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Classical Majorana-like zero modes in an acoustic Kitaev chain
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The one-dimensional Kitaev chain, being one of the most significant superconductor models that support
Majorana fermions, has been considered as a highly probable method to host nonlocal qubits for topological
quantum computation. Here we theoretically introduce the concept into the classical-wave systems and report the
first experimental prototype of the acoustic Kitaev chain. We rigorously demonstrate the acoustic correspondence
of the Kitaev chain and experimentally observe the classical unpaired Majorana-like zero mode in a well-
designed acoustic spinless p-wave superconductor. In particular, clear physical evidence also demonstrates such
exotic acoustic modes can be manipulated to a certain extend like a quasiparticle, which is directly identified
by employing a Kitaev “keyboard.” These results are expected to open new avenues for novel applications of
topological acoustics.
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I. INTRODUCTION

The concept of topological insulators characterized by
multiple topological phases has attracted extensively investi-
gation [1–4]. Due to the ability of manipulating the special
robust electronic states that against microscopic disorder
and supporting lossless energy transportation [5], topologi-
cal insulators, and topological superconductors in different
classifications have been considered with significant potential
for quantum technologies [6–8]. Remarkably, in the field of
topological quantum computation, topological superconduc-
tors are predicted to hold considerable solution to find a class
of non-Abelian anyons, namely the Majorana fermions, which
may embed quantum information in a nonlocal and intrinsi-
cally decoherence-free fashion for the experimental synthesis
of a quantum computer [9–11]. In 2001, Kitaev proposed
the celebrated one-dimensional (1D) toy model of a spinless
p-wave superconducting N-site chain that can support the
unpaired end-Majorana zero modes degenerate at zero energy
as the system being topologically nontrivial [12], which has
inspired a series of research on realizing such the 1D super-
conducting wires in superfluids and superconductors [13–22],
whereas it remains an ongoing challenge to synthesize a real
chain due to the absence of hypothetical spinless fermions and
the uncommonness of p-wave pairing.

On the other hand, the classical-wave systems as its flex-
ibility and reconfigurability have long been considered as a
prominent platform for engineering topological energy bands
and observing novel quantum phenomena [23–30]. Recently,
the quantum Hall effect [31], quantum spin Hall effect [32],
and higher-order topology [33] have been directly demon-
strated in mechanical [34–38], photonic [39–41], electrical
circuits [42–44], and acoustic systems [45–47]. Critically,
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although mechanical counterparts of the Kitaev chain have
been studied in some works experimentally [48,49], whether
an analog of the Kitaev chain with observable Majorana-like
zero modes can be implemented in the classical-wave systems
is still an open question.

In this article, the concept of spinless p-wave Kitaev chain
is theoretically and experimentally introduced to acoustic sys-
tem, and the created Majorana-like zero mode nature within
the rigorous correspondence is revealed clearly. In contrast
with atomic system, the Majorana-like zero modes in the
conceived 1D acoustic wire does not require additional ex-
ternal fields for employing superconducting proximity effects
and can be directly excited by sound stimuli. By judiciously
designing a 1D wire network of the Kitaev chain based on
resonance acoustic system, topological phase transition from
the bulk spectrum along with the emergence of the unpaired
Majorana zero modes can be observed exactly. Crucially, ex-
periments are also conducted to not only verify the existence
of such the exotic topological states but also demonstrate a
“keyboard” property of the presented structure with individu-
ally tunable configuration to the chain that allows local control
of the topology of each site and hence freely manipulate the
analogous Majorana fermions while maintaining the bulk gap.
Such the fascinating results are particularly meaningful in the
classical-wave systems and may open up new avenues for
helping the exploration of novel quantumlike materials in a
macro scale.

II. MAJORANA FERMIONS IN 1D KiTAEV CHAIN

Let us focus our attention on the minimal Hamiltonian H
describing the Kitaev toy model for a spinless p-wave super-
conducting N-site chain, which takes the form [12]

H = −μ

N∑
n=1

c†
ncn −

N−1∑
n=1

(tc†
n+1cn + �cncn+1 + H.c.), (1)
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FIG. 1. (a) Schematic of the acoustic Kitaev chain. Insets: Defined Pz mode propagating in the structure. [(b)–(d)] Topological phase
transition process in the unit cell with (b) lμ

1 = 4.1 cm and lμ

2 = 3 cm with μ = −738; (c) lμ

1 = 4.1 cm and lμ

2 = 0 cm with μ = −368; and
(d) lμ

1 = lμ

2 = 0 cm with μ = 0, respectively. [(e)–(g)] Compare of the theoretical (dashed lines) and simulated (dots) energy band structures
that correspond to (b)–(d), respectively. Insets: Sound pressure at k = 0 distributes in the form of [1, 0]T and [0, 1]T , respectively, and the
inversion indicates topological phase transition.

where t > 0, μ, and � denotes the nearest-neighbor
hopping strength, chemical potential, and p-wave pairing
amplitude, respectively. cn is the spinless fermion operator
at nth site. Once imposing periodic boundary condition, the
Bogoliubov–de Gennes Hamiltonian in the momentum space
can then be written as

H = 1

2

∑
k

C†
kH(k)Ck, (2)

where C†
k = [c†

k , c−k] and H(k) = (−2 t cosk − μ)τz +
2 � sink τy, where τ is the Pauli matrix. Further, by diago-
nalizing H(k), one immediately obtain the bulk energy levels
E (k) = ±

√
(2tcosk + μ)2 + 4�2sin2k. Accordingly, a bulk

gap closing at k = 0 happens when |μ| = 2t , which exactly
indicates the critical point of topological phase transition.

Additionally, although it is well known that the condensed
matter systems are made of electrons which always corre-
spond to paired Majorana fermions, it turns out that the
unpaired Majoranas, which is key in the Kitaev chain, can be
realized by engineering the Hamiltonian in some special ways.
To understand the topological phase transition along with the
emergence of the unpaired Majoranas in the chain, we now
replace the spinless fermion cn with the Majorana operator
γn,a and γn,b (where γn,α = γ †

n,α) as cn = (γn,a − iγn,b)/2, and
Eq. (1) then can be rewritten as

H = i

2

{
N−1∑
n=1

[(−� − t )γn,bγn+1,a + (−� + t )γn+1,bγn,a]

+ μ

N∑
n=1

γn,aγn,b

}
. (3)

Further, two limiting cases are cautiously considered. In the
first case we set � = t = 0 with μ �= 0, and H is then reduced
to H = (i/2)μ

∑N
n=1 γn,aγn,b, which indicates the Majorana

modes γn,a and γn,b always pair in the same site and corre-
sponds to a trivial phase. Crucially, in the second limiting
case with � = t and μ = 0, H = it

∑N−1
n=1 γn,bγn+1,a indi-

cates the Majoranas are paired up from the adjacent sites,
which naturally leaves γ1,a and γN,b being unpaired and act
as the end-Majorana modes degenerate at zero energy due to
particle-hole symmetry. Meanwhile, the pair of wave func-
tions [1, 0]T and [0, 1]T is inverted at high symmetry point
also indicates the topological phase transition. As a result,
|μ| < 2t represents the nontrivial superconducting states with
a partially filled band pairs, while |μ| > 2t corresponds to the
trivial topology without Majoranas emerging.

III. ACOUSTIC KITAEV CHAIN AND CLASSICAL
MAJORANA-LIKE ZERO MODES

We now focus on the acoustic correspondence of the Kitaev
chain discussed above, and the 1D wire structure with the
lattice constant a is depicted in Fig. 1(a). Here each unit cell
consists of two individual cuboid acoustic cavities with its
length and width as w and the height h, respectively. The unit
cells are complicatedly connected by four bent tubes (respec-
tively marked in red, yellow, blue, and green in Fig. 1(a)) with
identical side-length d and effective lengths lt

1, lt
2, l�

1 , and l�
2 ,

respectively. In addition, two extra tubes (respectively marked
in purple and orange) with tunable lengths lμ

1 and lμ
2 are

connected with the two cavities in each unit cell, respectively.
The sound speed and density of air are c0 and ρ0, respectively,

134107-2



CLASSICAL MAJORANA-LIKE ZERO MODES IN AN … PHYSICAL REVIEW B 107, 134107 (2023)

and the outermost tubes are all closed with acoustic hard
boundaries.

For synthesizing the analogous Majorana fermions, we
now consider the sound wave propagating within the system
in a Pz mode [Fig. 1(a)], which corresponds to the dipolar
standing wave with frequency ω0. Accordingly, the normal-
ized field distribution of acoustic velocity potential in jth
(j = 1,2) cavity of each unit cell can be written as ψ j (�r) =√

2/(w2h)sin(πrz/h), where rz is the component of �r in the
z direction. Further, by defining the parameters ξ = [ξ1, ξ2]T ,
where ξ j = p j (�r)/ψ j (�r) and p j (�r) is the corresponding sound
pressure, the distribution of the sound field in the representa-
tion of ξ with propagating frequency ω then satisfies

ωξ = [H0 + Ha(k)]ξ, (4)

where

H0 =
(

ω0 + ε1 0
0 ω0 + ε2

)
,

Ha(k) =
[

μ1 + 2t1cos(ka) �1 eika + �2e−ika

�1e−ika + �2eika μ2 + 2 t2 cos(ka)

]
, (5)

where ε1 = (c0d2|ψ |2/2)[2cot(ω0lt
1/c0) + cot(ω0l�

1 /c0) +
cot(ω0l�

2 /c0)] represents a total perturbation induced
by the connected tubes on the corresponding cavity
and ε2 takes the same form with opposite subscripts.
Crucially, the key correspondences are clearly de-
termined as t j = −(c0d2|ψ |2/2)csc(ω0lt

j/c0), � j =
−(c0d2|ψ |2/2)csc(ω0l�

j /c0), and μ j = i(ρ0c2
0d2)/(w2hZμ

j ),

respectively, where |ψ | indicates the average of ψ (�r) over the
end of the tubes and Zμ

j = −iρ0c0cot(ω0lμ
j /c0) represents the

impedance of the extra tube (see Sec. I in the Supplemental
Material [50]). It is worth noting that all the parameters are
naturally decoupled, the amplitude as well as sign therefore
can be manipulated independently. Further, once setting
lt
1 = l2

1 + h and l�
1 = l�

2 + h, we obtain ε1 = ε2, t1 = −t2,
and �1 = −�2 and immediately find that Ha(k) is rigorously
equivalent to H(k) in Eq. (2), while H0 only contributes to
a spectra shift in practice. As a result, the Kitaev chain can
finally be implemented in acoustic system.

According to the discussion above, we now set w =
2.5 cm, h = 7.5 cm, d = 0.5 cm, lt

1 = 18.25 cm lt
2 = 10.5 cm,

l�
1 = 18.95 cm, and l�

2 = 11.2 cm (therefore t = 184 and
� = 180, respectively) in the following and exhibit the topo-
logical phase transition in the acoustic Kitaev chain by merely
controlling lμ. Figures 1(b)–1(d) depict the process in the
unit cell where |μ| < 2t , |μ| = 2t and |μ| > 2t , respectively,
and the corresponding theoretical and numerical energy band
structures are presented in Figs. 1(e)–1(g), respectively, which
serves a good evidence of topological phase transition in the
system (see Sec. II in the Supplemental Material [50]). In par-
ticular, as the key identified topological feature in the system,
a pair of unpaired Majorana-like zero modes is predicted to
emerge at the ends of the Kitaev chain. Pictorial representa-
tions of the Kitaev chain in the two limiting cases are sketched
in Figs. 2(a) and 2(b), respectively, and the energy spectra
of the acoustic correspondence spanning seven sites are pre-
sented in Figs. 2(c) and 2(d), respectively. It is clear to see that,
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FIG. 2. [(a) and (b)] Pictorial representations of the Kitaev chain
in the limiting cases � = t = 0, μ �= 0 and � = t �= 0, μ = 0, re-
spectively. [(c) and (d)] Eigenfrequency spectra of the finite acoustic
chain in trivial and nontrivial phase, respectively. Blue dots and
red circles represent theoretical and numerical results, respectively.
[(e) and (f)] Field distributions of sound pressure of the unpaired
Majorana-like zero modes at the ends of the acoustic Kitaev chain,
respectively.

in contrast to a complete bulk gap when topologically trivial,
two degenerate Majorana zero modes are exactly pinned at the
frequency ω0 + ε in the nontrivial phase. Crucially, the sound
pressure field distributions of such the exotic modes exhibited
in Figs. 2(e) and 2(f) demonstrate they are unpaired. In the
following, experiments are performed in detail.

IV. EXPERIMENTAL REALIZATION OF A “KEYBOARD”
OF THE KITAEV CHAIN

First, we consider the gap closing condition when |μ| =
2t . After a linear expansion, the Hamiltonian H(k) takes the
form as

H(k) = mτz + 2�kτy, (6)

where m = −μ − 2t is the mass term. As a result, m = 0
represents a critical point and the opposite sign of m therefore
indicates different topological phase, which reminds us that
the Majorana-like zero modes can emerge as domain-wall
states between two domains with different topology. As il-
lustrated in Fig. 3(a), we construct an acoustic sample with
a domain wall between six trivial (m > 0) and six nontrivial
(m < 0) unit cells. To identify the Majorana zero mode,
each site cavity is perforated with a hole (sealed when not in
measurement), and a broadband acoustic stimuli is placed out-
side the sample near the domain wall. Figure 3(b) shows the
measured intensity spectra, and it is clear to see a spectrally
isolated peak at around 2430 Hz, which exactly corresponds
to the Majorana zero mode predicted in Fig. 2(b). Meanwhile,
the measured spatial distribution of the Majorana-like zero
mode is presented in Fig. 3(c), which exhibits the locality of

134107-3



GUAN, YANG, YANG, LI, ZOU, AND CHENG PHYSICAL REVIEW B 107, 134107 (2023)

-6 -4 -2 0 2 4
Number of sites

0

0.2

0.4

0.6

0.8

1

In
te

n
si

ty
 (

a.
u
.)

62350 2400 2450 2500
Frequency(Hz)

0

0.2

0.4

0.6

0.8

1

In
te

n
si

ty
 (

a.
u
.)

0

x

m(x)<0

m(x)>0

m(x)=0

Trivial 

Nontrivial 

Domain Wall 

f = 2430 Hz

Majorana Zero Mode

Bulk stateBulk state

(a)

(b) (c)

Majorana Zero Mode

FIG. 3. (a) Schematic of the domain-wall between topologi-
cal trivial and nontrivial domains. Insets: Acoustic domain-wall
Majorana-like zero mode. (b) Experimentally measured bulk (cyan)
and domain-wall (orange) spectra. (c) Comparison of measured (red
dots) and numerical (blue line) spatial distribution of the existing
domain-wall state. Inset: Photograph of the 3D printed acoustic
Kitaev chain.

Majorana wave function (see Sec. III in the Supplemental
Material [50]). Accordingly, such the experimental results
confirm the classical Majorana-like zero modes existing in the
acoustic Kitaev chain.

Finally, in the theoretical model, as long as the chemical
potential is regulated, the Majorana fermions can be ma-
nipulated, which brings inspiration to the acoustic system.
We perform experiments of the Kitaev “keyboard” to verify
the quasiparticle character of the acoustic Majorana-like zero
modes [10]. Due to the decoupled μ and t in the presented
structure, we now define a gate where a topological phase
represents “ON” while the trivial phase “OFF” as depicted
in Fig. 4(a), and the gate can be easily switched by tuning lμ

[Fig. 4(b)]. Correspondingly, the given gates are controlled
locally, which allows analogous Majoranas to be created,
transported, and fused freely. Figures 4(c) outlines the setup
of a Kitaev “keyboard” spanning 12 sites, which corresponds
to three independent experiments, and the measured spatial
intensity distributions are presented in Figs. 4(d)–4(f), respec-
tively. Accordingly, an unpaired Majorana-like zero mode is
driven from site 2 to site 6 in the transport process [Fig. 4(d)],
and the acoustic modes can be either fused into a single
finite-energy mode [site 5 and site 8 in Fig. 4(e)] or created
[site 5 and site 8 in Fig. 4(f)] by controlling the gates (see
Sec. IV in the Supplemental Material [50]). The measured
results directly demonstrate the acoustic Majorana-like zero
modes may act as quasiparticles. In addition, compared with
some existing models such as acoustic Su-Schrieffer-Heeger
model, we only need to regulate the length of the additional
tubes in our model, and we can easily implement a variety of
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FIG. 4. (a) Schematic of the acoustic gates. (b) Experimental
setup of the acoustic Kitaev keyboard. (c) Pictorial representations of
the transport, fuse, and creation process of the analogous Majorana
fermions. [(d)–(f)] Experimentally measured spatial intensity distri-
butions of the acoustic Majorana zero modes before (green area) and
after (red line) specific operations corresponding to (c), respectively.

functions in a single sample. This advantage comes from the
Kitaev chain that only needs to regulate chemical potential to
manipulate Majorana fermions.

V. CONCLUSIONS

To conclude, we have theoretically extended the 1D Kitaev
chain into acoustic system for sound waves and experimen-
tally observed the classical Majorana-like zero modes as well
as verified its particular characters. By precisely proposing the
correspondence of the 1D Kitaev chain in resonance acoustic
system, the unpaired Majorana-like zero modes can be di-
rectly observed. In particular, clear evidence manifests that
by freely controlling the gates, such the exotic acoustic modes
can be created, transported, and fused, which act like quasipar-
ticles. As a result, this work constitutes the first classical-wave
demonstration of analogous Majorana-like fermions based on
a stringent acoustic Kitaev chain. Beyond its fundamental
significance, this framework is expected to enrich the inherent
physics and broaden roads for the design and applications of
future topological metamaterials.
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