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Given a gapped boundary of a (3+1)-dimensional [(3+1)D] topological order (TO), one can stack on it a
decoupled (2+1)D TO to get another boundary theory. Should one view these two boundaries as “different”? A
natural choice would be no. Different classes of gapped boundaries of (3+1)D TO should be defined modulo
the decoupled (2+1)D TOs. But is this enough? We examine the possibility of coupling the boundary of a
(3+1)D TO to additional (2+1)D TOs or fractonic systems, which leads to even more possibilities for gapped
boundaries. Typically, the bulk pointlike excitations, when touching the boundary, become excitations in the
added (2+1)D phase, while the stringlike excitations in the bulk may end on the boundary but with end
points dressed by some other excitations in the (2+1)D phase. For a good definition of “class” for gapped
boundaries of (3+1)D TO, we choose to quotient out the different dressings as well. We characterize a class
of gapped boundaries by the stringlike excitations that can end on the boundary, whatever their end points
are. A concrete example is the (3+1)D bosonic toric code. Using group cohomology and category theory,
three gapped boundaries have been found previously: rough boundary, smooth boundary, and twisted smooth
boundary. We can construct many more gapped boundaries beyond these, which all naturally fall into two classes
corresponding to whether the m-string can or cannot end on the boundary. According to this classification, the
previously found three boundaries are grouped as {rough}, {smooth, twisted smooth}. For a (3+1)D TO char-
acterized by a finite group G, different classes correspond to different normal subgroups of G. We illustrate the
physical picture from various perspectives including coupled layer construction, Walker-Wang model, and field
theory.

DOI: 10.1103/PhysRevB.107.125425

I. INTRODUCTION

To this date, the gapped boundaries and interfaces of
(2+1)-dimensional [(2+1)D] topological phases of matter
have been well-studied using the formalisms of Lagrangian
subgroups, anyon condensations, Frobenius algebras and tun-
neling matrices, etc. [1–16]; see [17] for a review. Although
important progresses such as [18,19] are still being made, the
community has gradually shifted its attention towards (3+1)
dimensions.

There are several works on the boundaries’ theories of
(3+1)D topological orders, which we will review in Sec. I A.
The subject is, however, not closed. One of the most important
open questions is a sharper definition of different classes of
gapped boundaries. Given a gapped boundary of a (3+1)D
topological order, if one stacks another (2+1)D topological
order on top that does not interact with the (3+1)D theory
or its boundary, the new boundary theory will include addi-
tional deconfined excitations from the added (2+1)D theory.
Naively, before and after the stacking, the gapped boundaries
have different contents of topological excitations and should
therefore be viewed as different. This difference is, however,
artificial and not intrinsic to the (3+1)D topological order
itself. It is therefore natural to define a class of gapped bound-
aries of (3+1)D topological orders by modding out these
redundant effects of the added decoupled (2+1)D topological
orders. This understanding, although not yet explicitly spelled
out (to our knowledge) in literature, is a folklore among
experts.

In this work, we examine the question of whether quoti-
enting out decoupled (2+1)D theories is enough. We find a
large family of unexplored gapped boundaries with nontriv-
ial surface excitations that are not present in the bulk. Such
gapped boundary theories are constructed from coupling an
additional (2+1)D theory to the (3+1)D bulk. The (2+1)D
theory can be a topological order or something more exotic
such as a fractonic theory. The resultant gapped boundaries
are typically anomalous, in the sense that the surface exci-
tations and antiexcitations may not be freely separable from
each other. In the simplest example of (3+1)D bosonic Z2

toric code, we find numerous new gapped boundaries, which
neatly fall into two different classes represented by the two
subgroups of Z2. The two classes correspond to whether the
m-string can or cannot end on the boundary, regardless of what
lives at its end point. In general, we distinguish various classes
of gapped boundaries of (3+1)D topological orders based on
the different type strings in the bulk that are allowed to end on
the boundary. For convenience of the readers, we will present
a preview of the main ideas in Sec. I B.

Before moving on to more details, we will comment
on another motivation of this work. In (3+1) dimensions,
more exotic physics can be present on top of topological
orders, such as restricted, fractionalized mobilities of ex-
citations in fracton phases of matter [20–27], which are
generally described by tensor gauge theories [28–47]. Re-
cently, Refs. [48–51] discussed the gapped boundary theories
for certain fracton phases of matter. However, in order to
have a full understanding of all possible gapped boundaries
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for fracton phases of matter, a better understanding of the
topological phases of matter, which have simpler algebraic
structures, is required.

The remainder of the paper is organized as follows. We
will review the existing works on the boundary theory of
topological phases in (3+1)D in Sec. I A and present a pre-
view of the main construction of general gapped boundaries
in Sec. I B, using the example of (3+1)D Z2 toric code. Then,
in Secs. II, III, and IV, we will use different formalisms to
illustrate the idea in more detail, including the coupled layer
construction, the Walker-Wang-type model, and quantum field
theory. We will also discuss the anomaly inflow [52] in the
field theory language to reconstruct the (3+1)D bulk theo-
ries from the boundary theories. Section V demonstrates an
example where the (2+1)D ZN plaquette model, which has
subsystem symmetries, is used to construct a gapped boundary
for the (3+1)D toric code. Finally in Sec. VI we discuss the
expectations for general (3+1)D topological orders beyond
toric code, and comment on other issues.

A. Previous works

Prior to this work, three different types of gapped bound-
aries for the (3+1)D bosonic Z2 toric code have been
discussed in the literature, called the rough boundary, smooth
boundary, and twisted smooth boundary. (The names rough
and smooth originated from the shape of the boundary Hamil-
tonians written in terms of Pauli matrices.)

Reference [53] studied the gapped boundaries of twisted
gauge theories by systematically constructing the boundary
Hamiltonians on the lattice. If the bulk theory is characterized
by a gauge group G and a four-cocycle α ∈ H4[G,U (1)]
in the fourth cohomology group of G over U (1), a gapped
boundary is determined by a subgroup K ⊂ G and a three-
cochain β ∈ C3[K,U (1)] in the third cochain group of K
over U (1). In the case of (3+1)D Z2 bosonic toric code,
G = Z2 and α = 1 is trivial, there are two subgroups K1 = Z1

and K2 = Z2. C3[K1,U (1)] is trivial, giving rise to the rough
boundary condition, while the two elements in C3[K2,U (1)]
lead to the smooth and twisted smooth boundary conditions,
respectively.

More recently, Ref. [54] studied the gapped boundaries of
Z2 toric code from the perspective of string condensations and
Lagrangian algebras in the modular 2-category. In addition,
they provided a coupled layer construction picture for the
three different gapped boundaries, which we will also use and
generalize in Sec. II.

Another way of obtaining gapped boundary conditions
was described in Ref. [55], where instead of breaking gauge
symmetries at the boundary, one enhances the gauge symme-
tries. This in principle can lead to more than three gapped
boundaries for the Z2 toric code. The new gapped boundaries
constructed in our work include examples that cannot be ob-
tained through the symmetry enhancing procedure described
in Ref. [55] (see, for example, Secs. III C 4 and V); however,
at this stage it is unclear whether all the gapped boundaries
available through symmetry enhancing can be obtained from
our setup and future investigations are needed to pin down the
relationships.

3d TC

2d TO

e

b

m

f

m

f

m

f

FIG. 1. General procedure of finding a gapped boundary for the
3D Z2 toric code. Left: condense the composite of the charge e with
a bosonic excitation b in a 2D gapped phase of matter. The m-string
can end on the surface with the end point being an excitation f , if f
has mutual semionic statistics with b. There can be no f or multiple
fi’s. Right: the f excitations, which can be deconfined in the original
decoupled 2D TO, become confined when the composite b ⊗ e is
condensed, because they are connected by an m-string in the bulk.

Reference [56] discussed the gapless boundary theories for
the 3D ZN toric code as well as the case with a � term.
The authors also studied the bulk-boundary correspondence
by matching the modular S and T matrices computed from
the boundary field theories with those computed in the bulk.
Reference [57] argued using category theory that, given an
n-dimensional gapped boundary theory, one can uniquely re-
construct its (n + 1)-dimensional anomaly free topological
order by taking the center of the boundary theory. We will
discuss the bulk-boundary correspondence from another per-
spective using anomaly inflow [52]; see Secs. IV C and V B.
Typically the anomalies of the boundary theories will be can-
celed by (3+1)D symmetry protected topological phases.

Below for convenience we will use (2+1)D and 2D inter-
changeably and also (3+1)D and 3D.

B. Main idea

Even in the simplest case of Z2 toric code, we find sig-
nificantly many more options for gapped boundaries. We
summarize the construction in Fig. 1 using this example.

For any 2D gapped phase of matter with a bosonic excita-
tion b (which can be trivial), one can condense the composite
of b with the charge excitation e in the toric code. This is
allowed because the composite is again bosonic. If there exists
another excitation f in the 2D theory that has mutual semionic
statistics with b, then the composite m ⊗ f commutes with
e ⊗ b such that the m-string in the bulk is allowed to end at the
boundary, with its end point being f . However, if one creates
a pair of ( f ⊗ m, f̄ ⊗ m̄), the excitations and antiexcitations
cannot be freely separated from each other since the m and m̄
are connected by an energetically costly m-string in the bulk.
In this sense, the boundary is anomalous. We have deliberately
kept the 2D phase to be general in the descriptions above:
while most of the examples in our paper require the 2D theory
to be a topological phase of matter, one can also easily con-
struct examples where the 2D theory is not topological; see,
for example, Sec. V, where the ZN plaquette model is used
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and the surface excitations need to satisfy additional mobility
constraints.

In general there can be more than multiple fi’s, which can
all serve as the end points of the m-string on the boundary.
They may have nontrivial mutual statistics with each other.
It can also happen that there does not exist any f in the 2D
phase that satisfies the requirement. In this case, the m-string
in the bulk is not allowed to end at the boundary. All gapped
boundaries of toric code fall into two classes corresponding to
the following two situations.

(i) Smooth class. For a fixed b, there exists at least one f
in the 2D phase which has semionic statistics with b. Then
the m-string can end on the boundary with end point dressed
by f .

(ii) Rough class. For a fixed b, no such f is available in the
added 2D phase and the m-string cannot end on the boundary.

For general 3D topological phases characterized by the
representation category of a finite group G, different classes of
gapped boundaries correspond to different normal subgroups
of G; see Sec. VI.

II. COUPLED LAYER CONSTRUCTION

In this section, we make use of the coupled layer construc-
tion of the 3D bosonic and fermionic toric codes and discuss
their gapped boundary theories.

Consider one stack of (2+1)D Abelian topological orders,
each with the K-matrix Chern-Simons Lagrangian [58–60],

Ll = KIJ

4π
aI

l,μ∂νaJ
l,λ, (1)

where l ∈ {1, 2, . . . , L0} is the layer index and I ∈
{1, 2, . . . , r} with r = dim(K ). We can condense composite
particles in each two consecutive layers to get a 3D topolog-
ical phase. This procedure was previously described in [61].
Denote the linearly independent composite particles by

n(l )
i = pi ⊗ zl + qi ⊗ zl+1, (2)

where pi and qi are r-component integer vectors that label the
quasiparticle types in layer l and l + 1, respectively, and zl is
an L0-component unit vector with the lth entry being one and
all the rest being zero. For the condensates to be bosonic, we
require

n(l )T
i K−1n(l ′ )

j = 0, ∀i, j, l, l ′. (3)

Here K = K ⊗ 1L0×L0 is an extended K matrix for the stack
and i ∈ {1, 2, . . . r/2}. Equation (3) can be rewritten explicitly
using the data of the 2D layers 1

pT
i K−1 p j + qT

i K−1q j = 0, pT
i K−1q j = 0, ∀i, j. (4)

The choice of sets {pi} and {qi} is defined modulo a linear
transformation by an integer unimodular matrix U that acts as
p′ = U p and q′ = Uq.

1Equation (4) is not the most general null condition that one can
write down; see, for example, Ref. [3], Sec. IV B 2. But this fact is
not very important for the purpose of this work.
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e ē
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FIG. 2. Bosonic exciton condensations give rise to 3D bosonic
ZN toric code. Black lines are 2D ZN toric code layers. Left: blue
nodes describe condensates. Right: green nodes describe deconfined
excitations.

As an example, take conventional Zn topological order in
each layer, with K = Nσx. Consider bosonic exciton/dipole
condensation given by

p = (−1, 0)T , q = (1, 0)T , (5)

where a periodic boundary condition is assumed. An intuitive
picture can be found in Fig. 2. The charge excitations e in
the 2D layers can now combine with the condensates, hop
vertically, and become a deconfined quasiparticle in 3D. The
magnetic string commutes with all condensates and remains
deconfined. So we have a 3D bosonic toric code (of type
ebmb).

One can also consider the following fermionic exciton
condensation as depicted in Fig. 3:

p = (−1, −1)T , q = (1, 1)T . (6)

Now the fermions ε = e × m are mobile in three dimen-
sions, while the m-string also remains deconfined. We get the
fermionic toric code model of type (e f mb).

A. 3D bTC with boundary

Now we consider a gapped boundary of the bosonic toric
code on the top. The usual smooth boundary corresponds to
simply the same left panel of Fig. 2, but without the dots on
top. The e particles are confined on the boundary and m-string
can safely end on the boundary.

ε̄

ε ε̄

ε ε̄

ε ε̄

ε

· · ·

· · ·

ε

· · ·
m

m

m

m

m
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FIG. 3. Fermionic exciton condensations give rise to 3D
fermionic ZN toric code.
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e

· · ·

e

ē
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FIG. 4. Left top: rough boundary of 3D bTC. Right top: ex-
change smooth boundary. Left bottom: condensates for the twisted
smooth boundary at N = 2. Left right: deconfined excitations for the
twisted smooth boundary.

The rough boundary corresponds to additionally condens-
ing charge e on the top layer and the m-string can no longer
end on the boundary. In the bulk, the condensates are de-
scribed by the same p = (−1, 0)T and q = (1, 0)T as before
when constructing the 3D bTC, but near the boundary, we
have another p̃ = (1, 0)T condensed on the top layer. An
intuitive picture is shown in the left top panel of Fig. 4.

Another gapped boundary condition exists in the literature
for N = 2 [53,54], called the twisted smooth boundary. One
can obtain this boundary theory again using the coupled layer
construction [54], but now instead of coupling layers of 2D
toric codes, on the boundary we add one layer of double
semion, with K̃ = 2σz. In the bulk the condensates are again
the same as (5). Near the boundary, however, the top two
layers have the following condensate:

p = (1, 0)T , q̃ = (1, 1)T . (7)

The tilde on q indicates that it lives in the double semion layer.
This is depicted in the left bottom panel in Fig. 4 and the right
bottom panel shows the deconfined excitations. The e particle
can freely move in 3D, but upon touching the boundary, it be-
comes the boson ss̄. The m-string can still end on the boundary
but the end point can be either the semion s or the antisemion
s̄.

Yet another possible boundary condition is allowed, by
again taking the 2D TO to be ZN toric code, but condensing
near the boundary the composite of ē ⊗ m:

p = (−1, 0)T , q̃ = (0, 1)T . (8)

Since m is a boson, the condensation is allowed. This means
the charge e becomes m-anyon when hopping onto the bound-
ary, while the m-string has its end point being an e-anyon on
the boundary. We name this the exchange smooth boundary

because it is obtained from the smooth boundary by exchang-
ing e ↔ m on the boundary.

One can consider adding a more general K̃ theory on the
top layer instead of the double semion model, as long as
there exists a boson q̃ in the theory. Then one can condense
the p = (−1, 0)T in the next-to-boundary toric code layer
together with this q̃. The e-charge in the bulk will become
q̃ when reaching boundary and the m-string can end on the
boundary if and only if, in the added layer, there further exists
at least one excitation ĩ such that q̃T K̃−1 ĩ = 1/N .

Naively there seems to be an infinite number of gapped
boundary conditions for the 3D bTC, corresponding to dif-
ferent combinations of choices {K̃, q̃}. But they fall naturally
into two classes based on whether there the m-strings can end
on the boundary or not, regardless of what lives on the end
point. The usual smooth and rough boundaries are thus typical
representatives of these two classes, respectively.

B. 3D fTC with boundary and more general models

The gapped boundary theory for the fermionic toric code
is similar. In the bulk, we take the condensate (6) as usual,
while on the boundary, we can add a top layer with general K̃ ,
as long as it includes some fermionic excitation q̃, such that,
together with p = (−1, −1)T , they satisfy

pT
i K−1 p j + q̃T

i K̃−1q̃ j = 0, ∀i, j. (9)

One can be more general and similarly study the gapped
boundaries for all 3D theories that can arise from the coupled
layer construction using K-matrix Chern-Simons theories. If
the bulk theory is characterized by the set {pi, q j} in Eq. (4),
on the boundary we condense {pi, q̃ j} that again satisfy (9).
One can again discuss whether stringlike excitations can end
on the boundary by looking at its mutual statistics with the
condensate.

III. LATTICE MODEL

In this section, we provide a microscopic description for
the discussions in Sec. II A. We will use a Walker-Wang model
[62] in the bulk, which describes a large class of (3+1)D
topological phases, and a string-net model [63] on the surface,
which describes a large class of (2+1)D topological phases,
and then couple them together.

A. Walker-Wang model in the bulk

The Walker-Wang geometry is shown in Fig. 5. For conve-
nience, in this section we will focus on the Z2 case in the bulk.
Extensions to the ZN cases can be straightforwardly accom-
plished by using generalized Pauli matrices and keeping track
of the Hermitian conjugates correctly. On each edge of Fig. 5,
there lives a spin-1/2 degree of freedom. The Walker-Wang
Hamiltonian takes the form [62]

HWW = −
∑

v

Av −
∑

p

Bp,

Av =
∏

i∈s(v)

Zi, Bp =
∏
i∈∂ p

Xi,
(10)
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FIG. 5. Left: Walker-Wang trivalent graph.

where s(v) is the set of three edges attached to vertex v and
∂ p is the set of ten edges of a plaquette p. All the terms in
the Hamiltonian mutually commute. The ground state satisfies
Av = 1 = Bp for all v and p and the ground state degeneracy
is 23 on T 3.

There are two types of excitations corresponding to the
violations of the vertex and plaquette terms, respectively. The
excitation creation operators are

We(C) =
∏
i∈C

Xi, Wm(S ) =
∏
i∈S

Zi, (11)

where C is a 1D path on the lattice. S is a 2D membrane
on the dual lattice and Zi’s act on the edges piercing the
membrane. We(C) commutes with the Hamiltonian except at
its end points, so the defects on the end points are deconfined.
Wm(S ) has an energy cost which scales linearly with the length
of ∂S .

B. String net on the boundary

We define the string-net model [63] on a lattice that looks
like the top surface of the Walker-Wang model, where all the
open tails pointing out of the surface are removed; see Fig. 6.
This can be easily deformed into a honeycomb lattice, on
which we define our string-net model. The basic data to define
a string-net model includes I = {0, 1, . . . , N − 1}, a set of
labels assigned to the directed links, di ∈ R, quantum dimen-
sion of each label i ∈ I , Ni jk ∈ Z+

0 , the fusion rule for i, j, k ∈
I which describes how different links should meet at a vertex,
and (symmetrized) 6 j symbols Glmn

i jk ∈ C. In addition, each la-
bel j has a conjugate j∗ ∈ I , and taking the conjugate amounts
to reversing the direction (arrow) of the link. In the original
string-net model, it is easy to describe single flux excitations
but hard to describe dyonic and many-flux excitations. So here
we will make use of the extended string-net model developed
in [64] and many examples therein. The extension simply
works as follows: we associate to each vertex a short open
tail qi, such that the bottom panel of Fig. 6 turns into Fig.
7. For simplicity, from now on we restrict ourselves to the
multiplicity-free case where Ni jk = δi jk ∈ {0, 1}. The Hilbert
space is spanned by different labelings of all the links on the
honeycomb lattice that satisfy the hard constraint δi jk = 0 near
each vertex. The extended string-net Hamiltonian consists of

FIG. 6. Surface geometry of the Walker-Wang model (top),
which is nothing but the honeycomb lattice (bottom).

two terms,

HSN = −
∑

v

Qv −
∑

p

Bp, Bp = 1

D

∑
s

dsBs
p, (12)

where D = ∑
i d2

i is the total quantum dimension. The Qv

term imposes the zero-charge constraint near the vertex v,

Qv = δq1,0 . (13)

FIG. 7. Short charge tail qi’s are added near each vertex.
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The Bs
p term acts on plaquette p in the following way:

(14)

Restriction to the Q = 1 subspace recovers the original string-
net model.

Each elementary type of dyonic excitation J in the ex-
tended model is associated with an irreducible representation
of the tube algebra and corresponds to a solution for the
half-braiding tensor zp jqt in the following equation:

∑
lrs

drdszlnqrzpmlsG
m∗sl∗
nr∗t Gs∗ pm

jn∗t Gm∗tr∗
q∗n∗k

= δmn j∗δ jkzp jqt/d j . (15)

Lastly we define the dyon creation operator near edge e:

(16)

Here charges p and q∗ are created at the end points of this
short dyonic string.

C. Coupling the two models

We now stack the 2D string-net surface on the top boundary
of the Walker-Wang model, such that each link of the hon-
eycomb lattice hosts a (2 × N)-dimensional Hilbert space, 2
coming from the spin-1/2 of the Walker-Wang model and N
being the cardinality of the label set I of the string-net model.

We couple the Z2 Walker-Wang model and a general
string-net model in the following way:

HJ
c = −

∑
j

∑
p,q

Xj ⊗ W J;pq∗
j + H.c., (17)

where j is a link on the honeycomb lattice. Xj acts on the
Walker-Wang qubit, while W J,pq∗

j acts on the string-net link.
The term HJ

c associates a short open string of charges e in
the Walker-Wang model with a short string of bosonic dyon J
with charged end points p and q∗ in the string-net model. HJ

c
create, annihilate, and more generally proliferate the compos-
ite of e ⊗ J . As a result, excitations that braid nontrivially with
e ⊗ J become confined. In addition, deconfined excitations
related by fusion with e ⊗ J become identified.

We now fix the other boundary terms. The Av terms which
entirely live on the surface of the Walker-Wang model anti-
commute with HJ

c . This is natural as such Av terms create
short loops of m which are confined by the e ⊗ J condensate.
However, if there exists an anyon K in the string-net model
which has mutual semionic statistics with J , the compos-
ite m ⊗ K is not confined by the condensate. Therefore, we
should include the terms which create short loops of m ⊗ K.

They read

ÃK
v =

( ∏
j∈s(v)

Zj

)
⊗ OK

v , (18)

where OK
v creates a shortest loop of K dyon around the vertex

v. Schematically OK
v = ∑

q1,q2,q3
PW

K ;q∗
1q3

e3 W
K ;q2q∗

3
e2 W

K ;q1q∗
2

e1 .
The three W K operators, as defined as in Eq. (16), create the
three shortest open strings near the three edges surrounding
the vertex v. P contracts the charges which live at the end
points of these short strings, thus connecting the three pieces
into one short closed loop. More details about the contraction
of charges are reviewed in the Appendix. There is one ÃK

v

term for each K that has mutual semionic statistics with J . The
mutual statistics can be derived from the half-braiding tensor
in the following way. The modular S matrix can be written as

SJK =
∑
p,q,t

dt zJ
pqpt z

K
qpqt , (19)
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which is independent of the charge tails p′, q′ of the short dyon
string as long as these charges are allowed to live on the end
points of the dyon string. The monodromy matrix, which plays
an important role in anyon interferometry [65–67], is related
to the modular S matrix by

MJK = S∗
JK S00

S0JS0K
. (20)

Mutual semionic statistics between J and K simply means
that MJK = −1. This requirement guarantees that OK

v anti-
commutes with the W J

j in HJ
c , such that [ÃK

v , HJ
c ] = 0. This

term can be interpreted as dressing the end point of an m-string
extended from the bulk a dyon K .

We move on to the remaining Hamiltonian terms on the
boundary. Deep inside the bulk of the Walker-Wang model,
the original stabilizers of (10) trivially commute with HJ

c be-
cause they have no shared links with HJ

c . Near the surface, the
Bp terms always commute with HJ

c . There are some Av terms
that have two links living on the surface and one link living
in the bulk. Such terms also commute with HJ

c because those
two links living on the surface of the Walker-Wang model are
identified as one link on the honeycomb lattice, see Fig. 6,
and acting Pauli matrix Z twice on that degree of freedom is
identity.

Within the string-net model, there can exist other dyons
M which have trivial statistics with J and are therefore de-
confined. They correspond to 2D mobile quasiparticles and
are not attached to strings extending into the bulk. We should
therefore also include the short loops of such dyons; finally
arriving at the full Hamiltonian is H = Hbulk,WW + Hsurface,
with

Hsurface = −
∑
j,p,q

Xj ⊗ W J;pq∗
j −

∑
v

∑
K

′ÃK
v

−
∑

p

Bp −
∑

v

∑
M

′OM
v + H.c. (21)

Here the
∑′

K indicates that we only sum over K’s that have
mutual semionic statistics with J and the

∑′
M means the

summation is over M’s that have trivial statistics with J .
While there are many gapped boundaries of the Z2 Walker-

Wang model characterized by a choice of string-net model
together with a boson quasiparticle J , there are only two
classes of gapped boundaries corresponding to whether there
exists at least one K that is mutual semionic with J , i.e.,
whether there exists at least one ÃK

v term.

1. Example: Rough boundary

In the rough boundary case, the string-net model is taken to
be trivial, i.e., I = {0}, d0 = 1 and G000

000 = 1, zJ=0
0000 = 1. The

W J operator is thus trivial and

HJ
c = −

∑
j

Xj ⊗ 1. (22)

Not surprisingly, this is simply condensing the charges in the
toric code on the surface. Now there does not exist any dyon
K that has mutual semionic statistics with the J = 0, so there
is no ÃK

v term and the m-string cannot end on the boundary.
Nor is there a nontrivial M that trivially braids with J . So the

surface Hamiltonian only contains HJ
c and we get the expected

rough boundary.

2. Examples: (Exchange) smooth boundary

In the cases of smooth boundary and exchange smooth
boundary (the latter is defined in Sec. II A), the string-net
model is taken to be the (2+1)D toric code model. The string-
net data for ZÑ toric code models are 2

I = {0, 1, . . . , Ñ − 1}, di = 1 ∀i ∈ I,

Ni jk = δi jk = 1 iff i + j + k = 0 mod Ñ,

Gi jm
kln = δi jmδklm∗δ jkn∗δinl ,

z(g,μ)
p jqt = δp,μδq,μe2π i jg/Nδp jt∗δ jqt∗ . (23)

Notice that the dyons are labeled by (g, μ), where g ∈ I labels
the flux and μ ∈ I labels the charge. We will take Ñ = 2 for
convenience; the general Ñ case is a straightforward general-
ization.

For the smooth boundary, we take the J = (0, 1) in HJ
c ,

such that W J;pq∗
j , when acting on a graph as in (16), is only

nonzero when p, q = 1, and the amplitude is zJ
1 j′1 j = (1 −

δ j j′ ). Consequently the HJ
c associates a charge of the Walker-

Wang model to a charge of the string-net model. The K =
(1, 0) dyon has mutual semionic statistics with J and W K ;pq∗

is nonzero when p, q = 0, and the amplitude in Eq. (16) is
simply zJ

0 j′0 j = δ j j′e−iπ j . One can easily double check that
W J

e W K
e = −W K

e W J
e , such that the ÃK

v term commutes with
HJ

c . There is nothing left in the string-net model that is both
nontrivial and trivially commutes with W J and W K . So there
is no W M term in Hsurface.

For the exchange smooth boundary, we take J = (1, 0) in
HJ

c , which associates a charge of the Walker-Wang model to
a flux of the string-net model, and K = (0, 1) is the end point
of the m-string.

3. Example: Twisted smooth boundary

We choose the string-net model to be that of the double
semion, with the following data:

I = {0, 1}, d0 = 1, d1 = −1,

N110 = N101 = N011 = 1,

G000
000 = 1, G000

111 = i, G011
011 = −1, R0

11 = i,

zi j̄
p jqt =

∑
a,b

dadbRa
ikRb

jkGa∗ik
b j∗t G

i jq∗
t∗ka∗Gibt∗

k∗ p∗ j∗ . (24)

The dyon excitations are labeled by i j̄ with i, j ∈ I. The
twisted smooth boundary is then obtained from taking J = 11̄
and K1 = 10̄ as well as K2 = 01̄ are both allowed.

4. Example: Non-Abelian surface anyons

We now describe a simple example where the surface
anyons are non-Abelian. We choose the string-net model to

2There is a typo in Ref. [64] regarding half-braiding tensor of ZÑ

model. The equation in the current paper is correct.
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be that of the doubled Ising model. The label set is I = 0, 1, 2
or 1, σ, ψ . The quantum dimensions and fusion rules are

d0 = d2 = 1, d1 =
√

2,

N000 = N011 = N022 = N112 = 1. (25)

The independent 6 j symbols are

G000
000 = G000

222 = G022
022 = 1,

G011
011 = G011

211 = −G112
112 = 2−1/2,

G000
111 = G011

122 = 2−1/4. (26)

The anyons are again labeled by i j̄ with i, j ∈ I . There are
three bosons 00̄, 11̄, and 22̄. Choosing, for example, J = 22̄
in Eq. (21), the charge e in the toric code becomes 22̄ or ψψ̄

upon reaching the boundary. The m-string is allowed to end on
the boundary, with possible end points K ∈ {01̄, 10̄, 12̄, 20̄}.
All these end points are non-Abelian.

IV. 3D FIELD THEORY DESCRIPTION

The field theory for the (3+1)D bosonic toric code is

L = N

2π
bda, (27)

with a a one-form field and b a two-form field. Without any
boundaries, the generators of the one- and two-form symme-
tries are

Wm(S ) = ei
∫
S b, We = ei

∫
C a. (28)

Here S is a closed 2D spatial membrane and C a closed spatial
1D path. They satisfy the following ZN Heisenberg algebra:

Wm(S )We(C) = e2π iI (S,C)/NWe(C)Wm(S ), (29)

where I (S, C) is the intersection number between S and C.
When there is a boundary at z = 0, the variation of action

contains two parts: one imposes the usual equations of motion
in the bulk and the other is a boundary piece

δS| = N

2π

∫
z=0

d3x bδa. (30)

To recover the bulk equation of motion, the boundary piece
must vanish. Below we will examine two strategies to make
δS| = 0—one is to directly choose certain gauge fields to
vanish at the boundary and the other is a longer path: first
choose the “temporal gauge” and introduce additional bound-
ary dynamical fields to replace the gauge fields, such that the
bulk gauge symmetries will become global symmetries on the
boundary; then further add potentials to gap out the boundary.
The two strategies will lead to equivalent results, but the latter
is more convenient to study anomaly inflow, which we will
discuss in Sec. IV C.

A. Direct path

Two obvious gapped boundary conditions that can make
(30) vanish would be a| = 0 for rough boundary and b| = 0
for smooth boundary.

One can also obtain the twisted smooth boundary by
adding another (2+1)D TO on the boundary. The TO can

be either a chiral Chern-Simons theory or a double semion
model. The (2+1)D chiral Chern-Simons theory at level N is

L̃ = N

4π
ada. (31)

With this additional term, the variation of the full system on
the boundary, including that of the original toric code and the
chiral Chern-Simons term, is

δStot| = N

2π

∫
z=0

d3x (δa)(b + da). (32)

There is thus an obvious boundary condition of (b + da)| = 0.
The membrane S of the Wilson operator Wm(S ), when touch-
ing the boundary, gets modified to

W̃m(S ) = ei
∫
S (b+da). (33)

The modified magnetic Wilson operators W̃m(S ) now have
nontrivial commutation relations among themselves:

W̃m(S )W̃m(S ′) = e2π iI (S,S ′ )/NW̃m(S ′)W̃m(S ). (34)

When N = 2, we recover the semionic behavior for the end
points of the m-strings.

Focusing on N = 2, we now add the double semion model
instead. We write it in a basis such that the ss̄ anyon is a charge
for a single gauge field,

L̃ = KIJ

4π
AI dAJ , K =

(
0 2
2 2

)
. (35)

This can be obtained from the more familiar form of K ′ = 2σz

through the transformation K = W T K ′W with W = (1 1
1 0).

Next, we identify A2 ≡ a|. The total variation of full action on
the boundary is now

δStot| = 2

2π

∫
z=0

d3x[(δa)(b + dA1 + da) + δA1da]. (36)

The last term just imposes the usual equation of motion da =
0 in the double semion model. Plugging it into the first term,
the problem reduces to the case of adding a chiral Chern-
Simons theory (32). The gapping condition is (b + dA1)| = 0,

giving the twisted smooth boundary.
In general, one can consider adding other 2D topological

orders or even fractonic systems to the surface. Examples
include pure gauge theories containing one-form or two-form
gauge fields, foliated gauge fields, and/or higher-rank tensor
gauge fields (one such example will be discussed in Sec. V).
The total boundary theory should be gauge invariant. In order
to obtain a total gapped surface, it is natural to choose the
added 2D system to be gapped as well, i.e., there are no local
degrees of freedom. For the total boundary to be interesting, at
least one added gauge field should couple to the existing gauge
fields a or b in the 3D toric code, such that the attachment is
not a trivial stacking; moreover, the 2D theory should host at
least one excitation with fractional charge/exchange statistics.

B. Longer path

To make the variation of the toric code action on the
boundary, Eq. (30), vanish, one can alternatively choose the

125425-8
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following boundary conditions:

at | = 0, btx| = bty| = btz| = 0. (37)

btz| = 0 is not required but taken for later convenience. We
can extend this boundary condition into the bulk as a gauge
fixing. This leads to the following equations of motion:

εi jk∂ib jk = 0, εi j∂ia j = 0. (38)

The equations of motion can be solved by

bi j = ∂iϕ j − ∂ jϕi, ai = ∂iϕ̂, (39)

where ϕ̂ is a compact zero-form field and ϕ is a compact
one-form field. Plugging in, the bulk Lagrangian reduces to
a boundary piece

S = N

2π

∫
z=0

d3x (εi j∂iϕ j )∂0ϕ̂. (40)

In general the velocity terms such as (εi j∂iϕ j )2 and (∂iϕ̂)2 are
also allowed on the boundary, but they are not important for
our purpose. The canonical commutation relation from (40) is

[ϕ̂(t, x), εi j∂iϕ j (t, x′)] = 2π i

N
δ(2)(x − x′). (41)

There is a one-form symmetry and a zero-form symmetry on
the boundary,

ϕ j → ϕ j + α j (x), ϕ̂ → ϕ̂ + α̂(x). (42)

The corresponding Noether’s currents are

J0 = 1

2π
εi j∂iϕ j, Ji = 0,

Ĵ0 j = 1

2π
εi j∂iϕ̂, Ĵi j = 0,

(43)

with ∂μJμ = 0 and ∂μĴμ j = 0. The corresponding charges are
quantized,∫

dx dy J0 = n0,

∫
dxi Ĵ0i = n̂i, n0, n̂i ∈ Z. (44)

One can further define the vertex operators

V̂ = eiϕ̂ , Vj = ei
∮

dx jϕ j , (45)

V̂ , Vj and their Hermitian conjugates create/annihilate the flux
and charge excitations on the surface, which can be seen from
their commutation relations with the density operators,

[J0(x), V̂ (x′)] = 1

N
δ(2)(x − x′)V̂ (x),

[Ĵ0 j (x),Vj (x
′
i )] = 1

N
δ(1)(xi − x′

i )Vj (x
′
i ).

(46)

In addition, they have the expected nontrivial mutual statistics,

V̂ (x)Vj (x
′
i ) = eiπ sgn(xi−x′

i )/NVj (x
′
i )V̂ (x). (47)

The smooth and rough boundaries correspond to adding to
the boundary potential terms −g cos(Nϕ1) − g cos(Nϕ2) or
−ĝ cos(N ϕ̂), respectively, with g, ĝ � 1.

To obtain the twisted smooth boundary, we couple the
boundary to the double semion model in Eq. (35) and focus

on N = 2. We couple the 3D and 2D theories such that the
total boundary Lagrangian is

Ltot = 2

2π
εi j

[
(∂iϕ j )∂0ϕ̂ +

(
A1i∂0A2 j + 1

2
Ai2dA2 j

)]

+ λi(A2i − ∂iϕ̂), (48)

where we have chosen the temporal gauge for A1 and A2

and λ is a Lagrange multiplier that physically identifies
the charge excitation e on the boundary of the toric code
and the nonchiral anyon ss̄ in double semion. We have also
chosen the 2D surface to live on T 2. Imposing the equation of
motion for λi, we obtain A2i = ∂iϕ̂ and the Lagrangian reduces
to

Leff = 2

2π
(∂0ϕ̂)εi j∂i(ϕ j + A1 j ). (49)

The gapping term is therefore −g
∑

j cos(2ϕ j + 2A2 j ). The
vertex operators get modified,

Ṽj = ei
∮

dx j (ϕ j+A1 j ), (50)

corresponding to the dressing of the end point of m-string by
a semion, with the semionic statistics visible from

Ṽi(x
′
j )Ṽj (x

′
i ) = eiπεi j Ṽj (x

′
i )Ṽi(x j ). (51)

The above equation directly follows from integrating out A2

in the double semion Lagrangian (35), leading to

L̃ → − 2

4π
A1dA1. (52)

Turning back to the more general case, we can add to (40)
the boundary Lagrangian of the 2D ZÑ toric code

L̃ = Ñσx

4π
AI dAJ . (53)

We can again take the temporal gauge and add a term that
couples the two theories, λ(A2i − ∂iϕ̂). Upon plugging in the
equation of motion for λ, we get

Leff = N

2π
[(∂0ϕ̂)εi j∂i(ϕ j + nA1 j )]. (54)

Here n ≡ Ñ/N . When n = 1, we can recover the smooth
boundary by adding −g

∑
j cos(Nϕ j + NA1 j ) with a large g.

Notice that, in this case, A1 trivially commutes with itself.
Similarly, the exchange smooth boundary can be obtained by
exchanging A1 ↔ A2 in the coupling as well as the gapping
terms.

Generally n 
= 1. For convenience, we label the anyons
in the 2D ZÑ topological order as ẽam̃b with a, b ∈ Z mod
Ñ . The effective Lagrangian (54) then shows that the charge
excitation e from the 3D ZN toric code on the boundary has
mutual semionic statistics with the combination of boundary
flux excitation m from the 3D ZN toric code and the anyon
e0mn. This clearly does not make sense when n is not an inte-
ger; therefore, the only sensible choice is to add −ĝ cos(N ϕ̂)
and arrive at a rough-type boundary. Therefore, only when
n ∈ Z, the condensation of pairs of charges in the 3D and 2D
toric codes allows the m-string to end on the boundary and
the corresponding boundary belongs to the smooth boundary
class.
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Alternatively some other coupling terms can be designed
such that e from the 3D toric code condenses with a generic
eamb in the 2D toric code, as long as eamb is a boson. The sim-
plest nontrivial choice is e2m2 when Ñ = 4 and the m-string
can have end points e0m1 or e1m0. There are also deconfined
2D excitations e1m1 and e2. The condensation of e2m2 in Z4

2D toric code was previously discussed in Ref. [68].

C. Anomaly inflow

In this section, we use the boundary theory (54) with
n ≡ (Ñ/N ) ∈ Z and anomaly inflow [52] to construct the
corresponding bulk (3+1)D theory such that the bulk and
boundary anomalies cancel (see, for example, Refs. [49,69]
for procedures in similar contexts).

We start with the n = 0 case when no (2+1)D phase is
added and couple the symmetries of the boundary theory (42)
to the following one-form and two-form U (1) background
fields:

B̂μ ∼ B̂μ + ∂μα̂, Bμν → Bμν + (∂μαν − ∂ναμ). (55)

The boundary Lagrangian after coupling is

L′ = N

2π
(∂0ϕ̂)εi j∂iϕ j − N (B̂0J0 + B0 j Ĵ0 j ). (56)

One can also add local counterterms which do not affect the
anomaly but will make the expression look nicer,

Lct = N

4π
(B̂0Bxy + εi j B̂iB0 j ). (57)

Under a gauge transformation of the added B and B̂ fields, as
well as the corresponding transformations for ϕ j and ϕ̂, the
Lagrangian is not invariant and changes as

δ(L′ + Lct ) = − N

4π
εzμνρ (α̂∂μBνρ + αμ∂ν B̂ρ ). (58)

This cannot be removed by any local counterterm and the
boundary theory thus has mixed ’t Hooft anomaly between
the two symmetries.

This anomaly can however be canceled by the following
(3 + 1)D theory constructed from the B and B̂ fields:

L3+1 = N

2π
B dB̂. (59)

Under gauge transformations, L3+1 changes as a boundary
term,

δL3+1 = N

4π
εzνρσ ∂z(α̂∂μBνρ + αμ∂ν B̂ρ ), (60)

which exactly cancels the anomaly in (58). We would like to
comment that while L3+1 has the same form as a (3+1)D toric
code theory, the B and B̂ fields are not dynamical gauge fields
but background ones. L3+1 is a symmetry protected topolog-
ical phase, which can be obtained from the true toric code
theory by coupling toric code to corresponding background
fields and integrating out the dynamical fields.

Next we move on to the case when n 
= 0 is a finite integer.
There are additional gauge symmetries due to the presence
of A1: one is the usual gauge symmetry of A1 ∼ A1 + dγ

and the other is ϕ j ∼ ϕ j + λ j (t, x), A1 j ∼ A1 j − λ j (t, x). We

also have the additional ZÑ one-form symmetry due to A1,
generated by

W̃ (C) = exp

(
i
∮
C

A1

)
. (61)

One thus needs to introduce an additional ZÑ two-form back-
ground field. We do this by first introducing U (1) two-form
field C and then using an additional dynamical compact scalar
field φ to constrain C to be a ZÑ two-form field. We choose
the gauge transformations of C to be

A → A + β, C → C + dβ, (62)

where the one-form gauge parameter β has its own gauge
symmetry β ∼ β + dξ . The dynamical U (1) gauge symmetry
of A1 acts on φ as φ ∼ φ + γ .

The boundary Lagrangian after coupling is

L′ = N

2π
εi j[(∂0ϕ̂ − B0)∂i(ϕ j + nA1 j )

− (B0 j + nC0 j )∂iϕ̂] − Ñ

2π
φ dC. (63)

One again adds local counterterms to make the expression
look nicer,

Lct = N

4π
[B̂0(Bxy + nCxy) + εi j B̂i(B0 j + nC0 j )]. (64)

Under gauge transformations, the Lagrangian L′ + Lct is not
invariant and changes as

δ(L′ + Lct ) =− N

4π
εzμνρ[α̂∂μ(Bνρ + Cνρ )

+ (αμ + βμ)∂νB̂ρ + nγ ∂μCνρ]. (65)

This cannot be removed by any local counterterm, signaling
the ’t Hooft anomaly.

This anomaly can however be easily canceled by the fol-
lowing (3 + 1)D bulk:

L3+1 = N

2π
[(B + nC)dB̂ + nĈ dC], (66)

where Ĉ ∼ Ĉ + dγ is a dynamical one-form gauge field that
constraints C to ZÑ .

V. 3D BTC COUPLED TO EXCITON BOSE LIQUID

In this section we examine the case when the added 2D
phase of matter is not a topological order, but a tensor gauge
theory. We will focus on the ZN plaquette model [42], which
can be obtained by coupling the U (1) exciton Bose liquid [70]
to a scalar field N that Higgses it to ZN . For convenience
we will focus on the N = 2 case, but the generalization to
arbitrary integer N is straightforward and amounts to using
generalized Pauli operators and keeping track of the Hermi-
tian conjugates. We will discuss this 3D Z2 toric code plus
2D Z2 plaquette model using both lattice and field theories.
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FIG. 8. Hamiltonian terms of the 3D ZN toric code on the cubic
lattice, without boundaries.

A. Lattice description

We first briefly review the ZN plaquette model: the qubits
live on the vertices of a square lattice and the Hamiltonian is

Hplaq = −K
∑
x,y

Z̃x,yZ̃x+1,yZ̃x,y+1Z̃x+1,y+1. (67)

The conserved charges are

Wx(x) =
∏

y

X̃x,y, Wy(y) =
∏

x

X̃x,y. (68)

We couple them to the 3D toric code. The 3D toric code on
the cubic lattice has the Hamiltonian

HTC = −
∑

v

∏
i∈v

Xi −
∑

p

∏
i∈p

Zi, (69)

with v labeling vertices and p labeling plaquettes; see Fig. 8.
We have chosen a basis different from that in Sec. III. Near
the (top) surface, the terms get modified as shown in Fig. 9.
The vertex terms remain intact, while additional Z̃’s are at-
tached to the plaquette terms near the surface.

Starting from the ground state, consider acting Z on an
orange path extending from the bulk to the surface (leftmost
panel of Fig. 10), such that a bulk electric charge e moves
toward the surface and vanishes into the vacuum. One can also
consider a magnetic string that extends from the bulk towards
the surface. This string can end on the top surface by acting
X̃ on the pink vertex in Fig. 10. The end point corresponds to
a quadrupole of plaquette excitations. A dipole of plaquette
excitations can move in one spatial dimension but only at
the cost of creating additional excitations in the bulk, as the
m-string costs an energy proportional to its length.

B. Field theory

The field theory for the (2+1)D ZN plaquette model is [42]

Lplaq = N

2π
φxy(∂0Axy − ∂x∂yA0), (70)

X X

X

X

X

X

Z
Z

Z
Z

Z̃ Z̃
Z̃ Z̃

Z

Z̃ Z̃

Z

Z̃
Z̃

FIG. 9. Modified Hamiltonian on the surface. The dashed lines
are only aids for the eye.

FIG. 10. Left: acting Z on the orange links moves a charge e from
bulk to the vacuum. Middle: acting X on the pink y links and pink
vertex creates an m-string whose end point lives in the ZN plaquette
layer. Right: more details on the top ZN plaquette layer. End point of
this m-string corresponds to a quadruple plaquette excitation.

with the gauge transformations A0 ∼ A0 + ∂0β, Axy ∼ Axy +
∂x∂yβ. The generator of the ZN electric global symmetry is
exp[iφxy(x, y)], while the generators of the ZN dipole global
symmetry are

Wx(x1, x2) = exp

[
i
∫ x2

x1

dx
∮

dy Axy

]
,

Wy(y1, y2) = exp

[
i
∫ y2

y1

dy
∮

dx Axy

]
.

(71)

They satisfy the Lx + Ly − 1 copies of ZN Heisenberg alge-
bra,

eiφxy (x,y)Wx(x1, x2) = e2π i/NWx(x1, x2)eiφxy (x,y),

eiφxy (x,y)Wy(y1, y2) = e2π i/NWy(y1, y2)eiφxy (x,y),
(72)

when x1 < x < x2 and y1 < y < y2. Notice that while the ZN

dipole symmetry is present on the lattice, the ZN electric
symmetry is easily broken by a small −h

∑
x,y X̃x,y term that

can be added to (67) without inducing a phase transition. From
the Lagrangian (70), one can see the density operators

ρ̂ = 1

2π
φxy, ρ = 1

2π
Axy. (73)

The corresponding quantized charges are∫ y2

y1

dy
∮

dx ρ = mx(y1, y2),

∫ x2

x1

dx
∮

dy ρ = my(x1, x2),

ρ̂ = m(x, y), m, mi ∈ Z.

(74)

We couple the gapless boundary theory of the 3D toric code
(40) to the ZN plaquette model by adding

L = N

2π
(∂0ϕ̂)εi j∂iϕ j + λ(ϕ̂ − φxy). (75)

Imposing the equations of motion for λ and choosing the
temporal gauge for the plaquette model, the total boundary
theory reduces to

Leff = N

2π
[(∂0ϕ̂)(εi j∂iϕ j − Axy)] (76)

and the gapping term can be chosen as −g cos(Nεi j∂iϕ j −
NAxy), corresponding to the fact that the end point of the
m-string is now dressed by the plaquette violation operators
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in the ZN plaquette model. This boundary theory belongs to
the smooth class of gapped boundaries of toric code.

Now we study the anomaly inflow for this boundary theory
(76). With the presence of Axy, we take into account the higher
rank tensor symmetries (71) and couple them to the following
U (1) tensor gauge field: Cxy

0 ∼ Cxy
0 + ∂0βxy. The coupled La-

grangian is

L′ = N

2π

[
(∂0ϕ̂ − B̂0)(εi j∂iϕ j − Axy) − B0 j (εi j∂iϕ̂) − ϕ̂Cxy

0

]
+ 1

2π

[
χ

(
ψ̇ − NCxy

0

)]
, (77)

where B̂0 and B0 j were defined in (55), χ is a real Lagrange
multiplier, and ψ is a circle-valued field that changes under
gauge transformation as ψ ∼ ψ + Nβxy. The χ term Higgses
the holonomy of Cxy

0 down to ZN . We also add the local
counterterms exactly as in the case without Axy,

Lct = N

4π
(B̂0Bxy + εi j B̂iB0 j ). (78)

The total change of the Lagrangian under gauge transforma-
tions of B, B̂, and C is

δ(L′ + Lct ) = − N

4π
εzμνρ (α̂∂μBνρ + αμ∂ν B̂ρ )

+ N

2π

[
βxy(B̂0 + ∂0α̂) − α̂Cxy

0

]
. (79)

This anomaly can be canceled by the following (3 + 1)D
theory with a z = 0 boundary:

L3+1 = N

2π

[
B dB̂ + �xy(∂0B̂z − ∂zB̂0) + B̂zC

xy
0

− B̂0C
xy
z − �̂

(
∂0C

xy
z − ∂zC

xy
0

)]
, (80)

where �̂ ∼ �̂ + α̂ and �xy ∼ �xy + βxy are two dynami-
cal fields that Higgs the U (1) fields down to ZN . Cxy

z ∼
Cxy

z + ∂zβxy and B̂z ∼ B̂z + ∂zα̂ are additional components
of the previously defined gauge fields in the added spatial
dimension.

VI. GENERALIZATIONS AND DISCUSSIONS

In this section, we comment on the generalization to other
3D topological orders and future directions. To this end, it
is easiest to use the Walker-Wang plus string-net formalism.
Consider the input of the Walker-Wang model to be a unitary
fusion category, in particular, the representation category of
a finite group G. For convenience, we focus on the untwisted
case (the trivial element in H3[G,U (1)]). The bulk excitations
thus include the stringlike flux excitations corresponding to
the conjugacy classes of G, with end points being pointlike
charges labeled by the irreducible representations of the cen-
tralizer of the conjugacy class. When the conjugacy class is
trivial, the excitation just reduces to pointlike particles corre-
sponding to the irreducible representations of G.

When a boundary is present, we can again use the similar
picture as in Fig. 1, but with e substituted by a bosonic charge
q, which pairs up and condenses together with a boson b in
the added 2D TO. In general there can be multiple pairs of
{(qi, bi )}, which together form a closed set S of commuting

composites that are allowed to condense in a compatible way.
By closed, we mean that if (q1, b1) ∈ S and (q2, b2) ∈ S, then
(q1 × q2, b1 × b2) ∈ S. In other words, the fusion between
vacuum and vacuum should not be nontrivial. We do not
require the set to be maximal, i.e., the theory can contain addi-
tional composites {(q̃ j, b̃ j )} that commute with the elements S
but (q̃ j, b̃ j ) /∈ S. Consequently, while the composites qi ⊗ bi

become the new vacuum on the boundary, q̃ j ⊗ b̃ j is still a
well-defined excitation.

As for the various types of string excitation pα’s in the bulk,
they again can only end at the boundary if there exists at least
one f in the 2D TO such that its monodromy with each bi

cancels the corresponding monodromy between pα and qi.
Then different classes of gapped boundaries are organized
by which types of string pα’s can end on the boundary. In
the case where the bulk theory is characterized by RepG, the
representation category of a finite group, the different classes
of gapped boundaries correspond to the different normal sub-
groups of G, ignoring all possible complications arising from
three-cochains in C3[K,U (1)] and the possible couplings to
many complicated 2D topological orders.

Notice that our example of 3D fermionic toric code de-
scribed in Sec. II B is already beyond the discussion in the
last paragraph, where instead of condensing a pair of bosons,
a pair of fermions is condensed. In general, as long as the
composite is a boson, the condensation is allowed.

We would like to comment on the concept of “classes” of
gapped boundaries for 3D TOs. We arrive at different types of
boundaries of the 3D TO by coupling the bulk theory to an ad-
ditional 2D exotic phase of matter (including TO and fractonic
theories). Each elementary type of gapped boundary is char-
acterized by the possible surface excitations, their statistics,
and mobility constraints. By elementary, it means that we mod
out any 2D surface theory that is decoupled from the bulk.
Then we distinguish different classes of gapped boundaries
by whether different types of string operators can end at the
boundary, regardless of the potentially different end points. As
also reviewed in Sec. I A, another different, mathematically
natural way to understand the gapped boundaries is to use
Lagrangian algebras of the modular two-categories, based on
which there should be three classes for the Z2 toric code case
[54]. It is unfortunate that, in our method, it is not natural to
single out the twisted smooth boundary condition as another
third class.

It would be interesting to examine the case where the input
category of the 3D Walker-Wang model is that of a modular
tensor category, such that no nontrivial excitations exist in the
bulk, but there can be nontrivial surface excitations. One can
then consider condensing the surface excitations together with
some anyons in an added 2D topological order to find exotic
boundaries. Since the idea is the same as that illustrated in
the previous sections, we will not go into further details, but
would like to point out that previously there have been discus-
sions on the surface topological orders of symmetry protected
topological phases; see, for example, Refs. [55,69,71–75].

The criterion for different classes of 2D gapped bound-
aries of 3D TOs in this work also motivates the following
generalization to higher dimensions: different classes of the
(n − 1)D gapped boundaries of nD topological orders may be
characterized by the different (n − 2)D excitations that can
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end on the boundary. More future work will be needed to
validate or invalidate this conjecture.

Recently, a related work was brought to our attention [76],
which should appear soon.
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APPENDIX: CONTRACTION OF CHARGES
IN THE STRING-NET MODEL

In this Appendix, we review the procedure of charge con-
traction in order to construct dyon loops out of shorter dyon
strings. The materials are summaries and applications of the
results in Ref. [64].

We first introduce the rules for the charge tails to move:

(A1)

The tails can move around freely while remaining on the same side of the plaquette, unless bumping into another charge tail
on the same side. The move in (A1) resembles the elementary F or the recoupling move of the graph in the original string-net
model.

Equipped with the adequate tool, we can now create the short loop of K dyon as described in Sec. III. We start by creating
three short strings near the three edges surrounding a vertex,

(A2)

Next we use the move introduced in (A1) to place qi and q∗
i on the same link, and annihilate each pair by

(A3)
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When the initial state is one without any charges, as in (A2), after some simplifications using the symmetry properties of z and
G, this whole procedure simply gives

(A4)

corresponding to shrinking the short loop K such that it
crosses the edge e3 twice but does not cross the other two
edges e1 or e2. However, when the initial state is not the

ground state and has nontrivial charge excitations near the
vertex, the newly generated charge tails can no longer freely
move around.
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