ω4
m) + O(x4), and hence, can ignore the first term of

Eq. (23). In this case, we can use Eqs. (23) and (24) to get

−(ε1 + εh)
ω

c
R = i

iκeω

ω2 − ω2
e

, (25)

−(ε1 + εh)
ω

c
R
(
ω2 − ω2

e

) = −κeω, (26)

or

(ε1 + εh)
R

c

(
ω2 − ω2

e

) = κe. (27)

Finally we find that the frequency of the TE1 resonance of the
structure is at

ω2
TE1

	 ω2
e + cκe

(ε1 + εh)R
. (28)

An equivalent expression can be obtained for the TM1 reso-
nance:

ω2
TM1

	 ω2
m + cκm

(μ1 + μh)R
. (29)

For graphene, if we ignore the interband conductivity term
in Eq. (1), the sheet conductivity takes the form σg(ω) 	

iκg/ω, where κg = 2e2kBT
π h̄2 ln[2 cosh( EF

2kBT )]; we then get a
1/

√
R dependence of the TE1 mode resonance frequency.

C. Effective medium theory

In this section, we derive the components of the ef-
fective permittivity and permeability tensors for a uniaxial
anisotropic system/metamaterial of infinitely-long parallel
circular multicoated cylinders of N layers each and surface
electric and magnetic conductivities at each cylinder interface.

We follow the same approach as the one of Refs. [62,64],
where (in Ref. [64]), we calculated the effective medium pa-
rameters for a cluster of cylinders without coating and surface
conductivities. To derive the effective medium equations in
the case of N-coated cylinders we consider a cylinder of
N+1 layers embedded in the effective medium, as depicted
in Fig. 1(b), and we require the vanishing of the scattering
amplitudes. The (N + 1)th layer of that cylinder is the host
of the original system (with εN+1 = εh and μN+1 = μh) with
thickness RN+1 − RN . The radius RN+1 of the outer layer is
determined by the filling ratio, f , of the cylinders in the orig-
inal system, as f = R2

N/R2
N+1, i.e., the host-coated cylinder

preserves the filling ratio of the original system/metamaterial.
The host material (effective medium) in the configuration of
Fig. 1(b) has permittivity εeff = ε⊥

eff(x̂x̂ + ŷŷ) + ε
‖
effẑẑ and per-

meability μeff = μ⊥
eff(x̂x̂ + ŷŷ) + μ

‖
effẑẑ (the symbols ‖,⊥ are

defined relative to the cylinders axes, i.e., for ε‖ (μ‖) electric
(magnetic) field is parallel to the axes of the cylinders). In
order to derive the expressions for the tensor components of
the effective permittivity and permeability we require that the
scattering coefficients of the scattered field in the effective
medium, a(eff)

ν , for both TE and TM polarizations vanish.
After algebraic manipulations (see details in Appendix B),
this requirement leads to expressions for the coefficients of
the original cylinder, which read as

aP
ν (RN+1; eff, h) = aP

ν ({R1, . . . , RN }; {A1, . . . , AN }, h), (30)

where aP
ν (RN+1; eff, h) are the scattering coefficients of

a single-layered cylinder with electric permittivity εeff,
magnetic permeability μeff and radius RN+1, embed-
ded in a host with electric permittivity εh and mag-
netic permeability μh. In the right-hand-side of Eq. (30),
aP

ν ({R1, . . . , RN }; {A1, . . . , AN }, h) are the scattering coeffi-
cients of the original cylinder, consisting of N cocentered
layers with radii {R1, R2, . . . , RN } and materials (including
surface conductivities at each interface) {A1, A2, . . . , AN } em-
bedded in the host material (of the original system). In the
metamaterial frequency range, khRN+1 < 1, however, there
are only two dominant modes per polarization, the lower
order ones, i.e., the ν = 0 and the ν = 1 mode. In the limit
keffRN+1 � 1, we can replace the Bessel functions in Eq. (30)
with their limiting expressions assuming small arguments
[72]. Considering only the ν = 0 and ν = 1 modes per polar-
ization, we can obtain semi-analytical expressions for all the
components of the effective electric permittivity and magnetic
permeability tensors, which read as

ε
‖
eff = − 2εh

khRN+1

[
J ′

0(khRN+1) + H ′
0(khRN+1)aTM

0

J0(khRN+1) + H0(khRN+1)aTM
0

]
, (31)
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μ⊥
eff = μh

khRN+1

[
J1(khRN+1) + H1(khRN+1)aTM

1

J ′
1(khRN+1) + H ′

1(khRN+1)aTM
1

]
, (32)

μ
‖
eff = − 2μh

khRN+1

[
J ′

0(khRN+1) + H ′
0(khRN+1)aTE

0

J0(khRN+1) + H0(khRN+1)aTE
0

]
, (33)

ε⊥
eff = εh

khRN+1

[
J1(khRN+1) + H1(khRN+1)aTE

1

J ′
1(khRN+1) + H ′

1(khRN+1)aTE
1

]
, (34)

where the coefficients aTE
0 , aTE

1 , aTM
0 , aTM

1 are the scattering
coefficients of the original N-layer cylinder embedded in the
host of the original system [the ones of the right-hand side
(r.h.s.) of Eq. (30)]. Equations (31) and (34) have the same
form as the relations obtained in Ref. [64]. Finally, if we
further take the limit khRN+1 � 1, we get

ε
‖
eff = εh

[
1 − f

(khRN )2

4i

π
aTM

0

]
, (35)

μ⊥
eff = μh

[
(khRN )2 − f 4i

π
aTM

1

(khRN )2 + f 4i
π

aTM
1

]
, (36)

μ
‖
eff = μh

[
1 − f

(khRN )2

4i

π
aTE

0

]
, (37)

ε⊥
eff = εh

[
(khRN )2 − f 4i

π
aTE

1

(khRN )2 + f 4i
π

aTE
1

]
, (38)

where f is the cylinders filling ratio in the
system/metamaterial. Note here that for cylinders without
any coating (N = 1, σe = 0, σm = 0) in the quasistatic limit
(i.e., khRN+1 � 1, k1R � 1), Eqs. (31)–(34) reduce to the
well-known Maxwell-Garnett expressions.

III. RESULTS AND DISCUSSION

Here we apply the methods presented in the previ-
ous section in systems of graphene cylinders/tubes and
metasurface-made cylinders, which are representative systems
for the demonstration of the potential of our approaches, as
well as systems associated with novel and engineerable optical
properties.

A. Single scattering

1. Graphene cylinders

We begin our analysis by calculating the extinction ef-
ficiencies of (i) a single-layered and (ii) a double-layered
cylinder, formed by homogeneous graphene layers. We as-
sume that all the bulk cylinder layers are air, i.e., ε� = 1 and
μ� = 1, and the same for the host material. The geometry
is comprised, in fact, of cocentered cylindrical cells/sheets
with electric surface conductivity σe = σg calculated using
Eq. (1) and plotted in Fig. 2(a). (Such a geometry can be
considered as a good approximation of a family of single- and
double-wall carbon nanotubes.) The extinction efficiencies for
a single graphene cylindrical layer of variable radius, R = 35,
45, and 55 nm, are shown in Fig. 3(a), while the extinc-
tion efficiencies for a double-layered cylinder with variable
outer-layer radius R2 are shown in Fig. 3(b). For the single
graphene layer [Fig. 3(a)] there is only one dominant peak
in the extinction spectrum, originated from the dipolar ν = 1
mode for TE polarization. We denote this mode as TE1. Since,

FIG. 3. Extinction efficiencies Qext in (a) a single-layer graphene
cylindrical tube in air with varying radius R and (b) a double-layered
graphene cylinder in air with inner radius R1 = 45 nm, and variable
outer layer radii R2 for TE polarization. All layers exhibit surface
conductivity σg with Fermi level EF = 0.2 eV and relaxation time
τ = 1 ps. All cylinder bulk (inter-surface) layers are made of air.

in this frequency region the imaginary part of the surface
conductivity of graphene [Fig. 2(a)] is positive, the mode is
similar in nature to the localized surface plasmon resonance
(LSPR) sustained in metallic rods [73].

For the double-layered case (N = 2) shown in Fig. 3(b), we
consider a core of constant radius R1 = 45 nm and the variable
outer layer radius: R2 = 70, 80, and 90 nm. In this case, the
TE1 mode manifests as two distinct resonances at frequencies
below and above the TE1 resonance for the single layer case.
Here, we denote these resonances in order of increasing fre-
quency as TE(1)

1 and TE(2)
1 . From the frequency of the modes,

one can conclude that the mode TE(1)
1 comes predominately

from the outer layer, redshifted due to the presence and inter-
action with the inner one, while TE(2)

1 from the contribution of
the core layer, blueshifted due to the interaction with the outer
layer. A worth-mentioning feature of Fig. 3(b) is the small
frequency shift of the TE(1)

1 peak with the change of the radius
R2, compared, e.g., with the corresponding shift observed
in Fig. 3(a). The cause of this difference is the presence of
the inner layer and the coupling between the two layers, as
will be discussed also in the next paragraph. We should note
here that for these systems the extinction efficiency for TM
polarization is below 10−2, with no resonances for both cases,
and it is not shown here.
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FIG. 4. Resonance frequencies of first two modes, ν = 0 and ν = 1, per polarization, TE and TM, for (a) a single-layered graphene
cylinder versus its radius, R; (b) a double-layered graphene cylinder for different outer-layer radii, R2 and constant core radius R1 = 45 nm;
(c) a single-layered metasurface-formed cylinder of different radii, R; (d) a double-layered metasurface cylinder with core radius R1 = 100
nm and variable interlayer radii R2. The characteristic field distributions of the z component of the electric (magnetic) field for TM (TE)
polarization for the ν = 0 and ν = 1 modes are shown in the insets of (c).

The dependence of the resonance frequencies on the radii
of the graphene cylindrical layers, which are calculated by
finding the poles of the scattering coefficients aν [Eq. (18)],
are shown in Figs. 4(a) and 4(b). We observe that the res-
onance frequency in the single-layered cylinder scales with
the radius of the cylinder with a 1/

√
R dependence as we

derived in Eq. (28) (see Sec. II B). The tendency of TE1

modes for the double-layered case (N = 2) can be explained
in terms of mode hybridization and level repulsion, where the
modes coupling leads to a lower-frequency “bonding”) mode,
redshifted in respect to the “parent” single-layer mode (with
the shifting being larger for smaller difference between R1 and
R2), and a higher frequency (antibonding) mode, blueshifted
in respect to the corresponding single-layer mode [25,74–76].
Comparing the results of Figs. 4(a) and 4(b), we observe that
the mode shifting due to the interaction of the inner and outer
graphene layer is quite significant.

2. Metasurface cylinders

Next, we turn our attention to cylinders/tubes formed by
metasurfaces having both electric and magnetic response, em-
bedded in air. We consider two cases: (i) a single-layered
metasurface-made cylinder of variable radius and (ii) a
double-layered cylinder, of the same metasurface at each
layer, with fixed inner-layer radius. The metasurfaces have
resonant conductivities, σe(1) = σe(2) and σm(1) = σm(2) as it
is shown in Fig. 2(b), and ε1 = ε2 = εh = 1. The extinction

efficiencies for both TE and TM polarizations and for the
single- and the double-layered cylinders are shown in Fig. 5.
In the single-layered cylinders, we investigate cases of radii
R = 50, 100, and 150 nm. There are two dominant reso-
nances for both TE and TM polarizations. The electric in
nature TM0 and the magnetic in nature TE0 modes appear
just below the resonance frequencies of the electric sheet
conductivity, fe = ωe/2π = 21 THz, and the magnetic sheet
conductivity, fm = ωm/2π = 18 THz, respectively, and are
practically independent of the cylinder radius. Just below
fe ( fm) the imaginary part of the electric (magnetic) sheet
conductivity of the metasurface is negative [see Fig. 2(b)]
leading to positive equivalent electrical permittivity (mag-
netic permeability); this case is similar to the polaritonic
cylinders for small radii we have discussed in Ref. [64].
On the other hand, the dipolelike modes, TE1 and TM1,
fall in the regions of positive imaginary part of electric and
magnetic conductivity respectively and they are similar in
nature with the modes discussed earlier for the graphene
case.

Next we study the case of the double-layered cylinder
formed of the same metasurface, at inner layer radius R1 =
100 nm and different outer layer radii R2. We observe two
dipolar (ν = 1) electric and magnetic modes, TE(1)

1 and TE(2)
1 ,

TM(1)
1 and TM(2)

1 , one of lower and one of higher frequency
than the corresponding modes of a single-layered cylinder,
similar in nature and behavior to the graphene case we dis-
cussed in the previous paragraph. Note here that the TM(1)

1
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FIG. 5. Extinction efficiencies Qext for [(a) and (b)] a single-layered (N = 1) metasurface-formed cylinder of variable radius R for TE
(a) and TM (b) polarization; [(c) and (d)] a double-layered (N = 2) metasurface cylinder with constant core radius R1 = 100 nm and variable
outer-layer radius, R2, for TE (c) and TM (d) polarization. The vertical dashed grey lines in the panels indicate the resonant frequencies of
the metasurface magnetic and the electric conductivities at fm = 18 THz and fe = 21 THz, respectively. The symbols associated with each
resonance are explained in the main text.

mode [see Fig. 4(d)] is very close in frequency with the TM(2)
0

mode. Besides, there are the monopolar, ν = 0, modes which
are practically the same with the single-layer case, with main
difference the enhancement of the extinction of the secondary
peaks TE(2)

0 , TM(2)
0 , coinciding also with conductivities’ reso-

nances.
The dependence of the resonance frequencies of the dom-

inant modes on the radius of the single-layered cylinder and
on the radius R2 for the double-layered case, for constant R1 =
100 nm, is shown in Figs. 4(c) and 4(d). We observe that the
ν = 1 modes show similar behavior with the correspondent
modes of the graphene case. The ν = 0 modes on the other
hand, where their originating field (electric for TM and mag-
netic for TE) does not encounter material discontinuities along
its direction, almost coincide in frequency with the resonances
of the conductivities and are unaffected by the cylinder radius.

It is interesting to observe though in the double-layer case
the enhancement of the TE(2)

0 , TM(2)
0 peaks compared to the

single-layer case (where the peaks are hardly visible). To
further elucidate this enhancement and the origin of those
peaks we plot the zeroth-order scattering coefficients a0, in
Fig. 6, for a double-layered cylinder with R1 = 100 nm and
R2 = 150 nm as a function of the magnetic sheet conduc-
tivity resonance frequency, fm, with constant fe = 21 THz.
For instance, for the TE polarization, we can observe that
the strength of the weaker TE(2)

0 resonance becomes more
prominent and approaches in frequency the TE(1)

0 as the res-

onance frequency fm approaches fe. Interestingly, even in the
case of fe = fm, the two resonances remain distinct as a result
of the interaction of the layers about the electric and magnetic
conductivity resonance. However, the secondary TE0 mode is
absent when the electric conductivity is zero (see Fig. 12 in
Appendix B 1), indicating that this dip corresponds to a mag-
netic mode originating from the resonant electric conductivity
response, in analogy with the resonant magnetic response
obtained in polaritonic or high-index dielectric cylinders, but
of much smaller strength. Analogous behavior is observed in
the case of the secondary TM0 mode, which corresponds to
electric response originated from large magnetism.

B. Effective medium theory and alternating optical phases

1. Graphene cylinders

We turn our attention now to the effective medium param-
eters εeff and μeff for clusters of graphene and metasurface
cylinders in air, aligned in a square lattice, as presented in
Fig. 1(c). The cylinders considered are the ones discussed in
the previous section. We examine initially the graphene cases.
In Fig. 7, we plot the real and imaginary parts of the tensor
components of effective electric permittivity εeff = ε⊥

eff(x̂x̂ +
ŷŷ) + ε

‖
effẑẑ for single-layered graphene cylinders [Figs. 7(a)

and 7(c)] and double-layered cylinders [Figs. 7(b) and 7(d)]
for constant filling ratio, f =20%, and different radii. As
one can see, for both the single- and the double-layered
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FIG. 6. Zeroth-order scattering coefficients, a0, as a function
of the magnetic surface conductivity resonance frequency fm for
(a) TE and (b) TM polarizations for a double-layered metasurface
cylinder (N = 2) with radii R1 = 100 nm and R2 = 150 nm, and
constant electric surface conductivity resonance frequency fe = 21
THz (dashed vertical line).

cases there are Lorentzian-shaped resonances for the in-plane
component of the effective electric permittivity, ε⊥

eff, close in
frequency to the corresponding TE1 resonances [see Figs. 3,
4(a), and 4(b)]. Also we can observe a Drude-like response
for the parallel component of effective electric permittivity
ε

‖
eff for both arrays of single- and double-layered graphene

cylinders. All the components of the effective magnetic per-
meability μeff are equal to unity and are not shown here.
As the radius of the cylinders increases, the resonance of
the ε⊥

eff moves to lower frequencies. Interestingly, for single-
layered cylinders all the components of the effective electric
permittivity vanish at the same frequency, close to the TE1

mode resonance frequency. For instance, for R = 45 nm the
ε-near-zero (ENZ) is achieved at 23.7 THz and moves to lower
frequencies as the radius of the cylinder increases. This result
along with Eqs. (31) and (34) suggests that aTM

0 = aTE
1 at that

frequency for the single-layered graphene cylinder. Further
examinations showed that the monochromatic vanishing of
both components of effective permittivity tensor holds only
for the symmetric case, where the material inside the graphene
layer and the host are the same (air here). On the other hand,
for the double-layered cylinders, due to the presence of mul-
tiple resonances, there are several frequencies where the ε⊥

eff
vanishes.

Moreover, as one can notice, there are frequency regions
where the in-plane and out-of-plane components of the effec-
tive electric permittivity have different signs, i.e., ε⊥

eff · ε
‖
eff <

0. This is the condition for hyperbolic response (i.e., disper-
sion relation of the shape of hyperbola) for TM-polarized
waves, as can be seen by taking into account the dispersion
relations for an anisotropic homogeneous material [77],

TM:
k2
⊥

μ⊥
effε

‖
eff

+ k2
‖

μ⊥
effε

⊥
eff

=
(ω

c

)2
, (39)

TE:
k2
⊥

μ
‖
effε

⊥
eff

+ k2
‖

μ⊥
effε

⊥
eff

=
(ω

c

)2
, (40)

where k‖ and k⊥ stand for the wave-vector components par-
allel and perpendicular to the cylinder axis respectively. For
example, for the single-layered graphene cylinders with ra-
dius R = 45 nm [blue curve in Fig. 7(a)] the condition for
hyperbolic response is achieved up to 28.6 THz, where both
ε⊥

eff and ε
‖
eff become positive. We can further distinguish the

hyperbolic metamaterial response of our systems into two
different frequency regions by considering the different signs
of ε⊥

eff and ε
‖
eff. For frequencies below the ε⊥

eff resonance (∼24
THz), the in-plane components ε⊥

eff are positive, while the
out-of-plane component ε

‖
eff is negative; thus we have type

I hyperbolic metamaterial (HMM I). On the other hand, in
the frequency region 24 THz-28.6 THz we have ε⊥

eff < 0
and ε

‖
eff > 0, thus hyperbolic metamaterial type II (HMM

II) response. The response is more rich for the metamaterial
comprised of double-layered graphene cylinders shown in
Figs. 7(b) and 7(d). Considering the case with constant core
radius, R1 = 45 nm, and variable outer layer radii, R2 = 70
nm [green curve in Figs. 7(b) and 7(d)] and R2 = 90 nm
[purple curve in Figs. 7(b) and 7(d)], we see that there are
alternating optical phases (HMM I, metallic, HMM II and
dielectric) at frequencies close to the two TE1 resonances.
For instance, for R2 = 70 nm, we find HMM I response in
the frequency region up to 13.7 THz and 14.6–24.3 THz and
HMM II response in the frequency region 28.5–32. THz.

We should mention also here that the response of graphene-
shells and graphene-coated cylinders is highly tunable by
changing the Fermi level of graphene. This, as mentioned, can
be accomplished by various methods, including chemical dop-
ing, voltage tuning and photoexcitation. To assess the effect
of this tunability on the effective properties of our graphene-
based metamaterial we calculate first the dependence of the
extinction efficiency on the graphene Fermi level, EF , for a
single-layered graphene cylinder, see Fig. 8(a). As observed
in Fig. 8(a), the extinction efficiency is very small (maximum
of Qext = 0.05) for the case of zero Fermi level; as the Fermi
energy increases the extinction efficiency becomes larger and
the resonance shifts to higher frequencies. Analogous trends
are observed for the in-plane component of the effective elec-
tric permittivity ε⊥

eff, which is shown in Fig. 8(b). Figure 8(b)
shows ε⊥

eff for cylinders with radius R = 45 nm and filling ratio
f = 20%, for different Fermi energies, EF = 0, 0.1, 0.2, 0.3,
and 0.4 eV. The effective permittivity results are presented in
parallel with single-scattering data [Fig. 8(a)], to facilitate the
understanding of the observed response. We see that the TE1

resonance of the single scattering setup [Fig. 8(a)] is moving
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FIG. 7. Real (top) and imaginary (bottom) parts of the parallel ε
‖
eff (dashed curves) and perpendicular ε⊥

eff (solid curves) components of the
relative effective permittivity εeff for [(a) and (c)] a system made of single-layered (N = 1) graphene cylinders of variable radius, R = 45 nm
(blue curves) and R = 55 nm (red curves) in air; [(b) and (d)] a system of double-layered (N = 2) graphene cylinders in air, with constant core
radius R1 = 45 nm, and for outer layer radii R2 = 70 nm (green curves) and R2 = 90 nm (purple curves); the cylinders filling ratio is in all
cases equal to f = 20%.

towards higher frequencies as the Fermi level grows, and the
resonance becomes stronger in both extinction efficiency and
effective electric permittivity spectra.

2. CPA accuracy

In order to verify and demonstrate the validity and accuracy
of the developed effective medium approach, we compare
its results with equivalent full-wave simulations data. Specif-
ically we calculate the transmission and reflection spectra
through a slab consisting of seven unit cells (along propaga-
tion direction) of a triple-layered (N = 3) graphene cylinder,
in square arrangement, using the full wave numerical analysis
software COMSOL MULTIPHYSICS, and we compare the results
with the response (obtained by transfer matrix calculations) of
a slab of the same thickness with electric permittivity εeff and
magnetic permeability μeff calculated through our developed
formalism. The transmission comparison for TE polarization
is shown in Fig. 9. As can be seen, there is an excellent agree-
ment between full wave simulations and the effective medium
model. Moreover, in this particular system, the subwavelength
size of the graphene tubes allows an accurate description by
the CPA for frequencies even higher than the third structure
resonance.

3. Metasurface-based cylinders

Next, we turn our attention to the effective response
of arrays of metasurface-based cylinders, investigating the

single-layered and double-layered cylinder systems as previ-
ously; the results are presented in Figs. 10 and 11, respec-
tively. The effective medium parameters for a single-layered
cylinder metasurface for both TE and TM polarizations are
shown in Fig. 10 for two cylinders radii, R = 100 nm (blue
curves) and R = 200 nm (red curves). As one can notice
in Fig. 10, the parallel components ε

‖
eff and μ

‖
eff (originat-

ing from the zero-th order modes) become resonant at the
electric sheet conductivity and magnetic conductivity reso-
nances of the constituent metasurfaces, respectively, while
the change of radius only affects the strength of the resonant
response. On the other hand, the perpendicular components,
ε⊥

eff and μ⊥
eff, strongly depend, in both resonance frequency

and strength, on the cylinder radius. The dependence of the
resonance frequency follows the corresponding dependence
of their “parent” single scattering modes TE1, TM1 [see
Figs. 5(a) and 5(b)] while the strength is favored from smaller
radii.

Regarding the achievable metamaterial-related possibili-
ties, we can observe that there are frequency regions where the
medium becomes double negative (DNG) resulting in negative
refractive index, i.e., both εeff < 0 and its pertinent μeff < 0.
For R = 100 nm and TM polarization, both ε

‖
eff and μ⊥

eff are
negative between frequencies 28.19 and 28.64 THz. For the
larger cylinder-radius system DNG is achieved for TM polar-
ization, at lower frequencies, while for TE polarization there
is no DNG response (ε⊥

eff < 0 and μ
‖
eff < 0) for the parameters

studied here.
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FIG. 8. (a) Extinction efficiency for TE polarization for a single-
layered graphene cylinder with radius R = 45 nm in air, for different
Fermi energies, EF . (b) Real part of the in-plane component of effec-
tive electric permittivity ε⊥

eff for a system of single-layered graphene
cylinders as the one of panel (a), in air, with cylinder filling ratio
f =20%.

FIG. 9. Normal incidence, TE transmission spectra for a slab of
triple-layered graphene cylinders with radii R1 = 45 nm, R2 = 90
nm, and R3 = 135 nm and filling ratio f = 20% in air, in a square
arrangement. The transmission is calculated by the commercial finite
element method electromagnetic solver Comsol Multiphysics, con-
sidering a computational system of seven-unit-cell thickness (along
the propagation direction). The full wave transmission results (red
circles) are compared with results for a homogeneous effective
medium of the same thickness as the actual system and effec-
tive parameters obtained through our CPA-based effective medium
approach (black line).

It is interesting to observe also that the metasurface-
cylinders system exhibits HMM response for both TM and
TE polarizations. By considering the anisotropic material dis-
persion relations of Eqs. (39) and (40) and the results shown
in Fig. 10 one can see that there are both HMM I and HMM
II regions for both TM and TE polarizations. In particular, the
arrays of metasurface-coated cylinders with R = 100 nm (blue
curves in Fig. 10) and filling ratio f = 20% exhibit HMM I re-
sponse (μ⊥

effε
‖
eff < 0 and μ⊥

effε
⊥
eff > 0) in the frequency ranges

21.1–28.15 and 28.7–29.75 THz, and HMM II (μ⊥
effε

‖
eff > 0

and μ⊥
effε

⊥
eff < 0) response in the frequency ranges 28.2–28.6

and 29.8–31.7 THz for TM polarization. Also, for TE polar-
ization there is HMM I response (ε⊥

effμ
‖
eff < 0 and ε⊥

effμ
⊥
eff > 0)

in the frequency regions 17.97–26.53 and 28.75–29.75 THz,
and HMM II response (ε⊥

effμ
‖
eff > 0 and ε⊥

effμ
⊥
eff < 0) in the

frequency range 28.19–28.7 THz.
We close our analysis by investigating the effective

medium parameters for the double-layered metasurface cylin-
ders systems, which are shown Fig. 11. We observe that
for the parallel components ε

‖
eff and μ

‖
eff the presence of the

second (outer) layer does not affect the resonance position.
Regarding the resonance strength the outer layer seems to
rather dominate or screen the response of the inner one. For
the perpendicular components though we observe addition of
resonances and “repulsion” of modes and in a way analogous
to what was observed in the graphene case. As in the single-
layered case we observe also here a rich electromagnetic
response, with regions of alternating optical phase (between
HMM I and HMM II) for both TE and TM polarizations.
Regarding DNG response, although it is not observed in the
results of Fig. 11, our calculations suggest that it can be
achieved also for the double-layered case by properly tuning
the structure parameters (radii, filling ratio).

IV. CONCLUSIONS

In this work, we derived analytically single scattering
cross-sections and effective medium formulas for systems
of multilayer cocentric cylinders. Every layer can be made
of any material and can be coated with a metasurface of
arbitrary resonant sheet-conductivities, both electric and mag-
netic. Starting from the investigation of the single cylinder’s
scattering properties and resonances, for the formulation we
combined Mie theory with a transfer matrix approach for
cylindrical waves. The effective medium derivation was based
on the coherent potential approximation method and pro-
vided semi-analytical expressions for the calculated effective
medium parameters. Compared to commonly used effective
medium approaches, the develop formulation is suitable also
quite beyond the long-wavelength limit, is able to describe
metamaterials made of resonant materials, predicts mag-
netism in all-dielectric media and accommodates cylindrical
systems coated with resonant electromagnetic sheets.

We applied the formalism into two different metamaterial
systems, operating in the technologically appealing THz re-
gion: (a) graphene nanotubes of one and two concentric layers
(approximating systems of carbon nanotubes) and variable
conductivity, and (b) nanotubes formed from a metasurface
having both electric and magnetic response. We found that
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FIG. 10. Real (top) and imaginary (bottom) parts of the tensor components of effective permittivity εeff (first column ε
‖
eff and second

column ε⊥
eff) and effective permeability μeff (third column μ⊥

eff and fourth column μ
‖
eff) for a system/metamaterial of single-layered (N = 1)

metasurface-formed cylinders in air, for different radii, R = 100 nm (blue lines) and R = 200 nm (red lines), and filling ratio f = 20%. The
vertical dashed lines indicate the resonance frequencies of the magnetic ( fm = 18 THz) and electric sheet conductivity ( fe = 21 THz).

by properly choosing the number of layers and radii, both
systems can exhibit a rich palette of electromagnetic response,
own to the engineerable permittivity and permeability; this
rich response includes hyperbolic behavior of both types I and
II for both TE and TM polarizations, double negative response
and regions of ε-near-zero and μ-near-zero response. Thus
our results suggest that multilayer and metasurface-coated
cylinders can be exploited for the design of multifunctional
metamaterials and devices for the control of electromagnetic
radiation, offering a vast range of possibilities, from super-
scattering to cloaking and advanced wavefront manipulation.
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APPENDIX A: TRANSFER MATRIX METHOD

In this Appendix, we derive the transfer matrices used in
our analysis. For TE polarization the magnetic field is parallel
to the cylinder axis, H = Hzẑ. The electric and magnetic fields
in the �th layer can be expanded on the basis of the cylindrical
vector harmonics as

E� = i
∞∑

ν=−∞

iν

k�

[
c�νM(outward)

eνk�
+ d�νM(inward)

eνk�

]
, (A1)

H� = 1

η�

∞∑
ν=−∞

iν

k�

[
c�νN(outward)

eνk�
+ d�νN(inward)

eνk�

]
, (A2)

where c is the speed of light in vacuum, k� = √
ε�μ�

ω
c and

η� = √
μ�/ε�. The coefficients c�ν and d�ν can be determined

from the boundary conditions at the surface of the cylinder.
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FIG. 11. Real (top) and imaginary (bottom) parts of the tensor components of effective permittivity εeff (first column ε
‖
eff, second column

ε⊥
eff) and effective permeability μeff (third column μ⊥

eff, fourth column μ
‖
eff) for a system/metamaterial of double-layered (N = 2) metasurface-

formed cylinders in air, with core radius R1 = 100 nm and for different outer-layer radii, R2 = 150 nm (blue lines) and R2 = 250 nm (red
lines), and filling ratio f = 20%. The vertical dashed lines indicate the resonance frequencies of the magnetic ( fm = 18 THz) and electric
sheet conductivity ( fe = 21 THz).

The boundary conditions at the interface between the �th
and the (� + 1)th layer (i.e., at r = R�) can be written as

Eϕ

�+1 − Eϕ

� = −σm(�)
Hz

� + Hz
�+1

2
, (A3)

Hz
�+1 − Hz

� = −σe(�)
Eϕ

� + Eϕ

�+1

2
. (A4)

Using these conditions, we can connect the fields in the �th
and (� + 1)th layers of the multilayer cylinder with a transfer
matrix as

T P
�ν

(
d�ν

c�ν

)
=

(
d(�+1),ν

c(�+1),ν

)
, (A5)

where T P
�ν is the transfer matrix for polarization P = TE.

For P = TM polarization (the electric field is parallel to the
cylinder axis, E = Ezẑ), the electric and magnetic fields in the
�th layer can be expanded as

H� = − i

η�

∞∑
ν=−∞

iν

k�

[
c�νM(outward)

eνk�
+ d�νM(inward)

eνk�

]
, (A6)

E� =
∞∑

ν=−∞

iν

k�

[
c�νN(outward)

eνk�
+ d�νN(inward)

eνk�

]
. (A7)

The boundary conditions between the �th and the (� + 1)th
layers can be written as

Ez
�+1 − Ez

� = σm(�)
Hϕ

� + Hϕ

�+1

2
, (A8)

Hϕ

�+1 − Hϕ

� = σe(�)
Ez

� + Ez
�+1

2
. (A9)

APPENDIX B: EFFECTIVE MEDIUM THEORY

For the CPA configuration of Fig. 1(b), i.e., the coated
multilayer cylinder embedded in the effective medium, the
scattering coefficients can be derived through the equation for
the total transfer matrix, which reads as

M(N+1),ν

(
bν

0

)
=

(
1

a(N+2)
ν

)
. (B1)
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M(N+1),ν is the total transfer matrix of the layered infinitely
long cylinder with N + 1 layers.

Therefore, the coefficient bν and the scattering coefficient
a(N+2)

ν will be

bν = 1

M(11)
(N+1),ν

, (B2)

a(N+2)
ν = M(21)

(N+1),νbν = M(21)
(N+1),ν

M(11)
(N+1),ν

. (B3)

As stated in the main text, in order for an incoming wave to
see a truly homogeneous medium, the scattering coefficient
a(N+2)

ν has to vanish (generalized CPA equation):

a(N+2)
ν = M(21)

(N+1),νbν = M(21)
(N+1),ν

M(11)
(N+1),ν

= 0, (B4)

which leads to

M(21)
(N+1),ν = 0. (B5)

The above M(N+1),ν transfer matrix can be written as

M(N+1),ν =
1∏

�=N+1

T�ν = T(N+1),ν

1∏
�=N

T�ν . (B6)

For simplicity, we will denote B(N ),ν = ∏1
�=N T�ν . This

matrix contains information only about the original sys-
tem. Using index notation for matrix multiplication Cik =∑

j Ai jB jk , the generalized-CPA equation will be

M(21)
(N+1),ν = 0 = T (21)

(N+1),νB
(11)
(N ),ν + T (22)

(N+1),νB
(21)
(N ),ν (B7)

or

−T (21)
(N+1),ν

T (22)
(N+1),ν

= B(21)
(N ),ν

B(11)
(N ),ν

. (B8)

For the term appearing in the left-hand side, we have
aν (RN+1; eff, h) = −T 21

(N+1),ν/T
22
(N+1),ν , which is equal to the

scattering coefficient of a single cylinder with electric per-
mittivity εeff, magnetic permeability μeff and radius RN+1

embedded in a host with electric permittivity εh and mag-
netic permeability μeff. The right-hand side is equal to a(N )

ν =
B21

(N ),ν/B
11
(N ),ν (scattering coefficient of N-layer cylinder in the

host).

1. Extinction efficiencies for N = 2 and σe = 0 or σm = 0

Here we present the case of a double-layered cylinder
coated with a metasurface of either σe = 0 or σm = 0. We
keep R1 = 100 nm, fe = 21 THz, and fm = 18 THz. The

FIG. 12. TE (solid lines) and TM (dashed lines) extinction effi-
ciencies for a double-layered metasurface-coated cylinder (N = 2)
with core radius R1 = 100 nm and various interlayer distances �2 =
R2 − R1 for metasurfaces with (a) magnetic surface conductivity σm

with fm = 18 THz and σe = 0 and (b) electric surface conductity
σe with fe = 21 THz and σm = 0. The vertical dashed grey lines
indicate the resonances of the sheet conductivities.

extinction efficiencies are shown in Fig. 12. Comparing these
results with Figs. 5(c) and 5(d) of the main text one can
see several differences. Starting from the case with σe = 0
[Fig. 12(a)], we can see that the electric modes are ab-
sent from the extinction spectrum with only the magnetic
modes TE0 and TM1 being present. Interestingly, while the
two dipolar TM1 modes observed in Fig. 5 remain also
here, there is no the second TE0 mode observed for the
metasurface with nonzero σe and σm, verifying that this
resonance corresponds to magnetic response in high index
dielectrics. Analogous is the case of σm = 0 where only
the electric TM0 and TE1 modes appear in the extinction
spectrum.
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