
PHYSICAL REVIEW B 107, 134103 (2023)

Acoustic circular dichroism in a three-dimensional chiral metamaterial
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Circular dichroism (CD) is an intriguing chiroptical phenomenon associated with the interaction of chiral
structures with circularly polarized lights. Although the CD effect has been extensively studied in optics,
it has not yet been demonstrated in acoustic systems. Here, we demonstrate the acoustic CD effect in a
three-dimensional chiral metamaterial supporting circularly polarized transverse sound. We find that the effect
is negligible in the lossy metamaterial possessing C4 rotational symmetry but can be strongly enhanced in the
C2-symmetric system with inhomogeneous loss. The phenomena can be understood based on the properties of
the metamaterial’s complex band structure and the quality factors of its eigenmodes. We show that the enhanced
CD in the C2-symmetric system is attributed to the polarization band gaps and the non-Hermitian exceptional
points appearing near the Brillouin-zone center and boundaries. The results contribute to the understanding of
chiral sound-matter interactions and can find applications in acoustic sensing of chiral structures and sound
manipulations based on vector properties.

DOI: 10.1103/PhysRevB.107.134103

I. INTRODUCTION

Chiral structures have novel properties deriving from
mirror-symmetry breaking [1,2] and are extensively employed
to realize polarization conversion [3,4], unusual optical forces
[5–7], and synthetic gauge fields [8]. The interaction be-
tween chiral structures and chiral light, i.e., light carrying
spin and/or orbital angular momentum (OAM), can give rise
to circular dichroism (CD) [2,9,10] and helical (or vortical)
dichroism [11,12], corresponding to the differential absorp-
tion of lights with opposite chirality. The CD effect has been
investigated in various optical structures, ranging from bilayer
chiral structures [13,14] and nonplanar three-dimensional
(3D) chiral structures [15] to gyroid structures [16,17]. Recent
research has uncovered the subtle relations between CD and
the Ohmic dissipation of metaatoms [18] as well as the bound
states in the continuum [19], enabling a profound understand-
ing of chiral light-matter interactions. The CD effect has been
widely applied to analyze molecular structures [20,21] and to
achieve chiral discrimination [22,23].

It is well known that sound can carry OAM in the form of
vortices [24–26]. The acoustic OAM can induce chiral sound-
matter interactions and give rise to intriguing phenomena such
as acoustic geometric phases [27] and the acoustic orbital Hall
effect [28,29]. The chiral sound-matter interactions can enable
rich manipulations of sound vortices, including asymmetric
transmission and reflection [30], reversal of orbital angular
momentum [31], and acoustic helical dichroism [32]. In addi-
tion, the chiral sound-matter interactions can be applied to ma-
nipulate matter, leading to acoustic levitation [33,34], acoustic
tweezers [35–37], and acoustic torque [38,39]. Here and in
what follows, the sound corresponds to the acoustic wave
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propagating through air. While the sound propagating through
solids (i.e., elastic wave) supports both transverse and longitu-
dinal modes, the conventional airborne sound is a longitudinal
wave. Recently, it was shown that inhomogeneous sound
fields can carry nonzero acoustic spin density characterized
by rotating velocity vector fields [40,41]. Remarkably, spin-1
transverse sound can emerge in a micropolar metamaterial
supporting synthetic shear forces in air [42]. In contrast to the
conventional longitudinal sound, the transverse sound carries
full vector properties similar to electromagnetic waves and is
characterized by a dispersion relation with nonzero frequency
at wave number k = 0. In particular, it can carry both spin
and OAM with intriguing spin-orbit interactions. Exploration
of this new type of sound and its counterintuitive properties
can generate new functionalities for acoustic applications.

Here we demonstrate the acoustic CD effect in a 3D chi-
ral metamaterial that supports circularly polarized transverse
sound. Using full-wave numerical simulations, we calculate
the absorption of left-handed circularly polarized (LCP) and
right-handed circularly polarized (RCP) sound in the lossy
metamaterial. We find that the CD effect strongly depends on
the rotational symmetry of the metamaterial. The CD effect
is negligible in the metamaterial with homogeneous loss sat-
isfying the C4 rotational symmetry. In contrast, it is strongly
enhanced in the metamaterial with inhomogeneous loss sat-
isfying the C2 rotational symmetry. By studying the complex
band structure of the metamaterial and the quality factors of
its eigenmodes, we find that these properties originate from
the polarization band gaps and the non-Hermitian exceptional
points (EPs) of the metamaterial.

We organize the article as follows. In Sec. II, we introduce
the acoustic chiral metamaterial and discuss its eigenmode
properties. In Sec. III, we show the numerical results for the
absorption of the LCP and RCP sound in two types of lossy
metamaterial obeying the C4 and C2 rotational symmetry,

2469-9950/2023/107(13)/134103(9) 134103-1 ©2023 American Physical Society

https://orcid.org/0000-0002-2251-0736
https://orcid.org/0000-0002-2099-8942
https://orcid.org/0000-0002-3026-6972
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.134103&domain=pdf&date_stamp=2023-04-05
https://doi.org/10.1103/PhysRevB.107.134103


QING TONG, JENSEN LI, AND SHUBO WANG PHYSICAL REVIEW B 107, 134103 (2023)

(a) (b)

(c)

(d)

FIG. 1. (a) Unit cell of the 3D acoustic metamaterial. (b) Internal
structure of the resonators. The geometry parameters are R = 5 cm,
h = 1 cm, a = 12.1 cm. (c) Band structure of the metamaterial. B4,
B6, B7, and B9 denote the lowest four bands with circularly polar-
ized eigenstates. (d) Pressure fields at ka/π = 0.2 for B4, B6, B7,
and B9. The blue and red arrows denote the circulating direction of
the eigen pressure fields for the LCP and RCP states, respectively.

respectively. Section IV presents the complex band structures
of the lossy metamaterials, where we discuss the polarization
band gaps and the EPs to understand the CD effect. We draw
the conclusion in Sec. V.

II. THE CHIRAL METAMATERIAL

We consider a 3D metamaterial with the cubical unit cell
shown in Fig. 1(a). The unit cell comprises three chiral res-
onators mutually connected by tubes, and it obeys the C4

rotational symmetry with respect to the x, y, and z axes. Fig-
ure 1(b) shows a half of the chiral resonator, where the radius
is R = 5 cm and the height is h = 1 cm. The orange blades are
connected to the center post, and the gray blades are connected
to the outer shell of the resonator. We assume that air is filled
inside the resonator and all air-material interfaces are hard
boundaries. In the considered range of frequencies, each res-
onator supports subwavelength resonances. These resonances
endow the metamaterial with intriguing macroscopic acoustic
properties.

We first calculate the band structure of the metamaterial
by using a finite-element package COMSOL MULTIPHYSICS.
The result is shown in Fig. 1(c) for the wave vector in the
z direction. The fourth to ninth bands (counting from bot-
tom) correspond to the eigenmodes dominated by the dipole
resonances of the chiral resonators. Here, we focus on the
bands labeled as B4, B6, B7, and B9. The eigenmodes of

(a)

(b)

(c)
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FIG. 2. (a) The metamaterial with 15 units in z direction and
periodic in x and y directions. The transverse sound is excited by
ports on the left end of the metamaterial. (b)–(e) Averaged velocity
vectors in the metamaterial at the frequency f = 0.625 kHz (b and c)
and 0.79 kHz (d and e). The yellow circles with the arrow show the
circulating direction of the velocity field on the xy plane.

these bands are circularly polarized transverse sound [42], and
their pressure fields are shown in Fig. 1(d) for ka/π = 0.2.
As seen, the fields represent acoustic dipoles oscillating in
a direction perpendicular to the axis of the resonators. The
arrowed circles denote the rotation direction of the eigenfields.
The red and blue arrowed circles correspond to the RCP states
and LCP states, respectively. The velocity field averaged over
the unit cell also circulates in the same direction. The col-
lective motion of the acoustic dipoles gives rise to circularly
polarized transverse sound macroscopically. The transverse
sound of the bands B4 and B6 (B7 and B9) have opposite
handedness and carry opposite spin angular momentum.

To demonstrate the emergence of circularly polarized
transverse sound, we consider the metamaterial with 15 unit
cells in the z direction, as shown in Fig. 2(a). Periodic bound-
ary conditions are applied in the x and y directions. To excite
the system, we set four input ports at the four tubes on the
left side of the unit in Fig. 2(a) with the phases 0, 0.5π , π ,
and 1.5π , respectively. The azimuthal gradient of the phase
decides the handedness (LCP or RCP) of the excited circularly
polarized transverse sound. In addition, we set another four
output ports on the right side of the metamaterial to determine
the transmission. We consider two frequencies, 0.625 and
0.79 kHz, corresponding to the frequencies marked by the
dashed lines in Fig. 1(c), where four eigenstates (two are of
LCP and two are of RCP) can be excited. To visualize the
transverse sounds, we average the velocity field over each unit
cell and plot the averaged velocity vectors (denoted by the red
and blue arrows) for the 15 unit cells in Figs. 2(b)–2(e). We
observe that the velocity vectors indeed rotate in the xy plane,
corresponding to spin angular momentum in the longitudinal
direction (i.e., z direction). The arrowed yellow circles denote
the temporal evolution of the velocity vectors, with the arrows
indicating the circulation direction. At either frequency, the
two transverse sounds carry opposite spins, allowing the ex-
ploration of their different absorption inside the metamaterial.
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FIG. 3. (a) The three-layer metamaterial with loss uniformly
added to the middle layer (colored in blue). (b) Reflection, trans-
mission, and (c) absorption as a function of frequency for the RCP
(+) and LCP (−) sounds with α = 0.006. The inset in (b) shows
the regions containing loss (blue colored), which satisfies the C4

symmetry. (d) Absorption of the LCP and RCP sounds as a function
of the loss α at 0.65 kHz. In (c) and (d), the absorption difference
(�A) is multiplied by ten for easy visualization.

III. ACOUSTIC CIRCULAR DICHROISM

We now consider the metamaterial with loss to investigate
the CD effect of the transverse sound. As shown in Fig. 3(a),
we employ a three-layer sandwich structure: the bottom and
top layers are lossless, while the middle layer (highlighted in
blue) contains loss. The loss is introduced into the unit cells
by adding an imaginary part to the sound speed v(1 + iα) with
α characterizing the loss strength, which is a common way
to simulate loss in acoustic systems [43,44]. We apply ports
to excite the system (same as in Fig. 2) from the bottom of
the lattice. The excited transverse sound propagates through
the middle lossy layer and is measured in the top layer to
determine its transmission. This directly maps to the usual
configuration of optical CD, where an optical structure is
sandwiched by air and reflection/transmission is measured in
air. We apply COMSOL to simulate the system and calculate the
reflection (R±) and transmission (T±) of the incident sound.
The absorptions can then be determined as

A± = 1 − R± − T±, (1)

�A = |A+ − A−|, (2)

where “+” (“−”) denotes the RCP (LCP) state and �A is the
differential absorption of the RCP and LCP sounds.

We first consider the case with loss uniformly added to
all the chiral resonators in the middle blue-colored layer.
Figure 3(b) shows the numerical results of the reflections
(solid lines) and transmissions (dashed lines). The inset shows
the unit cell with the blue-colored regions containing loss
α = 0.006 , which has C4 rotational symmetry. As seen, the
reflection R+ is nearly identical to R−, and there is a tiny dif-
ference between the transmissions T+ and T−. The absorptions
calculated using Eq. (1) are shown in Fig. 3(c) as the solid
blue and red lines. We notice that the absorptions of LCP and
RCP sounds are almost equal. As a result, the CD effect is
negligible in this case with homogeneous loss. Figure 3(d)
shows the absorption of the LCP and RCP sound as a function
of the loss strength α at f = 0.65 kHz. We notice that the
absorption A+ and A− are almost identical. The differential
absorption �A is less than 0.01 with the maximum appearing
at α = 0.006, as shown by the orange dashed line, which has
been multiplied by a factor of 10.

The optical CD effect strongly depends on the rotational
symmetry of the structures [45,46]. To explore this symmetry
dependence for acoustic CD, we break the C4 symmetry of
the metamaterial by selectively adding loss to the unit cells.
As shown in the inset of Fig. 4(a), we only add loss to the
side resonator (i.e., two opposing half resonators highlighted
in blue) with the center axis in the x direction, reducing the
symmetry of the metamaterial from C4 to C2. We numer-
ically calculated the transmission and reflection of this C2

system, and the results are shown in Fig. 4(a) for loss α =
0.1. We observe large differences in the transmissions and
reflections of the LCP and RCP sound in the frequency range
[0.600 kHz, 0.825 kHz], corresponding to the considered
bands in Fig. 1(c). The absorptions calculated with Eq. (1) are
shown in Fig. 4(b). As noticed, there is a significant difference
between the absorption of RCP sound (A+) and the absorption
of RCP sound (A−). The differential absorption �A (denoted
by the orange dashed line) is much larger than the case of
Fig. 3 and has two local maxima of about 0.5 appearing at 0.65
and 0.80 kHz. This demonstrates the strong CD phenomena
in the C2 metamaterial. We also investigate the dependence of
the CD on the loss magnitude α, and the results are shown
in Fig. 4(c) for f = 0.65 kHz. The trends of A+ and A− are
similar to those of the C4 system, but the absorption difference
�A (denoted by the dashed orange line) is much larger with
a maximum value of 0.46 at α = 0.3 (marked by the dashed
line).

The CD characterizes the different absorption of LCP and
RCP sounds at the same frequency. We note that the LCP
and RCP sounds have different wavelengths inside the chiral
metamaterial at the same frequency due to their different
dispersions. It is thus interesting to compare their absorption
for the same wavelength (or wave number) inside the meta-
material. Figure 4(d) shows the absorption of the transverse
sound corresponding to the four bands B4, B6, B7, and B9
in Fig. 1(c). We only consider the range of 0 � ka/π � 0.2
where the effective wavelength is well defined, and the excited
state is RCP for band B4 and LCP for band B7 due to their
negative group velocity in this range. As seen, the RCP sounds
(corresponding to the solid and dashed red lines) generally
have larger absorption compared with the LCP sounds (cor-
responding to the solid and dashed blue lines). This indicates
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FIG. 4. (a) Reflection, transmission, and (b) absorption of the
RCP (+) and LCP (−) sounds for α = 0.1. The inset in (a) shows
the regions with loss (blue colored), which satisfies the C2 symmetry.
(c) Absorption of the LCP and RCP sounds as a function of the loss
parameter α at 0.65 kHz. (d) Absorption of the LCP and RCP sounds
as a function of the normalized wave number ka/π for the bands B4,
B6, B7, and B9.

that a strong CD effect also happens to the circularly polarized
transverse sounds with the same wavelength (but not necessar-
ily the same frequency).

To intuitively understand the different absorption of LCP
and RCP sounds, we then study the averaged velocity fields
(averaged over one unit cell) in the three-layer metamaterial
with C2 symmetry. Figure 5(a) shows a side view of the meta-
material, where loss is added to the middle layers consisting of
five unit cells (the blue color marks the resonators containing
loss). The red and blue helical curves in the bottom layer
denote the temporal trajectories of the velocity vectors of
the incident RCP and LCP sounds, respectively. The helical
curves in the upper layer denote the temporal trajectories of
the velocity vectors of the transmitted sounds, which are in
general elliptically polarized due to the coupling between the

(a) (b)

(c)

(d)

FIG. 5. (a) Schematics of the CD effect in the acoustic metamate-
rial. The red and blue helical curves denote the temporal trajectories
of the velocity vectors for the RCP and LCP sounds on the incident
side (bottom) and the transmission side (top). (b and c) Larger
(smaller) circles denote the evolution trajectories of velocity field
for the incident (transmitted) RCP and LCP sounds. The transmitted
sounds are elliptically polarized. (d) A zoom-in comparison of the
transmitted velocity field’s trajectories under the incidence of RCP
(red) and LCP (blue) sound. We set the frequency f = 0.635 kHz
and loss α = 0.1.

LCP and RCP sounds in the C2 absorptive layer. Figures 5(b)
and 5(c) show the numerical results of the transmitted veloc-
ity fields under the incidence of the RCP and LCP sounds,
respectively, for f = 0.635 kHz and α = 0.1. The larger ar-
rowed circles denote the time-evolution trajectories of the
incident velocity fields, while the smaller ellipses denote the
time-evolution trajectories of the transmitted velocity fields.
Figure 5(d) shows a comparison between the transmitted ve-
locity fields under the incidence of LCP and RCP sounds
[corresponding to a zoom-in of the results in Figs. 5(b) and
5(c)], which are different in both amplitude and ellipticity. A
similar property also exists in the reflected fields.

IV. COMPLEX BAND STRUCTURE
AND EXCEPTIONAL POINTS

We investigate the complex band structures of the systems
to uncover the origins of the acoustic CD and the different
properties of the C2 and C4 systems. Figures 6(a) and 6(b)
show the real and imaginary parts of the complex band struc-
ture for the C4 system with loss α = 0.006 (corresponding to
the case of Fig. 3). The imaginary parts take positive values
due to the time convention eiωt adopted in COMSOL. The insets
(labeled as A, B, C, and D) on the right side show the zoom-ins
of the bands enclosed by the dashed rectangles. The insets A
and B depict the bands near the Brillouin zone centers and
boundaries, respectively, for B4 and B6. Likewise, insets C
and D show the bands closed to the Brillouin zone centers
and boundaries, respectively, for B7 and B9. We notice that
the band degeneracies are not affected by the loss due to the
protection of the C4 symmetry.
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(a)

(b)

FIG. 6. The (a) real and (b) imaginary parts of the complex band
structure for the C4 system at α = 0.006. Insets on the right side
show the zoom-ins of the bands near the zone center and boundaries,
corresponding to the dashed rectangles in (a) and (b). The solid lines
in the insets denote the analytical fitting results.

Figure 7 shows the complex band structure for the C2

system with the same loss α = 0.006 for comparison with
the C4 system. Interestingly, at the Brillouin zone center and
boundaries, the real parts of the bands remain degenerate in
a finite range of k values while the imaginary parts bifurcate
in the same range, as shown in the insets on the right side.
This indicates the emergence of non-Hermitian exceptional
points [47–49]. Obviously, these EPs derive from the diabolic
points of the original lossless system in Fig. 1(c). While the
phenomena here is similar to the EPs spawn from Dirac points
in two-dimensional photonic crystals [47], the underlying
physical mechanism is different. The emergence of these EPs
is attributed to the coupling and loss difference of the LCP and
RCP transverse dipole modes induced by the breaking of C4

symmetry. We will elaborate on this point with an analytical
model later.

(a)

(b)

FIG. 7. The (a) real and (b) imaginary parts of complex band
structure for the C2 system at α = 0.006. The insets on the right side
show the zoom-ins of the bands near the zone center and boundaries,
corresponding to the dashed rectangles in (a) and shaded rectangles
in (b). The solid lines in the insets denote the analytical fitting results.

Figures 8(a) and 8(b) show the complex band structure
for the C2 system with a larger loss α = 0.1, corresponding
to the case of Figs. 4(a) and 4(b) with a much stronger CD
effect. We notice that the EP features remain at the center
and boundaries of the Brillouin zone. At the same time, small
partial gaps appear at the frequencies of the EPs, as marked
by the blue and red ribbons in the insets of Fig. 8(a). At the
frequencies of the blue-ribbon (red-ribbon) region, only LCP
(RCP) sound can propagate through the metamaterial [16,49].
Thus, at the frequencies f = 0.62 kHz and f = 0.76 kHz, the
RCP sound cannot propagate through the metamaterial. Sim-
ilarly, at the frequencies of f = 0.65 kHz and f = 0.80 kHz,
the LCP sound cannot propagate through the metamaterial.
However, this does not necessarily indicate a large difference
in the reflection of LCP and RCP sounds at these frequencies
due to the non-Hermitian nature of the metamaterial. Whether
strong reflection will appear at the partial polarization gaps
depends on the damping of the corresponding eigenmodes. In
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(a)

(b)

FIG. 8. The (a) real and (b) imaginary parts of complex band
structures for the C2 system at α = 0.1. The right insets show the
zoom-ins of the bands near the Brillouin zone centers and bound-
aries, corresponding to the dashed rectangles in (a) and shaded
rectangles in (b). The ribbons in the insets denote the partial band
gaps. The solid lines in the insets denote the analytical fitting results.

the following, we will show that the eigenmodes’ damping
property strongly affects the reflection and the CD effect.

To understand the damping of the eigenmodes, we investi-
gate the modes’ quality factor Q corresponding to the bands
B4, B6, B7, and B9, for both the C4 and C2 systems. The
quality factor is calculated as Q = Re( f )

2Im( f ) [50]. The results are
shown in Figs. 9(a) and 9(b) as a function of the real part of
the eigenfrequency. We note that the eigenmode of each band
can be either LCP or RCP, depending on the sign of its group
velocity with respect to the phase velocity. Consequently, the
quality factor Q of each band can be divided into two parts for
the LCP (−) and RCP (+) states, respectively. As shown in
Fig. 9(a), all eigenmodes of the C4 system have approximately
the same quality factor. This explains the negligible CD
effect in the C4 system with homogenous loss. In contrast,
the quality factors of the LCP and RCP modes in the C2

(a)

(b)

FIG. 9. The quality factor Q of the eigenmodes in the (a) C4

and (b) C2 systems, corresponding to the cases of Figs. 6 and 8,
respectively. The blue and red ribbons denote polarization band gaps.

system have a large difference, particularly in the vicinity of
the polarization band gaps marked by the red ribbons. The
large difference in quality factor indicates a large difference
in the damping of LCP and RCP modes and thus explains the
strong CD effect near the polarization band gaps, in agreement
with the numerical results in Fig. 4(b). For the LCP and RCP
modes near the blue-ribbon band gaps, their quality factors are
much smaller than the modes near the red-ribbon bands, and
the difference of their quality factors are also much smaller.
Therefore, both LCP and RCP sounds at the frequencies of the
blue-ribbon region are strongly absorbed, and their reflections
are small, leading to a weak CD effect, as confirmed by the
numerical results in Fig. 4(b).

To understand the emergence of the EPs in the C2 system,
we exploit an effective Hamiltonian to describe the coupling
of the LCP and RCP modes near the Brillouin zone center
[47,48,51,52]. As for the C4 system with homogenous loss,
the effective Hamiltonian can be expressed as

HC4 =
(

ω0 − iγ (vR + ivI )k

(vR + ivI )k ω0 − iγ

)
, (3)

which has the complex eigenvalues

ω = ω0 − iγ ± k(vR + ivI ). (4)

Here, ω0 is the eigenfrequency at k = 0, where the LCP and
RCP modes are degenerate; vR and vI are the real and the
imaginary parts of the complex group velocities, respectively;
γ denotes the loss.

In the C2 system, loss is selectively added to only one res-
onator in each unit cell. The breaking of C4 symmetry opens a
gap at k = 0, which can be characterized by a perturbation
term δ/2 in the Hamiltonian. The LCP and RCP modes at
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TABLE I. Fitting parameters for C4 and C2 systems.

System α ω0 γ vR vI Inset

C4 0.006 617.61 −3.71 2.96 0.018 A (Fig. 6)
803.5 −4.82 4.97 0.03 C (Fig. 6)

α ω0 γ1 γ2 vR vI δ Inset

C2 0.006 617.12 −1.53 −0.33 2.96 0.0011 0.036 A (Fig. 7)
803.66 −0.01 −2.30 4.99 −0.013 0.0075 C (Fig. 7)

0.1 622.12 −24.87 −5.13 2.98 0.03 4.77 A (Fig. 8)
800.40 −0.22 −39.12 4.98 −0.21 4.22 C (Fig. 8)

k = 0 now have different loss γ1 and γ2 (γ1 �= γ2):

HC2 =
(

ω0 − iγ1 + δ
2 (vR + ivI )k

(vR + ivI )k ω0 − iγ2 − δ
2

)
, (5)

which has the complex eigenvalues

ω = ω0 − i
(γ1 + γ2)

2

± 1

2

√
[δ − i(γ1 − γ2)]2 − 4k2(vI − ivR)2. (6)

These analytical expressions of the complex eigenvalues
in Eqs. (4) and (6) are employed to fit the numerical results
for both the real and imaginary parts. The fitting results are
shown as solid lines in the insets of Figs. 6–8, accordingly. We
notice good quantitative agreements between the analytical
and numerical results. In particular, the effective Hamiltonian
correctly captures the EP features in the C2 systems. The
fitting parameters for both C4 and C2 systems with different
losses are summarized in Table I. We note that the mode
damping parameters γ1,2 take negative values due to the time
convention eiωt adopted in COMSOL.

The above effective Hamiltonians well explain the emer-
gence of the EPs and the enhancement of CD by the EPs. In
the C4 system, the LCP mode of the B4 band and the RCP
mode of the B6 band are orthogonal at k = 0 with vanished
coupling. The damping of the LCP and RCP modes at the
same excitation frequency are approximately equal due to
homogeneous loss added to all resonators of the unit cell.
Thus, their quality factors are almost equal [corresponding to
the results in Fig. 9(a)]. In the C2 system, the inhomogeneous
loss breaks the C4 rotational symmetry and induces coupling
between the original LCP and RCP modes at k = 0, which
gives rise to the polarization band gaps. In addition, the two
modes have different dampings due to the inhomogeneous
material loss. These together give rise to the EPs and the bifur-
cation of the imaginary parts of the eigenfrequencies, leading
to enlarged damping contrast of the LCP and RCP modes at
the same excitation frequency and thus a larger difference in
their quality factors [corresponding to the results in Fig. 9(b)].
Therefore, the strong CD effect in the C2 system is attributed
to both the polarization band gaps and the EPs.

V. CONCLUSION

In conclusion, we demonstrate the acoustic CD effect in a
3D chiral metamaterial supporting circularly polarized trans-

verse sound. We have investigated the effect in two types
of systems with C4 and C2 rotational symmetry, respectively.
In the C4 system with loss homogeneously added to all res-
onators of the unit cell, we observe a negligible acoustic CD
effect. On the other hand, by selectively adding loss to part of
the unit cell, reducing the system’s rotational symmetry from
C4 to C2, the CD effect is enhanced strongly. With analysis
of their complex band structures and quality factors of the
eigenmodes, we uncover that the strong acoustic CD in the
C2 system is attributed to polarization band gaps and the
emergence of non-Hermitian EPs. The polarization band gaps
induce selective transmission and absorption of the circularly
polarized transverse sound with a particular handedness. The
EPs give rise to bifurcations of the imaginary parts of the
eigen frequencies. These together enhance the CD effect in
the C2 system. The results here contribute to the understand-
ing of chiral sound-matter interactions in metamaterials and
phononic crystals.

It will be interesting to experimentally demonstrate the
discussed phenomena. The metamaterial structures can be
fabricated using 3D printing. Loss can be introduced into
the structures by adding porous materials such as sponges.
The use of porous materials for sound absorption and atten-
uation has been thoroughly studied in the literature [53,54].
The transverse sound can be excited by using an array of
speakers. The reflection and transmission can be measured
with a microphone. The acoustic CD effect can be applied to
manipulate transverse sound for high-efficiency acoustic com-
munications, where the full vector properties of transverse
sound allow the encoding of more information compared to
conventional longitudinal sound. It can also find applications
in imaging, sensing, and analyzing chiral particles/structures.
There is plenty of room to explore the physics of trans-
verse sound in addition to the CD effect, e.g., the spin-Hall
effect of transverse sound at an interface and the para-
metric instability, extensively studied in mechanical meta-
materials [55–57], of acoustic systems involving transverse
sound.
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