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Second-order topological phases in artificial systems have been extensively studied, but studies in the phonons
of atomic materials are limited. In this paper, we propose that phononic second-order topological phase exists in
CsN, a previously synthesized and intensively investigated two-dimensional material. Its nontrivial phase arises
from the mismatch between the Wannier centers of the out-of-plane phonon modes and the atomic positions.
Using a simplified force constant model, we find that gapped edge modes and in-gap corner modes only exist
on the structures with broken pure-carbon-ring terminations, and this unexpected phenomenon can be explained
by the electronlike filling anomaly for phonons. Further calculations reveal that these corner modes are robust
to external disturbances. The nontrivial phononic phase in C3N provides an avenue in crystalline materials to

explore higher-order topological phases in Bose systems.

DOI: 10.1103/PhysRevB.107.134104

I. INTRODUCTION

The discovery of topological insulators have sparked the
emergence of many fascinating topological phases. One of
the most recent proposals is the higher-order topological
insulators (HOTIs). In contrast to conventional topological
insulators (first-order topological insulators), in which sur-
face or edge states appear on (d — 1)-dimensional boundaries,
HOTTs host gapless modes on the (d — n)-dimensional (n >
2) boundaries [1-27]. Among them, two-dimensional (2D)
second-order topological insulators (SOTIs) host zero energy
states on the corners. Up to now, they have been reported in
various 2D systems, including electrical [28-30], electrical
circuits [31,32], acoustic [2,33-38], photonic [15,39—41], and
optical systems [42,43].

However, only two all-carbon materials, graphdiyne [44]
and «-graphynes [45], have been proposed as phononic SO-
TIs, and any crystalline material beyond pure carbon materials
has not yet been reported. This contrasts with electronic
SOTIs, in which many pure carbon and nonpure carbon sys-
tems (such as honeycomb antimony [28], 1H transition metal
dichalcogenides [46], and black phosphorene [47]) were pro-
posed. The corner modes of a SOTI typically heavily depend
on the edge of a structure, and it is not easy to cut a 2D
material to a nanostructure with a specific edge. Therefore,
the experimental realization of SOTIs in the phonons of real-
istic materials remains elusive. To this end, it is desirable to
identify phononic second-order topological materials that are
readily available and highly controllable to their orientations
and edges. Here, we suggest that C3N is a generic phononic
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SOTT and it has clear advantages over other candidates for
the experimental detection of the corner modes. (i) C3N is the
first instance of phononic SOTIs in a material other than pure
carbon, suggesting that it would be a great choice to study
phononic SOTIs in broader lattices and materials. (ii) Be-
cause its out-of-plane modes have three nontrivial wide gaps,
the corner modes can maintain their robustness in greater
disturbances [5,48], which is intriguing for their potential
experimental detection and device applications. (iii) It is a pre-
viously synthesized [49,50] and thoroughly studied [51-54]
2D graphenelike atomic material, indicating more potential
methods to synthesize and cut the material to a nanostructure
with specific edges [55].

With the help of first-principles calculations and a simpli-
fied force constant model, we find that C3N, an experimentally
synthesized and intensively investigated carbon-nitrogen ma-
terials with honeycomb lattice, can realize the second-order
topological phase in out-of-plane phonon modes. Four charac-
teristics of SOTIs are found: quantized finite bulk quadrupole
topological number Q;;, quantized secondary topological in-
dex Q© .omer» gapped topological edge modes, and in-gap
topological corner modes. The gapped edge modes and in-
gap corner modes only exist in the structures with broken
pure-carbon-ring terminations, which can be explained by
the filling anomaly of phonons. Moreover, the robustness of
in-gap topological corner modes are identified by importing
edge disorders.

II. STRUCTURE AND PHONON SPECTRA

Figure 1(a) shows the C3N monolayer, with the primi-
tive cell indicated by the red parallelogram. This monolayer
can be viewed as nitrogen-doped graphene, with nitrogen
atoms taking the place of the two native carbon atoms in

©2023 American Physical Society
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FIG. 1. (a) The atomic structure of C3N. C and N atoms are
represented by the gray and blue balls, respectively. The red shaded
area and the red hexagon represent the primitive and Wigner-Seitz
cell, respectively. The Wyckoff positions la, 2b, and 6e are also
shown in this figure. (b) The 2D first Brillouin zone of C3N. (c) First-
principles phonon dispersions of C;N along the high symmetry lines.
The gray and red bands are the in-plane and out-of-plane modes,
respectively. Black numbers at the high symmetry points I' and M
are the eigenvalues of C,,, and blue numbers at I' and K are the
eigenvalues of Cs;. (d) The phonon dispersion from the simplified
force constant (FC) model. The letters at the high symmetry points
are the irreps in the subspace P6mm, which correspond to the irreps
calculated by the first-principles. There are three bandgaps, labeled
as gapl, gap2, and gap3, respectively.

a 2 x 2 supercell of graphene. The space group of Ci;N
is P6/mmm (No. 191), since we are only interested in the
topological properties of out-of-plane modes, it is sufficient
to investigate the symmetry properties of these modes un-
der the subgroup of Pémm (No. 183) [56]. The C atoms of
C3N occupy Wyckoff position 6e, while the N atoms oc-
cupy 2b. The Wigner-Seitz cell is depicted by the hexagon,
which clearly exhibits Cg rotational symmetry. The Wyckoff
position of this hexagon’s center is la. Figure 1(c) and S1
illustrate the phonon spectra of C3N along the high symmetry
path. In the harmonic approximation [56], the out-of-plane
(red lines) and in-plane (grey lines) modes are decoupled
because their horizontal mirror eigenvalues are even and odd,
respectively. Therefore, we can examine the topological char-
acteristics of the two subspaces independently. It is worth
noting that similar subspace separation have also been ap-
plied for the elastic waves [57], where the corner modes
are experimentally observed in the bandgap of the out-of-
plane modes, and are unaffected by the “metallic” in-gap in-
plane modes. All out-of-plane modes, as shown in Figs. 1(c)
and 1(d), can be divided into four groups (g; — g4) separated
by the phononic band gaps (we call them as gapl, gap2, and
gap3 with increasing frequencies).

We build a FC model that accounts for the first to fourth
nearest-neighbor interactions to make computations and
analysis easier (see Fig. S2 [59]). By fitting the phonon fre-
quencies of C3N obtained from first-principles calculations,

TABLE 1. Fitted parameter values in the FC model (in units
of 10* dyn/cm). The nearest-neighbor, next-nearest-neighbor, third-
nearest-neighbor, and fourth-nearest-neighbor terms are labeled as
INN, 2NN, 3NN, and 4NN, respectively.

C-C C-N N-N
INN 2NN 3NN 4NN INN 2NN 4NN 3NN

-91.45 -0.13 0.09 —-1.86 —49.00 11.82 726 —13.71

we obtain the parameter values of the FCs (see Table I). The
phonon dispersion and the irreducible representations (irreps)
of the vibration modes at I, K, and M are shown in Fig. 1(d).
All of these results are compatible with the first-principles
calculations, and the detailed comparison is presented in the
Supplementary Materials. Therefore, this model can be used
to precisely characterize the out-of-plane modes of C3N.

III. NONTRIVIAL TOPOLOGICAL PROPERTIES

Phonons are typical bosons whose occupations are not
restricted by the Pauli exclusion principle. Therefore, they are
detectable across all frequency ranges, and one can define a
topological invariant for any group of isolated bands. Then
the issue is what topological invariant can be employed to
describe its nontrivial features. In quantum Hall or quantum
anomalous Hall effects, the Chern number is used to charac-
terize the topology of bands [60]. In the C3N system, however,
it is zero because of the coexistence of time reversal and
inversion symmetries [61]. Z; is also trivial because no typical
features, such as band inversion near the Fermi level, occur. In
addition, due to the existence of Cg rotational symmetry, the
total bulk dipole moment of the system is zero [62]. Hence we
will investigate the quadrupole topological number from the
bulk dipole moment as [4,62]

1 n_.n
Qij = E(; 2pipj mod 2), (1

where the summation is over all the bands below a bulk gap,
i and j are the directions of reciprocal lattice vectors, and p
is the bulk dipole moment of the nth band in the i direction.
Under Ce rotational symmetry, p; = p/; and it can be obtained
from

n
i = 2 (g} mod2). ron
2 n™(I")

where 1" is the parity of the nth band at the correspond-
ing k point (M or I'), and they have the opposite sign to
the eigenvalues of C,, [63]. According to the eigenvalues of
C,; in Fig. 1(c), the quadrupole topological numbers for the
lowest three, five, and seven bands are 1/2. These fractional
quadrupole topological numbers indicate that the three band
gaps are topologically nontrivial.

In the previous studies, despite the fact that they both host
fractional corner states, some nontrivial HOTTIs originate from
quantized quadrupole moments and others from the filling
anomaly [64]. The topological invariant of the latter is the
secondary topological index. We further examine this index
for OD hexagonal C3N nanodisk. For a Cg-symmetric crystal,

(=¥ = 2)
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FIG. 2. There are two types of hexagonal atomic rings in C3N.
One type, as denoted by the red dashed hexagons, consists of C-C
bonds and C-N bonds, is called a C-N ring. The other type indicated
by the blue hexagon only consists of C-C bonds, is called a pure-
carbon ring. The green hexagons indicate the broken pure-carbon
rings. (a) The zigzag-edged 1D atomic structure with broken pure-
carbon-ring terminations. The grey dashed rectangle represents its
unitcell. The stars denote the Wyckoff position 1a. (b) Corresponding
phonon spectrum of (a). The phonon spectrums denoted by blue lines
are topological edge modes, and denoted by black lines are projected
bulk modes. There are three bandgaps between the projected bulk
modes, we call them gapl, gap2, and gap3 with increasing frequen-
cies. (c), (d) Same as (a), (b) but the 1D structure is armchair-edged.

the secondary topological index is given by [65]
Q(ﬁ)corner = %[Miz)] + é[Kl(S)] mod 1, 3)

where [M{z)] ([KIG)]) is the difference in the number of the
occupied bands with G, (C3) eigenvalue 1 between I' and M
(I" and K). Here we regard the phonon bands below a gap as
“occupied bands”. These eigenvalues of the phonon spectra in
C3N are shown in Fig. 1(c). For each of the three gaps, the
(M ](2) ] ([KI(3)]) share the same values of

) =0. (K] = 2 @

Accordingly, the secondary topological indexes of the three
gaps are % We will go into more detail about it later. The
results above show that both of the fractional secondary
topological index and the fractional quadrupole topological
number can be used to explain the topological origin of the
higher-order topological phononic phase in C3N.

IV. NONTRIVIAL EDGE AND CORNER MODES

A fascinating property of a SOTI is its nontrivial edge
and corner modes. As shown in Fig. S3 [59], there are four
different types of edges if you cut C3N into nanoribbons.
After calculating the phonon bands of these nanoribbons in 1D
Brillouin zone, we find only two of them, as shown in Fig. 2,
host nontrivial edge modes, which (blue lines) locate between

the projected bulk bands in the frequency ranges of gapl,
gap2, and gap3. The edge modes in gapl, however, merge
into the projected bulk modes because the value of gap1 is too
small. It is important to note that due to different unitcell sizes,
in gap2, there are two edge states for armchair edges and one
edge state for zigzag edges (see details in the Supplementary
Materials [59]). Next, we investigate the corner modes of C3N
nanodisk. Figure 3(a) shows the atomic structure of a nanodisk
with the armchair edges. The phonon eigenfrequencies of the
structure are obtained by diagonalizing the FC Hamiltonian in
momentum space. As shown in Fig. 3(b), corner modes exist
in all of the three gaps and their frequencies separate from
the projected bulk modes and edge modes. Since the value
of gapl is small, the corresponding edge modes merge into
the projected bulk modes. The corner modes in gapl, gap2,
and gap3 have frequencies of 9.14 THz, 14.86 THz, and 18.68
THz, respectively. Figure 3(e) shows the real-space wavefunc-
tion distributions. They obey Cg rotational symmetry and are
localized at the corners of the nanodisk.

Their nontrivial edge and corner modes can be explained
by the theory of elementary band representations (EBR)
[56,66,67]. Following the paper of Juan L. Maiies [56], a me-
chanical band representation can be labeled by V@w, where V
is a representation of site point group and w is a Wyckoff po-
sition. For C3N, C and N atoms occupy the Wyckoff positions
6e (0.167, 0.833, 0.0) and 2b (0.667, 0.333, 0.0), respectively.
The induced irreps of the out-of-plane vibrations at these
positions are presented in Table II. 2b is maximal but 6e is not.
The induced band representations from 6e must be composite.
According to the EBR of space group P6mm, the mechanical
band representations of g, g3, g4 can be regarded as the in-
duced representation from the local site representation E;, E,,
B, respectively, and the mechanical band representation of g;
can be seen as the sum of the induced representation of A in
laand A; in 2b:A;@1a @ A; @2b. However, the atoms of the
C3N structure do not place in 1a, so a mismatch happens for
the EBR of A; @1a. Therefore, the mismatch between atomic
positions and the Wannier centers of phonons produce a kind
of filling anomaly [65,68], which can also be used to explain
the termination-dependent edge modes. For the C3N ribbons
with broken pure-carbon-ring terminations [see Figs. 2(a) and
2(c)], the atoms in real space and the vibration modes in
reciprocal space are unbalanced, which makes the energies
of the edge modes deriving from the edge Wannier centers
different from the energies of projected bulk modes.

V. ROBUSTNESS AGAINST DISORDERS

Because of SOTT’s nontrivial quadrupole topological num-
ber, topologically protected corner modes are robust against
disorders as long as the bulk or edge gaps are not closed
[5]. The disorders may come from edge external atomic ad-
sorption, edge defects, or other factors. Here we simulate
these situations by introducing random hopping terms into
the edge atoms and then numerically evaluating their corner
modes as well as their real-space wave function distributions.
For the edge atoms, we add random self FC ranging from
—1.69 to 1.69 THz, with the value 1.69 THz being almost
half of the values of gap2 [28]. The simulations are repeated
500 times, and the average eigenfrequencies are plotted in
Figs. 4(a)—(d). As shown in Figs. 4(c) and 4(d), the corner
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FIG. 3. (a) The hexagonal atomic structure of armchair-edged C;N with broken pure-carbon-ring terminations. (b) Numerically evaluated
eigenfrequencies of structure (a). Black, green, and red dots denote bulk, topological corner, and gapped edge modes, respectively. There are
three bandgaps between the bulk modes, we call them gapl, gap2, and gap3 with increasing frequencies. (c), (d) The corresponding enlarged
view of modes in the highest and middle bulk gaps. (e) The real-space wave function distributions at a particular frequency or range.

modes in gap2 and gap3 are localized and separated from
the edge modes. Furthermore, we investigated the average
real-space wave function distributions of modes ranging from
14.82 to 14.91 THz (the frequency range of the corner modes
in gap2) and from 18.65 to 18.71 THz (the frequency range of
the corner modes in gap3), the results are shown in Figs. 4(e)
and 4(f), respectively. We discover that the corner modes still
concentrate around the corners and the edge disorders do not
destroy them.

VI. DISCUSSION

In summary, we propose that experimentally synthesized
C;3N host nontrivial phononic second-order topological phase.
In the subspace of out-of-plane modes, three nontrivial band
gaps with fractional quadrupole topological number and sec-
ondary topological index are discovered. Its edge and corner
modes rely on edge terminations; the nontrivial boundary
modes only exist on the boundaries with broken pure-carbon
rings. A detailed EBR analysis reveals that these edge modes

result from the electronlike filling anomaly for the phonons.
The nontrivial topology of C3N is further validated by its non-
trivial corner modes, which are robust against edge disorders.

According to the transmission electron microscopy images
in Refs. [49,50], hexagonal C;N nanodisks can be obtained
from different synthesis methods, which will greatly facili-
tate the experimental observation of phononic corner modes.
The synthesized nanodisks can be further handled by some
top-down strategies, such as etching method [55], to obtain
the nanodisks with particular edges. Regarding the experimen-
tal observation of the corner modes, the symmetry analysis
reveals that the irreducible representations for these modes
are By, + E1y + Ay, + Ey,. The Ay, mode is infrared active,
and E;; mode is Raman active (see details in the Supple-
mentary Materials [59]). Hence, the phononic corner modes
can be verified by stimulating them with infrared or Raman
light, and their frequencies can serve as a guide for detection
in future experiments. Since the corner modes are spatially
concentrated around the corners, it is also possible to identify

TABLE II. The first five rows (except for the seventh column) are part of EBRs induced from irreps of the maximal site-symmetry groups

in Pémm (No. 183). The data is available on the Bilbao Crystallographic Server [58]. The first row lists the Wyckoft positions, the point
groups isomorphic to their site-symmetry groups are presented in the parentheses. The second row gives the irreps of the site-symmetry groups
corresponding to the out-of-plane modes, from which the band representation is induced. The third, fourth, and fifth rows give the little group
representations that appear in the induced EBR. The dimension of the EBR, which is also the connectivity of the elementary band rep, is given
in the parentheses. The sixth row is the labels of band groups in the out-of-plane modes of C3N.

Wyckoff 1a(Cs,) 2b(C3,) 1a(Cey) 1a(Cs,) 1a(Cey) 6e(Cy)

P A A E, E, B, Al

I'(0,0,0) I'i() T'i(1) @ Ty(1) ['s(2) I's5(2) Ty (1) T1(1) @ Ty(1) @ T's(2) @ Ts(2)
K(3, 5,0) Ki(D) K;(2) Ksi(2) K;(2) Ky(1) K (1) ® K (1) @ 2K5(2)
M(3,0,0) M (1) Mi(he M)  My(HeMy() M) e M) M. (1) 2M; (1) © M (1) ® M5 (1) @ 2Mu(1)
Band group g f20) g3 &4
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FIG. 4. Average frequencies distributions of modes with respect to random hopping terms added to the edge atoms. The bulk, edge, and
corner modes are colored by black, red, and green, respectively. (a) Numerically evaluated averaged eigenfrequencies. (b)-(d) Enlarged views
of the average frequency distributions in gapl, gap2, and gap3, respectively. The dots are the mean values of frequencies for each mode,
the error bar represents standard deviation of the mean values. (e), (f) Average real-space wavefunction distributions of modes with ranges

14.75-14.95 THz and 18.60-18.75 THz, respectively.

corner modes from bulk or edge modes using some space-
resolved experimental techniques. The transport properties of
the corner modes can be studied by adding two “leads” around
a corner [69], as shown in Fig. S6 of the Supplementary
Materials [59]. Nowadays, two common methods are used
to measure the thermal conductivity of 2D materials: the
optothermal Raman technique and the microbridge method.
Here we can refer to the microbridge method to study the
transport of the corner modes in C3N. Because the frequencies
of out-of-plane corner modes differ from the frequencies of
corresponding edge and bulk modes, if the two leads are close
enough to the corners, the contribution of the corner modes
dominates the thermal transport. Moreover, the structure can
also be used to theoretically investigate the transport prop-
erties of corner states with quantum mechanical calculations
of three-phonon scattering rates within the framework of the
Peierls-Boltzmann transport theory or classical molecular dy-
namics simulations [70] (See the details in the Supplementary
Materials [59]). Recently, the nontrivial thermal corner states
have been demonstrated in a generalized 2D diffusion lattice

[71] and the corner states can be observed because of the anti-
Hermitian nature of the diffusion Hamiltonian, and they have
been proved to be robust against local or global defects. This
pioneering experiment provides the basic idea for the future
observation of thermal corner states in crystalline materials.
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