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Full optimization of quasiharmonic free energy with an anharmonic lattice model: Application to
thermal expansion and pyroelectricity of wurtzite GaN and ZnO
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We present a theory and a calculation scheme of structural optimization at finite temperatures within the
quasiharmonic approximation (QHA). The theory is based on an efficient scheme of updating the interatomic
force constants (IFCs) with the change of crystal structures, which we call the IFC renormalization. The cell
shape and the atomic coordinates are treated equally and simultaneously optimized. We apply the theory to
the thermal expansion and the pyroelectricity of wurtzite GaN and ZnO, which accurately reproduces the
experimentally observed behaviors. Furthermore, we point out a general scheme to obtain correct T dependence
at the lowest order in constrained optimizations that reduce the number of effective degrees of freedom, which is
helpful to perform efficient QHA calculations with little sacrificing of accuracy. We show that the scheme works
properly for GaN and ZnO by comparing with the optimization of all the degrees of freedom.
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I. INTRODUCTION

The thermophysical properties are among the most basic
properties of solids, which play an important role in both
fundamental science and various applications [1–6]. For its
significant consequences, such as the thermal expansion and
the pyroelectricity, it is essential to develop quantitative first-
principles methods to understand and predict materials with
desired properties.

The quasiharmonic approximation (QHA) is a widely used
method [7–11] that accurately computes the T -dependent
crystal structure of weakly anharmonic solids [12–14]. In
QHA, we neglect the anharmonic effect except for the crystal-
structure dependence of the phonon frequencies {h̄ωkλ} and
approximate the free energy by the harmonic one [15–17].
The temperature-dependent crystal structure is obtained by
minimizing the free energy with respect to the relevant struc-
tural degrees of freedom. In the simple implementation, the
phonon frequencies are calculated on a grid in the param-
eter space, and the free energy is fitted to calculate the
temperature-dependent optimal parameters [9,17–19]. This
method works efficiently in optimizing a single degree of
freedom, such as the lattice constant of a cubic material
[17,20,21]. However, the computational cost exponentially in-
creases with the number of degrees of freedom Nparam because
the phonon calculations must be performed on a multidimen-
sional grid.
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Several constrained optimization schemes have been pro-
posed that reduce the number of effective degrees of freedom
to perform calculations efficiently. Using strain-dependent
internal coordinates, which are determined to minimize the
static potential energy, is the zero static internal stress ap-
proximation (ZSISA) [22–24]. ZSISA is correct for the
T -dependent strain at the lowest order [22]. ZSISA combined
with finite-temperature corrections of atomic shifts is used for
calculating the pyroelectricity [23], which is actively studied
recently [25–27]. In further approximation, the free energy is
optimized with respect to the volume, while the other degrees
of freedom are determined to minimize the static energy at
fixed volumes [11,28–31]. Based on these constrained opti-
mizations, computational methods have also been devised to
decrease computational costs further. The methods that use
the Taylor expansion of the QHA free energy [32,33] or the
phonon frequencies [30] and those focused on the irreducible
representations of the symmetry groups are proposed [34].
However, the internal coordinates are not optimized indepen-
dently from the strain in these methods.

In this paper, we develop a theory and a calculation scheme
to optimize all the external and internal degrees of free-
dom within the quasiharmonic approximation. Our method is
based on the interatomic force constant (IFC) renormalization,
which efficiently updates the IFCs using the anharmonic force
constants [35,36]. Due to the compressive sensing method,
which enables efficient extraction of the higher-order IFCs
from a small number of displacement-force data [37–39], the
computational cost does not drastically increase for materials
with many internal degrees of freedom. We apply the method
to predict the thermal expansion and the pyroelectricity of
wurtzite GaN and ZnO, for which we obtain reasonable agree-
ments with the experimental results. The wurtzite materials
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have two independent lattice constants and an internal degree
of freedom which is coupled to the electric polarization. The
magnitude of anharmonicity is moderate in these materials,
thus the T -dependent crystal structures are correctly described
by QHA [40].

Furthermore, we prove a general theorem that provides
an important guideline to efficiently get reliable results in
constrained QHA optimizations. The theorem is mathemati-
cally a straightforward generalization of a previous result on
ZSISA [22], but it is helpful in designing constrained opti-
mization schemes and clarifying their range of applicability.
Using the theorem, it is possible to get reasonable finite-
temperature structures with Nparam separate one-dimensional
optimizations instead of the grid search on Nparam-dimensional
parameter space, which decreases the computational cost from
O(NNparam

s ) to O(NsNparam), where Ns is the number of sampling
points of each parameter. We implement ZSISA and several
other constrained optimizations, whose results support the
general statement. Note that the pyroelectricity is suitable to
demonstrate the theory because the T dependence of atomic
positions needs to be investigated.

II. THEORY

A. QHA

The anharmonic effect at each structure is neglected in the
QHA. Thus, the QHA free energy of a crystal structure given
by X can be written as

FQHA(X, T )

= U0(X ) +
∑
kλ

[
1

2
h̄ωkλ(X ) + kBT log(1 − e−β h̄ωkλ(X ) )

]
,

(1)

where U0(X ) is the electronic ground state energy and ωkλ(X )
is the X -dependent harmonic phonon frequency. X consists
of the external strain and the internal atomic positions. The
crystal structure at finite temperature T can be obtained by
minimizing the QHA free energy as

X (T ) = argmin
X

FQHA(X, T ). (2)

When combined with first-principles calculations, the most
time-consuming part is the calculation of the structure depen-
dence of the harmonic phonon frequencies ωkλ(X ).

B. IFC renormalization

We start from the Taylor expansion of the potential energy
surface, which is introduced in Sec. I in the Supplemental
Material [41]. The IFC renormalization is a calculation
method to update the set of IFCs when the crystal structure
is changed [35,36]. Since the new set of IFCs is calculated
from the IFCs in the reference structure, there is no need to
run additional electronic structure calculations at every step of
the structure update, which makes the calculation significantly
efficient.

The change of crystal structures can be described by the
combination of the strain and the atomic displacements. We
write the static atomic displacement in normal coordinate
representation as

q(0)
λ =

∑
αμ

ε0λ,αμ

√
Mαu(0)

αμ, (3)

where u(0)
αμ is the μ(= x, y, z) component of the static dis-

placement of atom α. Mα is the mass of atom α and ε0λ,αμ

is the polarization vector of the mode λ at the � point. u(0)
αμ

is independent of the primitive cell R because we assume that
the temperature-induced structural change is commensurate to
the � point in the Brillouin zone.

As for the strain, we use the displacement gradient tensor
uμν as the basic variable, which is defined as

uμν = ∂ x̃μ

∂xν

− δμν (4)

if the atom at x is moved to x̃ by the strain. We restrict uμν to
be symmetric to fix the rotational degrees of freedom.

The structural change described by the atomic displace-
ments q(0)

λ corresponds to changing the center in the Taylor
expansion of Eqs. (S1) and (S2) in the Supplemental Material
[41]. As we have the polynomial form of the potential energy
surface, which is determined by the IFCs at the reference
structure, it is possible to Taylor expand again around the new
structure. The expansion coefficient at the updated structure
given by q(0) is written as

�̃(q(0) )(k1λ1, · · · , knλn)

=
∞∑

m=0

1

m!

∑
{ρ}

�̃(q(0)=0)(k1λ1, · · · , knλn, 0ρ1, · · · 0ρm)

× q(0)
ρ1

· · · q(0)
ρm

. (5)

The derivation of the corresponding formula for the strain is
more complicated. Although the strain is not included in the
Taylor expansion of the potential energy surface [Eqs. (S1)
and (S2) in the Supplemental Material [41]], it is possible to
recapture the strain as a set of static atomic displacements:

u(0)
Rαμ =

∑
ν

uμν (Rν + dαν ) =
∑

ν

uμνRαν, (6)

where dα is the position of the atom α in the primitive cell.
We define Rα = R + dα for notational simplicity. Thus, we
can derive the IFC renormalization in terms of strain as

�
(uμν )
μ1···μn (R1α1, · · · , Rnαn)

=
∞∑

m=0

1

m!

∑
{R′α′μ′ν ′}

�
(uμν=0)
μ1···μnμ

′
1···μ′

m
(R1α1, · · · , Rnαn, R′

1α
′
1, · · · , R′

mα′
m)

× uμ′
1ν

′
1
R′

1α′
1ν

′
1
· · · uμ′

mν ′
m
R′

mα′
mν ′

m
. (7)

See Ref. [35] for more detailed explanations. Using Eqs. (5)
and (7), we can get the updated IFCs for arbitrary strain
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and atomic displacements as long as the expansion from the
reference structure is valid. Hereafter, � and �̃ without notes
in superscripts denote the renormalized IFCs �(q(0),uμν ) and
�̃(q(0),uμν ), respectively, unless otherwise stated.

In the calculation, we truncate the Taylor expansion at the
fourth order. As the IFC renormalization by strain [Eq. (7)]
is written down in the real space, we first calculate them
and Fourier transform to the reciprocal space. The IFC renor-
malization is performed in the order of �̃(q(0)=0,uμν=0) →
�̃(q(0)=0,uμν ) → �̃(q(0),uμν ). The details of the procedure are ex-
plained in Ref. [35]

Here, it should be noted that Eq. (7) is not directly appli-
cable to the case n = 0 because of the surface effect of the
Born–von Kármán supercell [36], which we explain with an
example in Sec. II in the Supplemental Material [41]. As the
solution for this problem is highly complicated, we expand the
strain dependence of the potential energy surface as

1

N
U (q(0)=0,uμν )

0 = 1

2

∑
μ1ν1,μ2ν2

Cμ1ν1,μ2ν2ημ1ν1ημ2ν2

+ 1

6

∑
μ1ν1,μ2ν2,μ3ν3

Cμ1ν1,μ2ν2,μ3ν3ημ1ν1ημ2ν2ημ3ν3

+ · · · , (8)

where N is the number of primitive cells in the Born–von
Kármán supercell and

Cμ1ν1,μ2ν2 = 1

N

∂2U0

∂ημ1ν1∂ημ2ν2

, (9)

Cμ1ν1,μ2ν2,μ3ν3 = 1

N

∂2U0

∂ημ1ν1∂ημ2ν2∂ημ3ν3

(10)

are the second- and third-order elastic constants, which we
define as the quantity per unit cell, and

ημν = 1

2

[ ∑
μ′

(δμμ′ + uμμ′ )(δνμ′ + uνμ′ ) − δμν

]
(11)

= 1

2

(
uμν + uνμ +

∑
μ′

uμμ′uνμ′

)
(12)

is the strain tensor. The elastic constants are truncated at the
third order in our calculation.

The IFC renormalization in terms of atomic displacements
[Eq. (5)] does not affect the fitting accuracy of the potential
energy surface because it does not alter the potential land-
scape. However, the IFC renormalization by strain [Eq. (7)] is
not necessarily precise because the information in a deformed
cell is not provided in calculating the IFCs in the reference
structure. Thus, we estimate the coupling between the strain
and the harmonic IFCs

∂�μ1μ2 (R1α1, R2α2)

∂uμν

, (13)

using the finite displacement method with respect to the strain
[35] to improve the accuracy of the method.

Additionally, the coupling between the first-order IFCs and
the strain,

∂�(0λ)

∂uμν

, (14)

is also estimated using the finite displacement method of
strain. This is because the acoustic sum rule of the first-order
IFCs is broken if the rotational invariance is not imposed
on the harmonic IFCs, which we explain in Appendix A.
Since the rotational invariance imposes restrictions on IFCs
that the atomic forces calculated in the density functional
theory (DFT) supercell do not satisfy, it causes unreason-
able shifts of the phonon frequencies. The frequency shifts
depend on crystal symmetries, which makes the finite dis-
placement estimation of

∂�μ1μ2 (R1α1,R2α2 )
∂uμν

difficult. Thus, we do
not impose the rotational invariance on the harmonic IFCs and
calculate ∂�(0λ)

∂uμν
using the finite displacement method instead.

The higher-order derivatives ∂2�(0λ)
∂uμν∂uμ′ν′ and ∂3�(0λ)

∂uμ1ν1 ∂uμ2ν2 ∂uμ3ν3
are

set to zero because the rotational invariance of the higher-
order IFCs is required for them to satisfy the acoustic sum
rule, which we also discuss in Appendix A.

C. Structural optimization within QHA

Using the IFC renormalization, the harmonic phonon dis-
persion and their derivatives can be calculated for updated
crystal structures, which enables efficient minimization of the
QHA free energy. We begin with introducing a notation for
the mode transformation. From here on, we distinguish the
phonon modes in the reference structure and those in the
updated structure. The former, which we write with greek
letters without a bar (such as λ), is obtained by diagonalizing
the dynamical matrix in the reference structure:

∑
βν

[
1√

MαMβ

∑
R

�
(q(0)=0,uμν=0)
μν (0α, Rβ )eik·R

]
εkλ,βν

= ω2
kλεkλ,αμ. (15)

These modes are fixed throughout the calculation, which
serves as a reference frame. The phonon modes in an updated
structure, which we denote with a bar like λ̄, diagonalize the
dynamical matrix in the updated structure. We define the mode
transformation matrix

Ckλλ̄ =
∑
αμ

ε∗
kλ,αμεkλ̄,αμ. (16)

Let us calculate the derivatives of the QHA free energy
using the mode transformation. Considering that the dynam-
ical matrix is dependent on a parameter s, we can derive the
formula

∂ (ω2
kλ̄

)

∂s
=

∑
λ1λ2

C∗
kλ1λ̄

∂�̃(−kλ1, kλ2)

∂s
Ckλ2λ̄

. (17)
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Substituting s = �̃(−kλ1, kλ2), we get

∂ (ωkλ̄)

∂�̃(−kλ1, kλ2)
=

C∗
kλ1λ̄

Ckλ2λ̄

2ωkλ̄

. (18)

Therefore, for a general structural degree of freedom Xi that
describes the atomic displacement q(0)

λ or the strain uμν , the
derivative of the QHA free energy can be calculated as

∂FQHA(X, T )

∂Xi
= ∂U0

∂Xi

+
∑

kλ̄λ1λ2

h̄

2

nB(h̄ωkλ̄) + 1/2

ωkλ̄

C∗
kλ1λ̄

× Ckλ2λ̄

∂�̃(−kλ1, kλ2)

∂Xi
. (19)

The derivatives ∂U0
∂Xi

and ∂�̃(−kλ1,kλ2 )
∂Xi

can be obtained by differ-
entiating Eqs. (5), (7), and (8).

In our calculation, where the IFCs are truncated at the
fourth order and the elastic constants at the third order, the
corresponding formulas are written as

1

N

∂U (q(0),uμν )
0

∂q(0)
λ

= �̃(q(0),uμν )(0λ), (20)

∂�̃(q(0),uμν )(k1λ1,−k1λ2)

∂q(0)
λ

= �̃(q(0),uμν )(k1λ1,−k1λ2, 0λ),

(21)

1

N

∂U (q(0),uμν )
0

∂uμν

=
∑
μ′ν ′

∂ημ′ν ′

∂uμν

( ∑
μ1ν1

Cμ1ν1,μ′ν ′ημ1ν1

+ 1

2

∑
μ1ν1,μ2ν2

Cμ1ν1,μ2ν2,μ′ν ′ημ1ν1ημ2ν2

)

+
3∑

m=1

1

m!

∑
{λ}

∂�̃(q(0)=0,uμν )(0λ1, · · · , 0λm)

∂uμν

× q(0)
λ1

· · · q(0)
λm

, (22)

∂�̃(q(0),uμν )(k1λ1,−k1λ2)

∂uμν

= ∂�̃(k1λ1,−k1λ2)

∂uμν

+
∑
μ′ν ′

∂2�̃(k1λ1,−k1λ2)

∂uμν∂uμ′ν ′
uμ′ν ′

+
∑
ρ1

∂�̃(k1λ1,−k1λ2, 0ρ1)

∂uμν

q(0)
ρ1

,

(23)

for the internal coordinates and the strain, respectively. The
derivatives of the IFCs in the right-hand side of Eq. (23) are
estimated at the reference structure (q(0)

λ = 0, uμν = 0).
Using the gradients of the free energy, we can simultane-

ously optimize all the internal and external degrees of freedom
to minimize the QHA free energy. We denote the difference of
the crystal structure from the optimum structure by δq(0)

λ and

initial IFCs ,
elastic constants , 

e.t.c.

update IFCs  by
IFC renormalization

calculate gradients of

update crystal structure:
unit cell and

internal coordinates

check convergence No

optimized structure
at finite temperature

Yes

FIG. 1. The calculation flow of the finite-temperature structural
optimization within the quasiharmonic approximation combined
with the IFC renormalization.

δuμν . These quantities can be estimated by solving the linear
equations

1

N

∂FQHA

∂q(0)
λ

=
∑
λ1

�̃(0λ, 0λ1)δq(0)
λ1

, (24)

1

N

∂FQHA

∂uμν

=
∑
μ1ν1

Cμν,μ1ν1δuμ1ν1 , (25)

where we approximate the Hessian of the QHA free energy
by �̃(0λ, 0λ1) and Cμν,μ1ν1 . We assume that uμν is symmetric
to fix the rotational degrees of freedom, which is necessary to
get a unique solution of Eq. (25). The crystal structures are
updated by

q(0)
λ ← q(0)

λ − βmix,ionδq(0)
λ , (26)

uμν ← uμν − βmix,cellδuμν. (27)

The coefficients βmix,ion and βmix,cell are introduced for ro-
bust convergence of the calculation. As for the constrained
optimization methods such as ZSISA, we formulate different
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TABLE I. The schematic explanation of some different optimization schemes of QHA. Full optimization is the simultaneous
optimization of all the degrees of freedom. In the table, QHA means that the degree of freedom is optimized at finite temperatures
to minimize the QHA free energy, whereas static means that the degree of freedom is optimized in the static potential energy
surface, which does not include the contribution of the lattice vibrations.

schemes of updating the crystal structure, which are described
in detail in Appendix B.

From the above discussions, the calculation flow of the
structural optimization based on IFC renormalization and
QHA is as follows, which we illustrate in Fig. 1.

(1) Input IFCs, elastic constants, etc., at the reference struc-
ture. Define the initial structure.

(2) Calculate the IFCs in the current structure by IFC
renormalization.

(3) Calculate gradients of the QHA free energy
[Eqs. (19)–(23)].

(4) Update the crystal structure [Eqs. (24)–(27)].
(5) Check convergence. If the convergence has yet to be

achieved, go to (2).
We implement the theory to the ALAMODE package

[37,42,43], which is an open-source software for anharmonic
phonon calculation. The developed feature will be made pub-
lic in its future release.

D. General scheme of constrained optimizations correct at the
lowest order

Due to the high computational cost of optimizing all
the degrees of freedom, numerous constrained optimization
schemes have been proposed to decrease the number of effec-
tive degrees of freedom. ZSISA, which uses strain-dependent
static internal coordinates [22], is a representative example.
In further approximation, the internal and deviatoric degrees
of freedom are determined by minimizing the static energy
[11,28–31], which we call volumetric ZSISA (v-ZSISA). We
illustrate ZSISA and v-ZSISA with a schematic in Table I.

Here, we show a general theorem on these constrained
optimizations.

Theorem. Consider optimizing the QHA free energy with
respect to a set of structural degrees of freedom {Xi}. Then,
if the other degrees of freedom {X̄ j} are determined to mini-
mize the static energy U0 for given configurations of {Xi}, the
obtained T dependence of {Xi} agrees at the lowest order with
the result of the optimization of all the degrees of freedom
(full optimization).

Mathematically, the theorem is just a straightforward corol-
lary of the result in Ref. [22]. However, we discuss it here

because it will be a powerful guiding principle in designing
an efficient and accurate constrained scheme of QHA. Before
the proof of the theorem, we consider some of its applications,
which we summarize in a list below.

(1) In ZSISA, {Xi} represent the strain, and {X̄ j} represent
the internal coordinates. The theorem claims that T depen-
dence of the strain calculated by ZSISA is correct at the lowest
order, which has been pointed out in Ref. [22].

(2) In v-ZSISA, {Xi} represent the hydrostatic strain that
causes volumetric expansion

uV,μν �
⎛⎝1 0 0

0 1 0
0 0 1

⎞⎠, (28)

while {X̄ j} represent the deviatoric strain and the internal coor-
dinates. According to the theorem, the volumetric expansion
will be properly reproduced by v-ZSISA.

(3) T dependence of an arbitrary degree of freedom Xi

can be calculated correctly at the lowest order if we relax all
the other degrees of freedom in the static potential. This fact
helps reduce the optimization of multiple degrees of freedom
to the problem of separate optimization of each degree of
freedom. Compared to the Nparam-dimensional grid search of

the computational cost of O(N
Nparam
s ), the computational cost

of the separate one-dimensional optimization is decreased
to O(NsNparam), where Ns is the number of sampling points
of each parameter. For example, consider the calculation of
anisotropic expansion determined by two lattice constants, a
and c. The T dependence of a can be calculated by optimizing
c and the internal coordinate in the static potential. The T
dependence of c can be calculated in a similar one-parameter
optimization. The T dependence of c in the calculation of a
and that of a in calculating c should be disregarded.

It is worth mentioning that these constrained optimizations
do not always reproduce the full optimization precisely be-
cause the higher-order effects can be non-negligible in actual
calculations. Nonetheless, in Secs. IV B and IV C, we discuss
that the constrained optimization schemes based on the the-
orem give qualitatively accurate results more robustly than
other schemes, once we determine the degrees of freedom to
consider.
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We move on to the proof of the theorem. Since we assume
that the reference structure is optimized in terms of the static
potential U0, the Taylor expansion of U0(X, X̄ ) is written as

U0(X, X̄ )

= U0(X = X̄ = 0) + 1

2

∑
i1i2

∂2U0

∂Xi1∂Xi2

Xi1 Xi2

+
∑

i j

∂2U0

∂Xi∂X̄ j
XiX̄ j + 1

2

∑
j1 j2

∂2U0

∂X̄ j1∂X̄ j2

X̄ j1 X̄ j2 + · · · .

(29)

The Taylor expansion of the QHA free energy is

FQHA(X, X̄ , T )

= FQHA(X = X̄ = 0, T ) + 1

2

∑
i1i2

∂2U0

∂Xi1∂Xi2

Xi1 Xi2

+
∑

i j

∂2U0

∂Xi∂X̄ j
XiX̄ j + 1

2

∑
j1 j2

∂2U0

∂X̄ j1∂X̄ j2

X̄ j1 X̄ j2 + · · ·

+
∑

i

∂F vib
QHA

∂Xi
Xi +

∑
j

∂F vib
QHA

∂X̄ j
X̄ j + · · · . (30)

Thus, in the lowest-order approximation, the crystal structure
that gives the minimum of the QHA free energy is calculated
by solving⎛⎜⎜⎝

∂2U0

∂X∂X

∂2U0

∂X∂X̄
∂2U0

∂X̄∂X

∂2U0

∂X̄∂X̄

⎞⎟⎟⎠(
X
X̄

)
= −

⎛⎜⎜⎝
∂F vib

QHA

∂X
∂F vib

QHA

∂X̄

⎞⎟⎟⎠. (31)

To eliminate X̄ from the equation, we use

X̄ = −
(

∂2U0

∂X̄∂X̄

)−1{(
∂2U0

∂X∂X̄

)
X +

(
∂F vib

QHA

∂X̄

)}
, (32)

where we abbreviate the subscripts. The derivatives are esti-
mated at X = X̄ = 0 in this section, except noted otherwise
explicitly. Substituting to Eq. (31), we get[(

∂2U0

∂X∂X

)
−

(
∂2U0

∂X∂X̄

)(
∂2U0

∂X̄∂X̄

)−1(
∂2U0

∂X̄∂X

)]
X

+
(

∂F vib
QHA

∂X

)
−

(
∂2U0

∂X∂X̄

)(
∂2U0

∂X̄∂X̄

)−1(
∂F vib

QHA

∂X̄

)
= 0

(33)

as the equation for X .
Next, we consider the constrained optimization that X̄ is

determined to optimize U0 for given configurations of X . In
the lowest order,(

∂U0

∂X̄

)∣∣∣∣
X̄=X̄ (X )

�
(

∂2U0

∂X̄∂X

)
X +

(
∂2U0

∂X̄∂X̄

)
X̄ = 0. (34)

Hence, we get

X̄ (X ) = −
(

∂2U0

∂X̄∂X̄

)−1(
∂2U0

∂X̄∂X

)
X. (35)

Substituting to(
∂FQHA(X, X̄ (X ), T )

∂X

)
=

(
∂FQHA

∂X

)
+

(
∂X̄

∂X

)(
∂FQHA

∂X̄

)
(36)

we get(
∂FQHA(X, X̄ (X ), T )

∂X

)

=
[(

∂2U0

∂X∂X

)
−

(
∂2U0

∂X∂X̄

)(
∂2U0

∂X̄∂X̄

)−1(
∂2U0

∂X̄∂X

)]
X

+
(

∂F vib
QHA

∂X

)
−

(
∂2U0

∂X∂X̄

)(
∂2U0

∂X̄∂X̄

)−1
(

∂F vib
QHA

∂X̄

)
.

(37)

Thus, the constrained optimization, which finds the solution
of Eq. (37) equal to zero, is equivalent to the full optimization
of Eq. (33) at the lowest order.

E. Calculation of pyroelectricity

We consider the effect of the static structural change for the
T dependence of the electric polarization P(T ):

Pμ(T ) = Pμ(T = 0) +
∑
αν

Z∗
αμνu(0)

αν +
∑
μ1ν1

dμ,μ1ν1 uμ1ν1 ,

(38)

where Z∗
αμν is the Born effective charge, and dμ,μ1ν1 is the ion-

clamped piezoelectric tensor. We neglect the electron-phonon
renormalization term, which originates from the thermal vi-
brations of the atoms [23,44,45].

The pyroelectricity is calculated by taking the temperature
derivative of the spontaneous polarization:

pμ(T ) = dPμ(T )

dT

=
∑
αν

Z∗
αμν

du(0)
αν

dT
+

∑
μ1ν1

dμ,μ1ν1

duμ1ν1

dT
(39)

= pBorn,μ(T ) + ppiezo,μ(T ). (40)

The pyroelectricity can also be split into the primary py-
roelectricity p(1) and the secondary pyroelectricity p(2). The
primary pyroelectricity is the clamped-lattice pyroelectricity,
while the secondary pyroelectricity is the remaining part.
Since ppiezo is zero for fixed strains, pBorn can be divided
into the primary pyroelectricity and a part of the secondary
pyroelectricity:

pμ(T ) = pBorn,μ(T ) + ppiezo,μ(T )

= p(1)
μ (T ) + p(2)

Born,μ(T ) + ppiezo,μ(T ). (41)

III. SIMULATION DETAILS

The developed method is applied to the thermal expansion
and pyroelectricity of wurtzite GaN and ZnO. In this section,
we present the details of the calculation of these materials.
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Note that we use the same setting for both materials unless
stated otherwise.

A. Calculation of the interatomic force constants

The lattice constants of the reference structures are de-
termined by the structural optimization based on DFT; a =
3.2183 Å and c = 5.2331 Å for GaN, and a = 3.2359 Å
and c = 5.2247 Å for ZnO. The 4 × 4 × 2 supercell, which
contains 128 atoms, is employed for calculating the har-
monic IFCs of both GaN and ZnO. The Taylor expansion of
the potential energy surface is truncated at the fourth order.
For calculating the anharmonic IFCs, the 3 × 3 × 2 supercell
containing 72 atoms is employed. We generate 300 random
configurations by uncorrelated random sampling from har-
monic IFCs [46] at 500 K. The atomic forces are calculated by
DFT calculations. The details of the density functional theory
(DFT) calculations are explained later in this section. The
IFCs are extracted from the obtained displacement-force data
using adaptive LASSO implemented in the ALAMODE package
[37]. The cutoff radii are set as 12 bohrs for cubic IFCs and
8 bohrs for quartic IFCs. The quartic IFCs are restricted up
to three-body terms. We impose on the IFCs the acoustic sum
rule (ASR), the permutation symmetry, and the space group
symmetry considering the mirror images of the atoms in the
supercell [35]. The fitting error of the displacement-force data
was 0.7696% for GaN and 2.1930% for ZnO, which indicates
that the obtained set of IFCs well captures the potential land-
scape.

The second- and third-order elastic constants are calculated
by fitting the strain-energy relation. The crystal symmetry
is used to decrease the number of strain modes to calculate
[47–49]. For each strain mode, the ground state energy was
calculated for 13 strained structures from η = −0.03 to 0.03
(see Ref. [48] for the definition of η). The strain-energy rela-
tion was fitted by a cubic polynomial, whose coefficients are
linear transformed to elastic constants.

The strain-IFC coupling constants
∂�μ1μ2 (R1α1,R2α2 )

∂uμν
and

∂�(0λ)
∂uμν

are determined by finite-difference method of first
order. The harmonic IFCs and the atomic forces are calculated
for the six strain modes uxx = 0.005, uyy = 0.005, uzz =
0.005, uyz = uzy = 0.0025, uzx = uxz = 0.0025, and uxy =
uyx = 0.0025. The other entries of the displacement gradient
tensor uμν are zero in each strain mode. Then, the coupling
constants are obtained by dividing the differences from the
results at the reference structure uμν = 0.

In the QHA calculations, we use 8 × 8 × 8 q mesh.
We do not include nonanalytic correction in calculating the
T -dependent crystal structures.

B. Settings of the DFT calculations

VASP [50] is employed for the electronic structure cal-
culations. The PBEsol exchange-correlation functional [51]
and the projector augmented wave pseudopotentials [52,53]
are used. The convergence criteria of the self-consistent field
loop is set to 10−8 eV, and accurate precision mode, which
suppresses egg-box effects and errors, is used to calculate
the forces accurately. The basis cutoff we use is 600 eV for
both materials. We use a 4 × 4 × 4 Monkhorst-Pack k mesh

FIG. 2. The thermal expansion and the pyroelectricity of GaN
calculated by QHA combined with the IFC renormalization. Both
the internal coordinates and the strain are optimized to minimize
the QHA free energy. (a) The thermal expansion coefficients of
a and c axes (αa = 1

a
da
dT and αc = 1

c
dc
dT respectively). The experi-

mental results are taken from Ref. [56] (orange circle for αa and
cyan square for αc) and Ref. [57] (red triangle for αa and blue
diamond for αc). (b) The purple, green, and cyan lines represent

the total pyroelectricity, the Born term pBorn,μ = ∑
αν Z∗

αμν
du(0)

αν

dT , and

the primary pyroelectricity p(1)
μ = ∑

αν Z∗
αμν ( du(0)

αν

dT )fixed cell, which are
defined in Sec. II E. The experimental results are taken from Ref. [58]
(orange circle for the C-doped case, yellow square for the Fe-doped
case, and blue triangle for the Mn-doped case), Ref. [59] (red inverted
triangle), Ref. [60] (black diamond), and Ref. [61] (black hexagon).

for supercell calculations for both 4 × 4 × 2 and 3 × 3 × 2
supercells. We use the conventional DFT-based structural op-
timization in the primitive cell to determine the reference
structure. Here, we use 8 × 8 × 8 Monkhorst-Pack k mesh,
and perform structural optimization until the change of the
total energy becomes less than 10−7 eV between two consec-
utive steps. The Born effective charges and the clamped-lattice
piezoelectricity are calculated by density functional perturba-
tion theory [54,55] in the reference structure.

IV. RESULTS AND DISCUSSION

A. Finite-temperature structural optimization within QHA

We apply the developed method to the thermal expan-
sion and the pyroelectricity of wurtzite GaN and ZnO. We
first check the accuracy of the IFC renormalization, which
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FIG. 3. The temperature dependence of the lattice constants a
and c of GaN calculated by QHA combined with the IFC renormal-
ization. Both the internal coordinates and the strain are optimized to
minimize the QHA free energy. The calculation results are shifted
by a constant to reproduce the experimental result at zero tempera-
ture. The experimental data are taken from Ref. [62] (cyan circle),
Ref. [63] (orange square for bulk), Ref. [64] (blue triangle for bulk
rough side and red inverted triangle for bulk smooth side), Ref. [65]
(blue diamond), and Ref. [66] (black filled square).

is shown to reproduce the results of DFT calculations cor-
rectly. Thus, the method can be regarded as a DFT-based
first-principles calculation. The result of the validations of
the IFC renormalization is summarized in Sec. III in the
Supplemental Material [41].

Simultaneously optimizing both the internal coordinates
and the strain within QHA, we get the calculation results
shown in Figs. 2–5. As seen in the figures, the thermal expan-
sions of both GaN and ZnO are quantitatively well reproduced
with our method. The thermal expansion is anisotropic, and
the expansion coefficient of the lattice constant a is larger
than that of c. This anisotropy is determined by a delicate
interplay of internal and external degrees of freedom, which
is accurately reproduced by the simultaneous optimization of
all these degrees of freedom.

The calculation and experiment also show good agreement
for the pyroelectricity as depicted in Figs. 2(b) and 4(b). The
magnitude of the pyroelectricity is slightly underestimated for
GaN. This can be because the experimental data are mea-
sured with thin films, not with bulk samples. Another possible
reason is that the electron-phonon renormalization, which we

FIG. 4. The thermal expansion and the pyroelectricity of
ZnO calculated by QHA combined with the IFC renormaliza-
tion. Both the internal coordinates and the strain are optimized
to minimize the QHA free energy. (a) The thermal expansion
coefficients of a and c axes (αa = 1

a
da
dT and αc = 1

c
dc
dT respec-

tively). The experimental data are taken from Ref. [67] (red
circle for αa and blue square for αc), Ref. [68] (orange triangle
for αa and cyan inverted triangle for αc), and Ref. [69] (brown
diamond for αa and gray filled circle for αc). (b) The purple,
green, and cyan lines represent the total pyroelectricity, the Born

term pBorn,μ = ∑
αν Z∗

αμν
du(0)

αν

dT , and the primary pyroelectricity p(1)
μ =∑

αν Z∗
αμν ( du(0)

αν

dT )fixed cell, which are defined in Sec. II E. The experi-
mental data are taken from Ref. [70].

neglect in this paper, has a significant contribution, as pro-
posed in Ref. [23].

B. ZSISA and v-ZSISA

We perform the structural optimization using the IFC
renormalization in ZSISA and v-ZSISA. The calculation re-
sults are shown in Figs. 6–9. According to Figs. 6(a) and 8(a),
the thermal expansion coefficient calculated by ZSISA agrees
well with the simultaneous optimization of all the degrees of
freedom (full optimization). This is because ZSISA is cor-
rect at the lowest order for the T dependence of the strain
[22]. From Figs. 6(b) and 8(b), we can see that T -dependent
pyroelectricity calculated by ZSISA well agrees with the
secondary pyroelectricity in the full optimization, which is
consistent with a previous calculation [40]. As the internal
coordinates are optimized at zero temperature in ZSISA, only

134119-8



FULL OPTIMIZATION OF QUASIHARMONIC FREE … PHYSICAL REVIEW B 107, 134119 (2023)

FIG. 5. The temperature dependence of the lattice constants
a and c of ZnO calculated by QHA combined with the IFC renormal-
ization. Both the internal coordinates and the strain are optimized to
minimize the QHA free energy. The calculation results are shifted by
a constant to reproduce the experimental result at zero temperature.
The experimental data are taken from Ref. [71] (cyan circle) and
Ref. [72] (orange square).

the strain-induced secondary effects are taken into account.
Some works add finite temperature effect of internal coordi-
nates afterward as a correction [23,40], which reproduces the
full optimization results at the lowest order.

We next look into the results of v-ZSISA. As illustrated
in Figs. 6 and 8, v-ZSISA significantly underestimates the
anisotropy of the thermal expansion. As the T -dependent
strain is not properly calculated, the secondary pyroelectricity
is not correctly obtained either. However, as shown in Figs. 7
and 9, v-ZSISA gives precise results for the volumetric ther-
mal expansion coefficient. Here, we note that v-ZSISA can
be regarded as a special case of the constrained optimization
scheme discussed in Sec. II D. Because the volume of the unit
cell is

vcell(uμν ) = vcell(uμν = 0) × det(I + uμν )

� vcell(uμν = 0) × (1 + Truμν ), (42)

v-ZSISA corresponds to optimizing the hydrostatic strain
Truμν or the cell volume at finite temperature while the other
degrees of freedom are determined to minimize the DFT

FIG. 6. The thermal expansion and the pyroelectricity of GaN
calculated by QHA combined with the IFC renormalization. We
compare the result of ZSISA and v-ZSISA with the result of
the simultaneous optimization of the internal coordinates and the
strain (full optimization). (a) The thermal expansion coefficients
of a and c axes (αa = 1

a
da
dT and αc = 1

c
dc
dT respectively). The

full optimization results overlap with the ZSISA results. (b) The
calculation results of the pyroelectricity. The secondary pyroelec-

tricity p(2)
μ = p(2)

Born,μ + ppiezo,μ = ∑
αν Z∗

αμν[ du(0)
αν

dT − ( du(0)
αν

dT )fixed cell] +∑
μ1ν1

dμ,μ1ν1

duμ1ν1
dT is plotted for the full optimization case, while the

total pyroelectricity pz and the Born term p(2)
Born,z = ∑

αν Z∗
αμν

du(0)
αν

dT are
plotted for ZSISA and v-ZSISA. The different contributions to the
pyroelectricity are defined in Sec. II E.

energy, which explains its success in calculating the volumet-
ric expansion. Hence, we elucidate the range of applicability
of v-ZSISA, that v-ZSISA produces reliable results for the
volumetric thermal expansion but not for the anisotropy and
the internal coordinates.

C. Constrained optimization of a and c axes

We consider optimizing the a axis and c axis separately.
Aside from the full optimization, we try three optimization
schemes, which we explain for the case of calculating the T
dependence of a. The first one is a special case of the con-
strained optimization in Sec. II D, which gives correct results
for considering degrees of freedom at the lowest order. In this
method, we optimize the QHA free energy with respect to
a while we determine the a dependence of c and the inter-
nal coordinates by minimizing the static potential energy U0
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FIG. 7. The volumetric thermal expansion coefficient αV = 1
V

∂V
∂T

of GaN calculated by QHA combined with IFC renormalization. We
compare the result of ZSISA and v-ZSISA with the result of the
simultaneous optimization of the internal coordinates and the strain
(full optimization).

(constrained optimization for a). In the other two schemes,
we fix c at the value of the reference structure. The internal
coordinates are also fixed in the second scheme (fixed u(0)

αμ

and c), while they are relaxed at the ZSISA level in the third
one (ZSISA, fixed c). We try similar calculation schemes for
calculating the T dependence of c as well.

The calculation results are shown in Figs. 10 and 11. As
shown in Figs. 10(a) and 11(a), all the optimization schemes
give similar results for αa, which is close to the result obtained
by simultaneous optimization of all degrees of freedom (full
optimization). Focusing on αc, the constrained optimization
for c well reproduces the results of the full optimization
[Fig. 10(b)], albeit not precisely for ZnO [Fig. 11(b)]. The
other methods that fix a considerably overestimate the thermal
expansion along the c axis. This reflects that the constrained
optimization for c is correct for calculating T dependence
of c in the lowest order. Note that the T dependence of
degrees of freedom that are relaxed in static potential (those
in {X̄ j} in Sec. II D) significantly deviates from the full op-
timization results. Therefore, the constrained optimization
scheme discussed in Sec. II D is useful to robustly get rea-
sonable results by separately optimizing different degrees of
freedom.

V. CONCLUSIONS

We formulate and develop a calculation method to simul-
taneously optimize all structural degrees of freedom, i.e., the
strain and the internal coordinates, within the QHA. Our
method is based on the Taylor expansion of the potential
energy surface and the IFC renormalization, which efficiently
updates the IFCs with the change of crystal structures. We
apply the method to the thermal expansion and the pyro-
electricity of wurtzite GaN and ZnO, which shows good
agreement with experiments.

Furthermore, we derive a general scheme of constrained
optimization to obtain the correct T dependence of consider-
ing structural degrees of freedom at the lowest order, in which

FIG. 8. The thermal expansion and the pyroelectricity of ZnO
calculated by QHA combined with the IFC renormalization. We
compare the result of ZSISA and v-ZSISA with the result of
the simultaneous optimization of the internal coordinates and the
strain (full optimization). (a) The thermal expansion coefficients
of a and c axes (αa = 1

a
da
dT and αc = 1

c
dc
dT respectively). The

full optimization results overlap with the ZSISA results. (b) The
calculation results of the pyroelectricity. The secondary pyroelec-

tricity p(2)
μ = p(2)

Born,μ + ppiezo,μ = ∑
αν Z∗

αμν[ du(0)
αν

dT − ( du(0)
αν

dT )fixed cell] +∑
μ1ν1

dμ,μ1ν1

duμ1ν1
dT is plotted for the full optimization case, while the

total pyroelectricity pz and the Born term p(2)
Born,z = ∑

αν Z∗
αμν

du(0)
αν

dT are
plotted for ZSISA and v-ZSISA. The different contributions to the
pyroelectricity are defined in Sec. II E.

we optimize all the other degrees of freedom in the static
potential U0. We perform calculations using several con-
strained optimization schemes, such as ZSISA, v-ZSISA, and
separate one-parameter optimization of a and c axes, whose
results confirm the general scheme. Based on the general
scheme, it is possible to reduce the optimization in the Nparam-
dimensional parameter space to Nparam separate one-parameter
optimizations, which reduces the computational cost from
O(N

Nparam
s ) to O(NsNparam), where we denote the number of

sampling points of each parameter as Ns.
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FIG. 9. The volumetric thermal expansion coefficient αV = 1
V

∂V
∂T

of ZnO calculated by QHA combined with the IFC renormalization.
We compare the result of ZSISA and v-ZSISA with the result of the
simultaneous optimization of the internal coordinates and the strain
(full optimization).
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FIG. 10. The thermal expansion coefficient of GaN calculated
by QHA combined with the IFC renormalization. αa = 1

a
da
dT and

αc = 1
c

dc
dT are the thermal expansion coefficients of the a and

c axis respectively. We compare the several schemes that sepa-
rately calculate the temperature dependence of the lattice constants
a and c.

FIG. 11. The thermal expansion coefficient of ZnO calculated
by QHA combined with the IFC renormalization. αa = 1

a
da
dT and

αc = 1
c

dc
dT are the thermal expansion coefficients of the a and

c axis respectively. We compare the several schemes that sepa-
rately calculate the temperature dependence of the lattice constants
a and c.

APPENDIX A: ROTATIONAL INVARIANCE AND ASR ON
THE RENORMALIZED ATOMIC FORCES

In IFC renormalization by the strain, special care
must be taken for the ASR of the first-order IFCs. In
nth-order IFCs with n � 2, the renormalized IFCs satisfy
the ASR∑

Rnαn

�μ1···μn−1μn (0α1, · · · , Rn−1αn−1, Rnαn) = 0, (A1)

if the higher-order IFCs of the reference structure satisfy the
ASR. However, for the renormalized first-order IFCs to satisfy
the ASR, we show that the rotational invariance on the higher-
order IFCs must also be satisfied in the reference structure.
Note that we assume that the IFCs in the reference structure
satisfy the ASR and the permutation symmetry, which is an
assumption that holds in our calculation. The space group
symmetry is also imposed in the calculation, but it is not
necessary for the discussion in this Appendix.

Proposition. For n � 2, assume that the IFC renormaliza-
tion from the (n − 1)th-order IFCs to the first-order IFCs
satisfies the ASR. Then, if the rotational invariance between
the nth-order and the (n − 1)th-order IFCs is satisfied, the
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IFC renormalization from the nth-order IFCs to the first-order
IFCs satisfies the ASR.

We start from the explanation of this statement. The rota-
tional invariance is the constraint on IFCs which comes from
the invariance of the total energy for rigid rotation of the
whole system. The rotational invariance is a set of constraints
that connects the nth-order and the (n − 1)th-order IFCs,
which reads as follows: The rotational invariance between
the nth-order and the (n − 1)th-order IFCs is that Eq. (A2)
is symmetric under the exchange of μ and ν:

∑
Rα

�μ1···μnμ(R1α1, · · · , Rnαn, Rα)Rαν

+
n∑

i=1

�μi→μ(R1α1 · · · Rnαn)δμiν, (A2)

where μi → μ signifies μ1 · · ·μi−1μμi+1 · · · μn.

The IFC renormalization from the nth-order IFCs to the
first-order IFCs by the strain is

∂�μ(0α1)

∂uμ2μ2 · · · ∂uμnνn

=
∑
{Rα}

�μ1···μn (0α1, R2α2, · · · , Rnαn)

× R2α2ν2 · · · Rnαnνn . (A3)

Thus, the ASR on the IFC renormalization from the nth-order
IFCs to the first-order IFCs is∑

α1

∑
R2α2···Rnαn

�μ1···μn (0α1, R2α2, · · · , Rnαn)R2α2ν2 · · · Rnαnνn

= 0. (A4)

Let us now move onto the proof of the proposition. We first
prove the following lemma.

Lemma 1. The left-hand side of Eq. (A4) is antisymmetric
under the exchange of μ1 ↔ μ2.

Starting from the left-hand side of Eq. (A4),

∑
α1

∑
R2α2···Rnαn

�μ1···μn (0α1, R2α2, · · · , Rnαn)R2α2ν2 · · · Rnαnνn

=
∑
α1

∑
R2α2···Rnαn

�μ1···μn (R1α1, R2α2, · · · , Rnαn)(R2α2 − R1α1 )ν2 · · · (Rnαn − R1α1 )νn

=
∑
α1

∑
R2α2···Rnαn

�μ1···μn (R1α1, R2α2, · · · , Rnαn)(R2α2 − R1α1 )ν2 (R3α3 − R2α2 )νn · · · (Rnαn − R2α2 )νn

= −
∑
α1

∑
R2α2···Rnαn

�μ1↔μ2 (R2α2, R1α1, · · · , Rnαn)(R1α1 − R2α2 )ν2 (R3α3 − R2α2 )ν3 · · · (Rnαn − R2α2 )νn . (A5)

From the first line to the second line, we used the transla-
tional symmetry of the crystal lattice. From the second to the
third line, we use the acoustic sum rule on the ith atom for
i = 3, . . . , n. Here, we note that R1 is not a dummy index but
fixed somewhere in the crystal. Thus, the sum is restricted to
a finite range where the atoms R1 and Ri interact. Although
Riαi − R jα j can be infinitely large for distant atoms, the sum
can be considered as a finite sum of finite elements, which
is extremely important to change the order of the summation.
We now fix R2 instead of R1, which is allowed due to the
translational symmetry. Changing the names of the dummy
indices and using the translational symmetry, we get∑

α1

∑
R2α2···Rnαn

�μ1···μn (0α1, R2α2, · · · , Rnαn)R2α2ν2 · · · Rnαnνn

= −
∑
α1

∑
R2α2···Rnαn

�μ1↔μ2 (R1α1, R2α2, · · · , Rnαn)

× (R2α2 − R1α1 )ν2 · · · (Rnαn − R1α1 )νn

= −
∑
α1

∑
R2α2···Rnαn

�μ1↔μ2 (0α1, R2α2, · · · , Rnαn)

× R2α2ν2 · · · Rnαnνn , (A6)

thus Lemma 1 has been proved.
Lemma 2. Assume that the IFC renormalization from the

(n − 1)th-order IFCs to the first-order IFCs satisfies the ASR,

and the rotational invariance between the nth-order and the
(n − 1)th-order IFCs is satisfied. Then the left-hand side of
Eq. (A4) is symmetric under the exchange of μ2 and ν2.

Again starting from the left-hand side of Eq. (A4),∑
α1

∑
R2α2···Rnαn

�μ1···μn (0α1, R2α2, · · · , Rnαn)R2α2ν2 · · · Rnαnνn

=
∑
α1

∑
R3α3···Rnαn

R3α3ν3 · · · Rnαnνn

×
[ ∑

R2α2

�μ1···μn (0α1, R2α2, · · · , Rnαn)R2α2ν2

]
. (A7)

Using the permutation symmetry of IFCs and the rotational
invariance between the nth- and the (n − 1)th-order IFCs
[Eq. (A2)], we can show that Eq. (A8) below is symmetric
under the exchange of μ2 ↔ ν2:∑

α1

∑
R3α3···Rnαn

R3α3ν3 · · · Rnαnνn

×
[ ∑

R2α2

�μ1···μn (0α1, R2α2, · · · , Rnαn)R2α2ν2

+
∑
i 	=2

δμiν2�μi→μ2 (0α1, R3α3, · · · , Rnαn)

]
. (A8)
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The second term in the square bracket vanishes when the sum-
mation is taken due to the ASR on the IFC renormalization
from the (n − 1)th-order IFCs to the first-order IFCs. Lemma
2 is derived by comparing the right-hand side of Eqs. (A7)
and (A8).

Lemma 3. Assume that the IFC renormalization from the
(n − 1)th-order IFCs to the first-order IFCs satisfies the ASR,
and the rotational invariance between the nth-order and the
(n − 1th)-order IFCs is satisfied. Then the left-hand side of
Eq. (A4) is symmetric under the exchange of μ1 and ν2.

We show the last lemma for the proof of the proposition.
We can use Lemmas 1 and 2 from the assumption of Lemma
3. Thus,

(μ1μ2, ν2) = −(μ2μ1, ν2) (Lemma 1)

= −(μ2ν2, μ1) (Lemma 2)

= (ν2μ2, μ1) (Lemma 1), (A9)

where (μ1μ2, ν2) is a shorthand notation of the left-hand side
of Eq. (A4) which focuses on the permutation of the indices
μ1, μ2, and ν2.

Proof of the Proposition. Finally, we show the proof of the
proposition. From Lemmas 2 and 3, we get

(μ1μ2, ν2) = (ν2μ2, μ1) (Lemma 3)

= (ν2μ1, μ2) (Lemma 2)

= (μ2μ1, ν2) (Lemma 3). (A10)

On the other hand, Lemma 1 claims that

(μ1μ2, ν2) = −(μ2μ1, ν2) (Lemma 1). (A11)

Therefore, from Eqs. (A10) and (A11), we get

(μ1μ2, ν2) = 0, (A12)

which proves the proposition.
In the numerical calculation, we have confirmed the IFC

renormalization from the harmonic to the first-order IFCs
satisfies the ASR when we impose the rotational invariance
on the harmonic IFCs. On the other hand, we have checked
that the IFC renormalization to the first-order IFCs from the
higher-order IFCs does not satisfy the ASR if we do not
impose the rotational invariance. Therefore, it is numerically
demonstrated that the ASR and the permutation symmetry
alone are not sufficient for the ASR on the renormalized
atomic forces to be satisfied.

APPENDIX B: IMPLEMENTATIONS OF ZSISA AND
V-ZSISA

The calculation of ZSISA, which fixes the internal coor-
dinates at the static positions in the potential energy surface,
can be performed by fitting the strain dependence of the free
energy after relaxing the internal coordinate in the static po-
tential. However, in our formalism combined with the IFC
renormalization, it is better to simultaneously optimize the
internal and the external degrees of freedom to avoid the fit-
ting error and to simplify the calculation scheme. In v-ZSISA,
the complicated implementation of fixed-volume optimiza-
tion will be a problem in calculating the volume-dependent
v-ZSISA free energy to curve fit for minimization. In this

Appendix, we explain that ZSISA and v-ZSISA optimization
can be performed by replacing the derivatives of QHA free
energy in Eqs. (24) and (25) by appropriate functions.

We first explain the implementation of ZSISA. As the
internal coordinates need to be relaxed to the static posi-
tion of the potential U0, we replace the right-hand side of
Eq. (24) by

∂FQHA

∂q(0)
λ

→ ∂FZSISA

∂q(0)
λ

= ∂U (q(0),uμν )
0

∂q(0)
λ

. (B1)

It should be emphasized that ZSISA is not formulated as a
global minimization of a single function of internal coordi-
nates q(0) and strain uμν . Thus, ∂FZSISA

∂q(0)
λ

should not be interpreted

as a derivative of a function FZSISA, but is used for notational
simplicity. The formula for the strain is similar to Eqs. (36)

and (37) in Sec. II D. We define ( ∂q(0)
λ

∂uμν
)ZSISA as the derivative

in which q(0) is adjusted to the strain so that the atomic forces
are invariant. This definition generalizes the derivative of the
true strain dependence q(0)

λ (uμν ) in ZSISA to arbitrary config-
urations of q(0)

λ and uμν . The derivative can be calculated as(∂q(0)
λ

∂uμν

)
ZSISA

= −
∑
λ1

(�̃−1
2 )λλ1

(∂�̃(0λ1)

∂uμν

)
, (B2)

where (�̃−1
2 ) is the inverse matrix of �̃(0λ1, 0λ2) in terms

of the mode indices, which can be shown in a similar way
to the derivation of Eq. (35) in Sec. II D. The IFCs and the
derivatives in the right-hand side of Eq. (B2) are estimated
at the current structure with strain and atomic displacements.
The ZSISA derivative of the free energy is

∂FZSISA

∂uμν

= ∂FQHA

∂uμν

+
∑

λ

∂FQHA

∂q(0)
λ

(∂q(0)
λ

∂uμν

)
ZSISA

, (B3)

with which we replace ∂FQHA

∂uμν
in Eq. (25).

In the calculation of v-ZSISA, we separate the strain to
the hydrostatic strain, which causes volumetric expansion, and
the deviatoric strain. The mode of the hydrostatic strain uV is
calculated as

uV,μν ∝ ∂ det(I + u)

∂uμν

= (I + u)μ+1,ν+1(I + u)μ+2,ν+2 − (I + u)μ+1,ν+2

× (I + u)μ+2,ν+1, (B4)

where we use x = 0, y = 1, and z = 2 (mod 3) for
notational simplicity. We normalize uV,μν so that∑

μν |uV,μν |2 = 1. Here, we calculate the structural change

(δq(0)v-ZSISA
λ , δuv-ZSISA

μν ), in which the atomic forces and the
deviatoric stress tensor are unaltered in the first order. These
quantities can be obtained by solving the equation⎛⎜⎜⎜⎝

�̃(0λ, 0λ)
∂�̃(0λ)

∂uμν

∂�̃(0λ)

∂uμν

C̃μ1ν1,μ2ν2

⎞⎟⎟⎟⎠
(

δq(0)v-ZSISA
λ

δuv-ZSISA
μν

)
∝

(
0

uV,μν

)
, (B5)
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where C̃μ1ν1,μ2ν2 = 1
N

∂2U0
∂uμ1ν1 ∂uμ2ν2

. The matrix elements in the

left-hand side of Eq. (B5) are IFC renormalized by the strain
and atomic displacements. We solve the equation assuming
that the tensor uμν is symmetric to fix the rotational degrees
of freedom. We normalize the solution of Eq. (B5) so that it
satisfies

∑
μν

uV,μνδuv-ZSISA
μν = 1. (B6)

Then, the v-ZSISA derivative of the free energy in the direc-
tion of hydrostatic strain is

∂Fv-ZSISA

∂uV
∝

∑
μν

δuv-ZSISA
μν

∂FQHA

∂uμν

+
∑

λ

δq(0)v-ZSISA
λ

∂FQHA

∂q(0)
λ

=
∑
μν

δuv-ZSISA
μν

∂FZSISA

∂uμν

. (B7)

We denote the deviatoric strain modes, the modes perpendic-
ular to uV , as ui. The v-ZSISA derivative of the free energy in

the direction of ui is

∂Fv-ZSISA

∂ui
= ∂U (q(0),uμν )

0

∂ui
, (B8)

since they should be relaxed in the static potential. Transform-
ing to the Cartesian representation, we get

∂Fv-ZSISA

∂uμν

= uV,μν

∑
μ′ν ′

δuv-ZSISA
μ′ν ′

∂FZSISA

∂uμ′ν ′

+
(

∂

∂uμν

− uV,μν

∑
μ′ν ′

uV,μ′ν ′
∂

∂uμ′ν ′

)
U (q(0),uμν )

0 ,

(B9)

where the normalizations of uV,μν and δuv-ZSISA
μ′ν ′ are assumed.

The v-ZSISA derivative of the free energy in terms of the
strain is

∂Fv-ZSISA

∂q(0)
λ

= ∂U (q(0),uμν )
0

∂q(0)
λ

. (B10)

The v-ZSISA optimization can be performed by replacing the
right-hand side of Eqs. (24) and (25) by ∂Fv-ZSISA

∂q(0)
λ

and ∂Fv-ZSISA
∂uμν

,

respectively.
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