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We study the transient dynamics subject to quantum coherence effects of two interacting parallel quantum
dots weakly coupled to macroscopic leads. The stationary particle current of this quantum system is sensitive
to perturbations much smaller than any other energy scale, specifically compared to the system-lead coupling
and the temperature. We show that this is due to the presence of a parity-like symmetry in the dynamics, as
a consequence of which two distinct stationary states arise. In the presence of small perturbations breaking
this symmetry, the system exhibits metastability with two metastable phases that can be approximated by a
combination of states corresponding to stationary states in the unperturbed limit. Furthermore, the long-time
dynamics can be described as classical dynamics between those phases, leading to a unique stationary state.
In particular, the competition of those two metastable phases explains the sensitive behavior of the stationary
current towards small perturbations. We show that this behavior bears the potential of utilizing the parallel dots
as a charge sensor, which makes use of quantum coherence effects to achieve a signal to noise ratio that is not
limited by the temperature. As a consequence, the parallel dots outperform an analogous single-dot charge sensor
for a wide range of temperatures.
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I. INTRODUCTION

The coherent control of electronic quantum devices is a
challenging necessity for many novel device concepts [1].
Some device concepts are based on quantum coherent
nonequilibrium charge transport, while in other cases mea-
surements of charge transport can be used to gain information
about the quantum system. In many cases, the stationary prop-
erties are of interest, but with increasing control over quantum
systems understanding the full transient behavior is of im-
portance. For any such application the dynamics beyond the
stationary state becomes relevant and attracted much attention
in recent years [2–7]. Generally, the relaxation of a quantum
system can be complicated and it can experience a quasis-
tationary state before relaxing into its true stationary state.
This phenomenon of metastability [8–11] occurs when the
timescales dictating the system’s dynamics are well separated.
Importantly, metastability always occurs for systems in the
proximity to multistable points where the dynamics features
multiple stationary states, which may arise, e.g., due to a
symmetry of the dynamical equations. It can also be observed
in constrained systems such as quantum spin glasses [12,13],
quantum gases [14,15], and superconducting nanojunctions
[16].
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Another ingredient to understand a quantum system’s be-
havior lies with quantum interference and coherence effects
and how they affect the system’s properties and dynamics.
Different types of quantum dot systems constitute particu-
larly well-controlled and versatile platforms to study and use
various aspects of interference effects [17–20]. It has been
suggested that they can, e.g., reduce power fluctuations and
rectify heat transport [21,22], or affect thermoelectric proper-
ties [23] and electronic transport properties [24] in molecules.
One can also exploit the quantum interference to construct a
transistor [25]. Particularly, interference effects in the trans-
port properties of parallel double quantum dots have been a
longstanding topic of interest. On the one hand, in the strong
coupling regime, strongly-correlated physics dominates the
transport exhibiting the Kondo effect and leading to defined
signatures in the conductance as well as population switching
[26–30].

On the other hand, the coherence effects present in parallel
double quantum dots, understood as a superposition state of
a single fermion on either the upper or lower dot, have been
shown to play a role for quantum thermodynamics [31], and
impact the thermoelectric current [32], thermal conductance
[33], and electric transport [34,35] in the weak-coupling limit.

In this paper we use a quantum master equation approach
to study the nonequilibrium transport properties of such a
parallel dots system, sketched in Fig. 1(a). The stationary state
of this quantum system has been shown, in certain parameter
regimes, to be sensitive to small perturbations in the system-
lead coupling and the detuning of the dot energies [34,35].
Remarkably, due to quantum coherence effects, changes that
are much smaller than all other energy scales in the system can
lead to large changes in the stationary particle current [35].
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FIG. 1. (a) The parallel dots with energies εi are coupled to
macroscopic leads with the tunneling rates � js between dot j and
lead s, where j = 1, 2 and s = L, R. A bias is applied across the left
and right leads, with temperatures TL and TR and chemical potentials
μL and μR, respectively. (b) dI/dVB as a function of the bias voltage
VB and the gate voltage VG. In Figs. 1–4, and 6, we consider perturba-
tions away from the balanced setup, that is Eqs. (22) and (23). Here,
δε = δ� = 0.04� and U = 250�, TL = TR = 10�. The star marks
the voltage parameters VG = 0� and VB = 30� used in other figures.

We show that the sensitive response results from the pres-
ence of two stationary states when both the dot energies and
their tunnel couplings to the leads are identical. Perturba-
tions breaking the corresponding symmetry introduce a large
timescale, which is well separated from any other timescale in
the system’s dynamics. For intermediate times, metastability
occurs, and the state of the system is well approximated by
a probabilistic mixture of two metastable phases [9–11]. In
the long-time limit, those probabilities evolve according to
classical dynamics dominated by the emergent timescale due
to the broken symmetry. As the long-time dynamics depend
not only on the size but also on the structure of perturbations
breaking the symmetry, the stationary state does as well, and
the stationary current displays large changes resulting from
small parameter changes. In particular, we focus on the regime
of large Coulomb interaction where one of the metastable
phases features suppressed particle current through the sys-
tem, while the other phase supports a much larger current,
so that the stationary current varies from suppressed to larger
values.

Furthermore, we investigate how the sensitive behavior
of the current can be used to enable the system to act as a
charge sensor. To quantify the accuracy of the sensor we also
need the current noise, which we calculate based on counting
statistics [36,37]. One problem for sensing applications is that

metastability typically results in large current noise. Another
problem is the long-relaxation times associated with metasta-
bility. Nonetheless, we show that there is a large parameter
regime where the parallel dots by far outperform a single dot
used as a charge sensor.

The paper is organized as follows. After introducing the
model in Sec. II, we discuss the Lindblad dynamics of the
parallel dots in Sec. III. In Sec. IV we discuss the transient
dynamics. This includes a discussion of the unperturbed and
perturbed dynamics in the context of symmetry breaking
and the resulting metastability and the long-time dynamics
towards a unique stationary state. Finally, in Sec. V we inves-
tigate how the parallel dots could be used as a charge sensor.

II. MODEL

The setup under consideration consists of two interacting
parallel quantum dots weakly coupled to macroscopic leads,
see Fig. 1(a). To simplify the analytic treatment we consider
spinless electrons in the following, but we have verified by di-
rect comparison that the qualitative physics and results remain
the same for spin-degenerate dot orbitals (our spinless model
can be realized in a system where the Zeeman energy is larger
than the applied bias voltage).

The Hamiltonian of the entire setup splits into three parts,

H = HPD + HL + HT , (1)

for the parallel dots, the leads and the interaction between the
subsystems. The dot Hamiltonian is given by

HPD =
∑
j=1,2

ε jd
†
j d j + Ud†

1 d1d†
2 d2 (2)

with the fermionic creation and annihilation operators, d†
j and

d j , where j = 1, 2 is the dot label, the energy levels of the dots
are ε j and U denotes the Coulomb interaction; we set h̄ = 1
throughout the paper.

The leads are described by noninteracting fermions,

HL =
∑

s=L,R

∑
k

ωskc†
skcsk . (3)

The operators c†
ks, csk create or annihilate an electron in the

left (s = L) or right (s = R) lead at momentum k, with their
corresponding energy dispersion given by ωsk . Finally, the
tunneling between the parallel dots and the leads is governed
by

HT =
∑
j=1,2

∑
s=L,R

∑
k

(t jskc†
skd j + t∗

jskd†
j csk ), (4)

with the tunneling amplitude t jsk . We note that HT assumes
both dots to couple to the same lead channel. This is a crucial
assumption for the results of this paper, which will hold for
one-dimensional leads, but is also justified when the dots are
close on a length scale set by the Fermi wavelength in the
leads. We furthermore take t jsk to be real and positive (we can
always make this choice if relative phases between t1sk and
t2sk are independent of k and s). If a magnetic field is present,
or the leads are ferromagnetic or superconducting, one might
need to consider complex t jsk , which possibly leads to
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additional phenomena, such as phase lapses in the conduc-
tance [27,28,38,39].

The electrons in the leads are assumed to be described by
the grand canonical ensemble with the chemical potentials
μs and temperatures Ts; we set Boltzmann’s constant kB = 1
and the elementary charge e = 1. The chemical potentials can
be controlled by the bias voltage VB = 2μL = −2μR, while
the gate allows control of the dot energy levels, VG = −(ε1 +
ε2)/2.

III. LINDBLAD DYNAMICS OF PARALLEL DOTS

A. Master equation

In this paper, we focus on the limit of weak tunnel cou-
pling. In this case, the dynamics of the reduced density matrix
ρPD(t ) of the two quantum dots can be well approximated by
a quantum master equation of Gorini-Kossakowski-Lindblad-
Sudarshan (GKLS) form [40,41].

We assume that tunneling amplitudes are independent of
the momentum t jsk = t js, and that the density of states is
constant, νsk = ν. The tunneling amplitudes t js define the
tunneling rates as � js = 2πν|t js|2. The weak-coupling limit
where our master equation is valid is defined by � js � Ts.

Following [42–44], we consider terms quadratic in tunnel-
ing amplitudes to arrive at the master equation beyond the
secular approximation,

d

dt
ρPD(t ) = − i[Heff, ρPD(t )]

+
∑

α=+,−
s=L,R

[
JαsρPD(t )J†

αs − 1

2

{
ρPD(t ), J†

αsJαs
}]

,

(5)

where [·, ·] and {·, ·} stand for the commutator and anticom-
mutator, respectively. Here, the effective Hamiltonian Heff =
HPD + HLS includes a Lamb shift HLS, which renormalizes
the energies of the parallel dots and can be identified as an
effective tunnel splitting [26]. We exclude a direct interdot
tunnel coupling of the form 
12d†

1 d2 + H.c. in HPD of Eq. (2),
but such a term can easily be added to HPD and the qualita-
tive physics described in the following does not change for

12 � Ts.

The jump operators Jαs describe the exchange of an elec-
tron between the parallel dots and lead s with α = +
representing an electron entering the dots and α = − an
electron leaving. The closed form expressions for the Lamb
shift and the jump operators are derived in Appendix A.

B. Spectral decomposition and metastability

The equation of motion in Eq. (5) can be recast as

d

dt
ρPD(t ) = LρPD(t ), (6)

where L is the Liouvillian. Therefore, the full time evolution,
which is a completely positive, trace-preserving map, can be
formally solved as

ρPD(t ) = etLρPD(0). (7)

It follows that the evolution can be decomposed in terms of
the Liouville operator spectrum, that is, its eigenvalues λi and
left and right eigenmatrices, Li and Ri, as

ρPD(t ) = ρss
PD +

∑
i�2

eλit ciRi, (8)

with the coefficients ci = Tr[LiρPD(0)] and the left and right
eigenmatrices normalized so that Tr(LiR j ) = δi j . Here, the
eigenvalues are ordered with a decreasing real part, so that
λ1 = 0 corresponds to a stationary state R1 = ρss

PD, while L1 =
1, where 1 is the identity operator on the dots. When the
stationary state is unique, the sum runs over the decay modes
with Re(λi) < 0, so that limt→∞ ρPD(t ) = ρss

PD for any initial
state.

If there exists a large difference in the real parts of the
second and third eigenvalues, −λ2 � −Re(λ3), metastabil-
ity arises followed by long-time dynamics dominated by the
single low-lying eigenmode [9,10]. Here, λ2 is necessarily
real as L preserves the Hermiticity of ρPD(t ) and therefore
complex eigenvalues need to appear as complex conjugate
pairs. Indeed, for times t such that −Re(λ3)t � 1, the state
of the system can be approximated as

ρPD(t ) ≈ ρss
PD + eλ2t c2R2. (9)

For times t such that −λ2t � 1, the system is metastable, with
its state approximated by a linear combination of the station-
ary state and the low-lying eigenmode, ρPD(t ) ≈ ρss

PD + c2R2,
where c2 carries the information about the initial condition.
For longer times, the decay of the low-lying mode in Eq. (9)
can no longer be neglected. In particular, when −λ2t � 1,
the system state approaches its asymptotic limit and is well
approximated by the stationary state ρss

PD, independently of
the initial condition. Thus, −1/Re(λ3) and −1/λ2 can be
considered as the timescales of the initial and final relaxation,
respectively.

In this paper, we show that for the dynamics in Eq. (5), such
metastability emerges as a consequence of breaking a parity-
like symmetry originating from the Hamiltonian in Eq. (1).
For the case of a single low-lying eigenvalue, metastable
states correspond to probabilistic mixtures of two metastable
phases and can be investigated numerically [9,10], see also
Appendix B. Here, we uncover the metastable phases, to-
gether with the unique stationary state analytically by means
of non-Hermitian perturbation theory [45].

C. Dynamics of particle currents

The average particle current leaving lead s at time t is given
by Is(t ) = −i〈[H, Ns]〉, with the electron number operator in
the lead Ns = ∑

k c†
skcsk . Within the Lindblad dynamics, the

current Is(t ) is given in terms of the jump operator by [37,46]

Is(t ) =
∑

α=+,−
α Tr[J†

αsJαsρPD(t )]. (10)

Asymptotically, the currents equilibrate, IL + IR = 0, with
Is = limt→∞ Is(t ) denoting the stationary current leaving lead
s. In the remainder of the paper, we will therefore study
the current IL(t ) leaving the left lead and we will omit the
lead index. Beyond its average the current dynamics can be
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investigated in terms of full counting statistics [36,47,48] used
in Sec. V, see also Appendix C.

Figure 1(b) shows the differential conductance dI/dVB as
a function of VG and VB. It has a much richer structure than the
results for a double dot system with a density matrix assumed
to be diagonal in the eigenbasis of HPD and thus evolving
according to a Pauli rate equation, rather than by Eq. (5);
see Appendix D. This is due to coherences between singly
occupied states playing a non-negligible role in the properties
of both the dynamics and the stationary state, especially when
model parameters are chosen in the proximity to those for
which strong symmetries are present. But we also clarify in
which limits the Pauli rate equation reproduces the dynamics.

The stationary limit of the transport properties of the paral-
lel dots system has been studied before [34,35] and it has been
reported that the stationary current may be highly sensitive
to perturbations in the tunneling rates and to detuning of
the dot energies [35], see also Fig. 4(a). In this paper, we
explain this phenomenon in relation to symmetry breaking
and demonstrate that the sensitivity of the stationary current
can in fact be arbitrarily large. We then verify its usefulness
for sensing applications.

IV. SYMMETRIES AND DYNAMICS

We now discuss symmetries of the Hamiltonian dynamics
for the total setup and the resulting properties of the Lind-
blad dynamics of the dots. In particular, we show how two
distinct stationary states occur as a result of a swap sym-
metry between the dots present in the Hamiltonian. We then
analyze the metastability arising by perturbatively breaking
this symmetry, the long-time dynamics that follows, and the
resulting unique stationary state and the associated current.
Crucially, the structure of perturbations affects the stationary
state already in the leading order.

A. Weak and strong symmetries

The Hamiltonian H in Eq. (1) conserves the total number
of electrons, i.e., [H, NPD + ∑

s=L,R Ns] = 0, with NPD and Ns

the number operator for the parallel dots and for the lead s,
respectively. Since the leads feature no coherences between
states with different numbers of electrons Ns, any ρPD that is
diagonal in charge at the initial time will remains so at all
times.

In the approximation of the Lindblad dynamics this sym-
metry is inherited as a weak symmetry of the Liouvillian
with respect to NPD, that is, [L,NPD] = 0, where NPDρPD =
[NPD, ρPD] [49,50], see also Appendix A. Corresponding den-
sity matrices feature at most six nonzero entries in the basis
of |00〉, |10〉 = d†

1 |00〉, |01〉 = d†
2 |00〉, and |11〉 = d†

1 d†
2 |00〉,

which is the eigenbasis of HPD in Eq. (2) and will be referred
to as the local basis. In that case, at most six modes contribute
in Eq. (8).

We now discuss symmetries of the Hamiltonian and Lind-
blad dynamics originating from degenerate energies of the
dots and their identical couplings to the two leads. Let us
consider tunneling amplitudes such that

t jsk = tk, (11)

and consider degenerate dot energies,

ε j = ε. (12)

In the local basis, the Hamiltonian in Eq. (1), which we denote
by H (0) to indicate that the above conditions are fulfilled,
remains the same when swapping the dot labels, up to the
change of the sign for the doubly occupied state for the
Coulomb interaction term. Thus, it is left invariant by the swap
operator S, [H (0), S] = 0, which exchanges the fermionic ex-
citations between the dots,

S = |00〉〈00| + |10〉〈01| + |01〉〈10| − |11〉〈11|. (13)

We have that S2 = 1, so S is a parity operator. Indeed, the
basis {|00〉, |+〉, |−〉, |11〉}, where |±〉 = (|10〉 ± |01〉)/

√
2,

we have S = |00〉〈00| + |+〉〈+| − |−〉〈−| − |11〉〈11|. We re-
fer to |+〉 and |−〉 as the bonding and antibonding states, even
though they remain degenerate here because of the absence of
hybridization between the dots, and to the basis of |00〉, |+〉,
|−〉, and |11〉 as bonding/antibonding basis.

For t jsk = t js assumed in the derivation of the Lindblad
dynamics in Eq. (5), the condition in Eq. (11) can be expressed
as the tunneling rates being equal [35]

� js = �. (14)

The Liouvillian inherits the symmetry of the Hamiltonian as
a strong symmetry [49,50] with respect to S, i.e., the sym-
metries of the effective Hamiltonian, [S, H (0)

eff ] = 0, and, in
contrast to a weak symmetry, additionally the jump operators,
[S, J (0)

αs ] = 0. Here, we used the index (0) to indicate that the
conditions in Eqs. (12) and (14) are fulfilled. Indeed, we
obtain the effective Hamiltonian

H (0)
eff = ε(|+〉〈+| + |−〉〈−|) + (2ε + U )|11〉〈11|

+ 2�

π
B̄(−ε)(|00〉〈00| − |+〉〈+|)

+ 2�

π
B̄(−ε − U )(|−〉〈−| − |11〉〈11|). (15)

Here, B̄(ε) = ∑
s=L,R Bs(ε)/2 is the average of the function

Bs(ε) that arises in the Lamb shift. This contribution lifts
the degeneracy of the dot Hamiltonian caused by Eq. (12).
Furthermore, the jump operators are given by

J (0)
+s =

√
2�[

√
fs(ε)|+〉〈00| +

√
fs(ε + U )|11〉〈−|],

J (0)
−s =

√
2�[

√
1 − fs(ε)|00〉〈+| +

√
1 − fs(ε + U )|−〉〈11|],

(16)

where fs(ε) = {1 + exp [(ε − μs)/Ts]}−1 denotes the Fermi
distribution in lead s. Further details can be found in
Appendix A.

B. Strong symmetry implications for dynamics

In the bonding/antibonding basis for the dots, for parame-
ters chosen as in Eqs. (11) and (12), the Hamiltonian separates
into two distinct sectors, which are not coupled by the tun-
neling processes (see [29,34,35]). Any initial state of the
eigenspace corresponding to the eigenvalue 1 (or the eigen-
value −1) of the swap operator, that is, in the subspace of |00〉
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and |+〉 (or the subspace of |−〉 and |11〉), remains supported
there at all times.

The dynamics preserves the eigenspaces of S due to the
block-diagonal structures of the effective Hamiltonian in
Eq. (15) and the jump operators in Eq. (16). Due to the strong
symmetry, the parallel dots split into two independent two-
dimensional systems in the subspaces of |00〉 and |+〉, and of
|−〉 and |11〉.

Indeed, J+s and J−s facilitate classical transitions between
|00〉〈00| and |+〉〈+| at the respective rates 2� fs(ε) and
2�[1 − fs(ε)], and between |−〉〈−| and |11〉〈11| at the re-
spective rates 2� fs(ε + U ) and 2�[1 − fs(ε + U )], while Heff

does not contribute. In fact, these dynamics can be obtained as
the Pauli rate dynamics in the bonding-antibonding basis. In
contrast, a Pauli approach in the local basis (Appendix D) fails
[35], in particular not capturing the degeneracy of stationary
states.

The two stationary states in the eigenspaces of S are

ρss
1 = [1 − f̄ (ε)]|00〉〈00| + f̄ (ε)|+〉〈+|,

ρss
2 = [1 − f̄ (ε + U )]|−〉〈−| + f̄ (ε + U )|11〉〈11|, (17)

where f̄ (ε) = ∑
s=L,R fs(ε)/2. While we have limited our-

selves to considering initial states symmetric with respect to
NPD, there are no other stationary states for U �= 0. The two
stationary states resemble the two degenerate ground states
in the corresponding equilibrium system, which exhibits a
quantum critical point in the zero-temperature limit [29].

The stationary currents from the left lead corresponding to
the stationary states in Eq. (17) are

I1 = �[ fL(ε) − fR(ε)],

I2 = �[ fL(ε + U ) − fR(ε + U )]. (18)

Identical currents are found only if the Coulomb interac-
tion vanishes (U = 0), or the Fermi distributions for the two
leads are the same (TL = TR, and VB = 0). In the former
case, the connected configurations feature the same energy
difference, such that the system behaves as two identical in-
dependent single dots, see also Appendix B 1. In the latter
case, the particle currents must asymptotically vanish as there
is no directionality induced in the dot system with the leads
at equilibrium. In the limit of infinite Coulomb interaction
(U → ∞), fs(ε + U ) → 0, and therefore I2 → 0. The dy-
namics between |−〉〈−| and |11〉〈11| corresponds then to
a decay towards the lower energy state |−〉〈−|, so it be-
comes stationary while |11〉〈11| is prohibited energetically
[Eq. (17)]. But the asymptotic current I1 remains unchanged
as it is independent from U .

The two stationary states in Eq. (17) fix the choice of the
right eigenmatrices for two zero eigenvalues of the unper-
turbed Liouvillian. The corresponding left eigenmatrices are
given by the projections on their supports,

P1 = |00〉〈00| + |+〉〈+| = 1 + S

2
,

P2 = |−〉〈−| + |11〉〈11| = 1 − S

2
, (19)

These determine the asymptotic state for a general initial state
ρPD(0) as p1ρ

ss
1 + p2ρ

ss
2 , where p j = Tr[PjρPD(0)], j = 1, 2,

and thus the stationary current to p1I1 + p2I2.
Next to the stationary states, there are two decay modes

corresponding to the classical dynamics with the degenerate
eigenvalues

λ
(0)
5 = λ

(0)
6 = −4�. (20)

The other two modes describe the decay of coherences in the
bonding/antibonding basis with the eigenvalues

λ
(0)
3 = [

λ
(0)
4

]∗ = −2�[1 − f̄ (ε) + f̄ (ε + U )]

+ i
2�

π
[B̄(−ε) + B̄(−ε − U )], (21)

where the oscillation frequency arises from the Lamb shift.
For the eigenmatrices, see Appendix B 1.

C. Breaking of strong symmetry and metastability

We now consider perturbations in the dynamical parame-
ters that break the strong swap symmetry. As a consequence,
the twofold degeneracy of the zero-eigenvalue of the Liouville
operator is lifted, and a unique stationary state arises together
with a new timescale in the dynamics for the system’s final
relaxation. Using non-Hermitian perturbation theory [45], we
investigate those aspects of the dynamics with a focus on how
the current is affected.

We examine perturbations that break the degeneracy of the
dot energy levels as

ε1 = ε − δε, ε2 = ε + δε, (22)

and for definiteness choose to alter the tunneling rates as

�1L = � − δ�, �1R = � + δ�,

�2L = � + δ�, �2R = � − δ�.
(23)

In this paper, we focus on small perturbations in the sense that
δε, δ� � �, which also implies that δε � T . This allows us
to exploit non-Hermitian perturbation theory to characterize
the eigenvalues and eigenmatrices of the perturbed Liouvilian,

L = L(0) + L(1) + L(2) + · · · . (24)

Above, we have expanded L in the perturbation parameters,
where the superscript indicates the order of the perturba-
tion. We consider corrections to L within the stationary state
manifold of L(0), which consists of probabilistic mixtures of
the stationary states in Eq. (17). The focus of the following
discussion is on the physical aspects; technical details can
be found in Appendix B 2, see also Supplemental Material in
Refs. [9,11].

The first-order correction is necessarily zero, due to the
effective classicality of the manifold of the stationary states of
L(0). The second-order correction corresponds to the classical
dynamics of the probabilistic mixtures of the unperturbed
system’s stationary states in Eq. (17),

d

dt

[
p1(t )
p2(t )

]
=

(−γ1 γ2

γ1 −γ2

)[
p1(t )
p2(t )

]
, (25)

where p1,2(0) = Tr[P1,2ρPD(0)], so that p1(t ) + p2(t ) = 1 as
P1 + P2 = 1 and the dynamics in Eq. (25) conserves the total
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probability. The decay rates γ1,2 can be found by expressing
the second-order corrections to the reduced dynamics in the
basis of Eqs. (17) and (19), and they are quadratic functions
of δε and δ�. We now exploit this result in two ways.

First, the stationary probability distribution for the dynam-
ics in Eq. (25), pss

1 = γ2/(γ1 + γ2) and pss
2 = γ1/(γ1 + γ2),

gives for the stationary state

ρss
PD = pss

1 ρss
1 + pss

2 ρss
2 + · · · . (26)

The higher-order corrections, indicated by . . ., are of the first
order. They can be understood to arise as the corrections to
the structure of the two states corresponding to the stationary
states in the unperturbed limit, which now constitute the two
metastable phases.

It is important to note that because γ1 and γ2 depend on two
rather than a single perturbation, the stationary state depends
on the perturbations already in lowest order, but only via
their ratios, which can be seen as a competition between the
metastable phases. This leads to distinct stationary current
values when perturbations are varied, which will be discussed
in more detail later, see also Sec. V. Indeed, the stationary
current is

I = pss
1 I1 + pss

2 I2 + · · · , (27)

where the corrections are at least of the second order.
Finally, since γ1 �= γ2 in general, the stationary state will

feature coherences in the local basis. Therefore, the approxi-
mation of the dynamics by a Pauli rate equation in that basis
will fail, see also Appendix D.

Second, these results can be used to understand the long-
time dynamics. For times longer than the initial relaxation,
t � −1/Re(λ3,4), which in the leading order is determined
by the eigenvalues λ

(0)
3,4 of the unperturbed dynamics, the dy-

namics can be understood as follows.
The twofold degeneracy of the zero eigenvalue is now

lifted with the second eigenvalue

λ2 = −(γ1 + γ2) + · · · , (28)

so that a new timescale emerges in the dynamics. This
low-lying eigenvalue is accompanied by the right and left
eigenmatrices

R2 = ρss
1 − ρss

2 + · · · ,

L2 = pss
2 P1 − pss

1 P2 + · · · , (29)

where P1 and P2 are defined in Eq. (19) and corrections are at
least of the first order. For times t such that t |δλ2| � 1, with
δλ2 denoting the corrections in Eq. (28), which are at least
fourth order, the state of the dots [see Eq. (9)] can be approx-
imated as a probabilistic mixture of the states corresponding
to stationary states in the unperturbed system,

ρPD(t ) = p1(t )ρss
1 + p2(t )ρss

2 + · · · , (30)

with the corrections of the first order. Access to later times can
be gained by including higher-order corrections in Eq. (25)
(or modifying the generator even further [51]). The numerical
methods introduced in Refs. [9,10] allow for the study of
the long-time dynamics to all orders, simply by considering
the low-lying part of the spectrum of the Liouvillian L, as

(a)(a) (b)

(c)

FIG. 2. (a) Re(λ3)/λ2 as a function of δε, δ�. We (somewhat
arbitrarily) define the parameter regime where metastability occurs
by Re(λ3)/λ2 > 20. (b) Stationary probabilities of Eq. (25) (purple
line) well approximate the numerical decomposition into metastable
phases p̃1 (black dotted line) for constant δ�/� = 0.04 [shown as
the white dashed line in (a)], see Appendix B 3. (c) The transient
current for δε/� = 0.04 (purple line) and δε/� = 0.35 (orange line).
For a small perturbation δε, the transient dynamics shows a plateau
of approximately constant current corresponding to Eq. (32) (gray
line), which at later times follows the evolution of Eq. (25) (purple
dashed line). In both cases, δ�/� = 0.04, and the initial state is the
fully mixed state ρPD(0) = 1/4 in the local basis. Other parameters
are chosen as in Fig. 1(b).

obtained by its diagonalization; for a short summary, see
Appendix B 3.

For times t such that −tλ2 � 1, the effective dynamics in
Eq. (25) can be neglected and the system is approximately
stationary, i.e., metastable,

ρPD(t ) = p1(0)ρss
1 + p2(0)ρss

2 + · · · , (31)

with the leading contribution given by the asymptotic state of
the unperturbed dynamics. In this metastable regime, the un-
perturbed system’s stationary states take the role of metastable
phases, and the system can be in any probabilistic mixture of
these depending on the initial state [9,10]. As a consequence,
a whole range of approximately constant average currents can
be supported in this regime,

I (t ) = p1(0)I1 + p2(0)I2 + · · · . (32)

In contrast to Eq. (27), the current values are in the leading
order determined by the initial system state and thus indepen-
dent from the perturbations.

We demonstrate our analytical findings of the parallel
dots’ dynamics for concrete parameter choices in Fig. 2. In
Fig. 2(a), we characterize perturbation strengths for which

125424-6



METASTABILITY AND QUANTUM COHERENCE ASSISTED … PHYSICAL REVIEW B 107, 125424 (2023)

FIG. 3. Real (top panels) and imaginary part (bottom panels) of the spectrum of L as function of the perturbations δ�, δε with the Lamb
shift HLS included (purple) and excluded (orange). The solid lines correspond to purely real eigenvalues while the dashed lines represent
eigenvalue branches with a nonvanishing imaginary part. (a) Spectrum for varying δε/� and constant δ�/� = 10−8. (b) Spectrum for varying
δ�/� and constant δε/� = 10−6; all other parameters are chosen as in Fig. 1.

the perturbative approach is applicable, with the metasta-
bility criterion [9,10] Re(λ3)/λ2 � 1. In this regime, the
stationary state is well approximated by the zeroth-order
terms in Eq. (26). To show this, the stationary probabilities
of Eq. (25) are plotted as a function of the detuning δε in
Fig. 2(b). They are compared with the decomposition into
two metastable phases constructed numerically to all orders,
see also Appendix B 3. Changing the dot energy perturbation
while keeping a fixed tunneling rate perturbation, the distribu-
tion varies nonmonotonically. In turn the stationary current is
impacted, and can be suppressed when the metastable phase
with the vanishing current (due to a large Coulomb interac-
tion) predominantly contributes.

The transient dynamics in the regime where the system
is metastable is qualitatively different to where the system
does not exhibit metastability. In Fig. 2(c) the transient current
calculated from the full dynamics [Eqs. (8) and (10)] is plotted
for different choices of the detuning δε. For small perturba-
tions, metastability occurs and the transient current remains
approximately constant over a long time after the initial dy-
namics, see Eq. (32), before it finally evolves into its true
stationary value, see also Eq. (27). That long-time evolution
is well approximated by the classical effective dynamics of
Eq. (25). For larger perturbations, the current evolves towards
its stationary value continuously as the perturbative approach
breaks down and to capture the dynamics correctly, the full
expression for the evolution of Eq. (8) is needed.

D. Dynamics beyond small perturbations

Further insight into the system dynamics is provided by the
eigenvalue spectrum of the Liouville operator in Fig. 3.

For increasing perturbation strengths, the difference be-
tween λ2 and Re(λ3) decreases, so there is no clear separation
between the corresponding decay rates and the metastability
is absent. Due to the Lamb shift, the eigenvalues λ3,4 acquire
an imaginary part, which scales with the difference of the

(renormalized) energy levels of the system, while λ2 remains
real. Disregarding the Lamb shift leads to a fundamental dif-
ference for δ� = 0 and varying δε [Fig. 3(a)]. In this case, the
spectrum remains real below a threshold in δε, above which
the eigenvalues λ2 and λ3 merge and their corresponding
eigenvectors are identical, so that the spectrum exhibits an
exceptional point [52]. For larger δε, the merged branches
acquire an imaginary contribution forming a complex con-
jugate pair. The differences between the evolutions with and
without the Lamb shift are less pronounced along constant δε

but varying δ�.
For large detuning δε/� � 1, we observe the loss of co-

herence in the system as the real parts of the eigenvalues
approach the values 0,−�,−3�,−4�. These correspond to
the eigenvalues of the Pauli rate equation that describes the
dynamics of a density matrix assumed diagonal in the local
basis [37]; see also Appendix D.

V. QUANTUM COHERENCE ASSISTED SENSING

The coherences in the parallel dots lead to a stationary
current, which changes significantly as the perturbations δε

and δ� vary. From Sec. IV C, in the perturbative regime
we understand this as the result of the competition of two
metastable phases, but even for larger perturbations the cur-
rent remains sensitive to changes in the perturbations [35]. We
now investigate the possibility of using the parallel dots as a
sensor when a parameter quench is detected through its effect
on the particle current. In particular, we consider sensing a
change in the nearby charge distribution, which is assumed
to lead to a shift in the perturbation of the dot energies δε.
The change in charge distribution could, for example, be due
to a single electron being added to or removed from another
nearby quantum dot [53–55].

We consider a continuous measurement of the current in
Eq. (10) during a time τ in order to detect the parameter
quench that has occurred at t = 0. The statistics of such a
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FIG. 4. (a) The stationary current, (b) absolute value of the signal rate |∂δεI|, and (c) fluctuation rate as functions of δ� and δε. All
other parameters are chosen as indicated by the marker in Fig. 1(b). The black dashed line in (a)–(c) marks the approximate border where
metastability occurs and the solid black contour marks where −λ2/� > 103. (d) Temperature dependence of σ 2

δε of the parallel dots (PD) for
δε = δ� = 0.04� (purple, marker 1), δε = 0.35, δ� = 0.04� (orange, marker 2). These points are indicated by stars in (a)–(c). The error σ 2

ε

for a single quantum dot (SD) in the ideal configuration is plotted in black.

measurement can be accessed using full counting statistics
[36,47,48], see Appendix C.

The experimentally feasible measurement time τ sets a
lower bound on the perturbation strength we consider. Indeed,
the typical measurement time for charge detection in quantum
dots is τ ∼ μs [56,57], while a typical value for tunneling rate
sets �−1 ∼ ns. We assume that not only the initial but also the
final relaxation takes place within the measurement time, and
we therefore calculate all quantities in Fig. 4 in the stationary
state. This means that the system cannot be too far into the
regime where relaxation becomes extremely slow, which puts
some lower bound on the perturbation strength, see Fig. 4.

In Fig. 4(a), the stationary current as a function of the
two perturbations δε, δ� clearly depends only on the per-
turbation ratio, but not visibly on the perturbation strength.
For the regime where the system exhibits metastability this is
expected in terms of the dependence of the current on pss

1 , see
Eq. (27).

The signal of the (time-)integrated current is asymptoti-
cally linear in time with the rate equal to the response of
the stationary current to a change in δε, which is shown
in Fig. 4(b). In contrast to the current it depends on the
perturbation strength and diverges as that is reduced. In the
perturbative regime, this response is dominated by the change
in the stationary probabilities,

∂δεI = ∂δε pss
1 (I1 − I2) + · · ·

= γ2∂δεγ1 − γ1∂δεγ2

(γ1 + γ2)2
(I1 − I2) + · · · , (33)

where we used ∂δε pss
1 = −∂δε pss

2 as pss
1 + pss

2 = 1. Indeed,
∂δεγ j is of the first order while γ j is of the second order
for j = 1, 2, so that ∂δεI diverges with the inverse of the
perturbations.

This is true except for when ∂δε pss
1 = 0, which occurs in

two cases. First, for the perturbation at δ� = 0 since pss
1 is

then independent from δε. Second, when the perturbation ratio
corresponds to the minimal current in Fig. 4(a). In those cases,
the signal rate appears to actually vanish [as the corrections to
the stationary current in Eq. (27) are of the second order, the
signal rate is then of the first order].

The variance of the integrated current is asymptotically
linear in time with the rate S(0) equal to the zero-frequency
noise. The divergence of the fluctuation rate is evident in

Fig. 4(c) and agrees with the behavior of the Fano factor
F = S(0)/I observed for δε, δ� → 0 in Ref. [34]. Indeed,
for smaller perturbations, metastability arises leading to long-
lived correlations in the current so that its fluctuation rate
becomes large [34,46]

S(0) = 2

λ2
pss

1

(
1 − pss

1

)
(I1 − I2)2 + · · ·

= 2γ1γ2

(γ1 + γ2)3
(I1 − I2)2 + · · · (34)

For fixed γ1 + γ2, the smallest multiplicative factor corre-
sponds to the stationary probability pss

1 being minimal or
maximal. Outside the parameter regime where metastability
occurs, S(0) saturates to a constant value.

Estimation errors are determined via the standard error
propagation formula as the measurement variance rescaled
by the square of its signal. As the measurement time τ is
assumed much longer than the relaxation time, the variance
is dominated by τS(0), and the signal by τ∂δεI . Therefore, the
error is given by

σ 2
δε = 1

τ

S(0)

(∂δεI )2

≈ 2

τ

γ1γ2(γ1 + γ2)

(γ2∂δεγ1 − γ1∂δεγ2)2 , (35)

where the second line holds for the perturbative regime where
metastability occurs. We see that the divergence of the signal
rate in Eq. (33) and the fluctuations rate in Eq. (34) cancel out,
and the difference in currents between the metastable phases
simplifies as well.

For the best sensing setup, the errors in Eq. (35) should
be minimised by the choice of the perturbation values before
the quench. This corresponds to a trade-off between the fast
divergence of the signal and the slow divergence of the fluc-
tuations, which is nontrivial as, for fixed γ1 + γ2, the slowest
divergence of the fluctuations occurs exactly when the current
is maximal or minimal and the divergence of the signal is
actually absent.

We benchmark the performance of the parallel dots sensor
with a single quantum dot setup for charge sensing [1,54,58],
where a change in the charge distribution is assumed to affect
the dot energy ε. The parameters for the single quantum dot
are chosen such that it operates at a conductance peak where
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sensitivity is maximal, see Appendix D. The width of the con-
ductance peak depends on the temperature where ∂εI ∝ 1/T ,
while S(0) is independent of T . Consequently the errors σ 2

ε

show a quadratic temperature dependence. The advantage of
the parallel dots system operating as a sensor is that it is not
limited by temperature in contrast to the single dot setup. In
Fig. 4(d) the temperature dependence of the error in Eq. (35)
is shown for both setups. For the double quantum dot, the
parameters are chosen close to the minimal value of the cur-
rent (marker 1 in Fig. 4), where the signal rate is numerically
observed to diverge fast, and small δε, which results in the
corresponding errors σ 2

δε remaining small over a wide range of
temperatures. For example, at T/� ∼ 60 the ratio of error for
single and parallel dots σ 2

ε /σ 2
δε ∼ 55. In the limit T/� → 0,

the error of parallels dots approaches a constant value.
The parameter region in which the parallel dots can be

operated as a sensor is not limited to the chosen set of param-
eters indicated in the stability diagram in Fig. 1(b). In fact,
the trade-off between the noise and the signal anywhere be-
tween high conductance lines for positive bias voltages shows
similar behavior, see Appendix E.

VI. CONCLUSIONS

We have analyzed the transient dynamics and nonequilib-
rium transport properties of two interacting parallel quantum
dots coupled to macroscopic leads.

A swap symmetry between the dots is present when the
dots energies are degenerate and tunneling rates to both dots
are identical. This parity-like symmetry leads to the exis-
tence of two stationary states distinguishable by their currents
values. In equilibrium, this parity-like symmetry translates
to a SU (2) symmetry of a pseudospin [30], and its diverg-
ing susceptibility indicates a quantum critical point [29].
Perturbations of dot energies and tunneling rates introduce
metastability into the dots dynamics, and long-time dynamics
towards a unique stationary state arises with a rate that is
quadratic in the perturbations. Crucially, the stationary state
depends already in the leading order on the ratio of the pertur-
bations in dot energies and tunneling rates. This leads to the
diverging signal (change in the stationary current in response
to a small change in the perturbations). Since the current
fluctuations also diverge in this limit, we found that the signal
to noise ratio remains finite, but dependent on the perturbation
ratios. In the context of charge sensing, a comparison with a
single dot showed that the parallel dots may perform signifi-
cantly better.

While the dynamics of the parallel dots was considered in
this paper as GKLS dynamics beyond the secular approxima-
tion, the discussed aspects were directly connected to those of
the Hamiltonian dynamics of the dots and the leads, especially
in the context of symmetry breaking. Therefore, our results
should be qualitatively valid for other approximations for the
dot dynamics [35].

The physics observed in this paper crucially depends on
coherent dynamics. It would therefore be interesting to in-
vestigate how the results change when including additional
decoherence mechanisms, for example due to charge fluctua-
tions in the environment. Additionally, how strong-correlation
signatures in the conductance [27,28] are altered in the

nonequilibrium setup, and how the corresponding current
noise influences the sensitivity in a potential sensing appli-
cation, remain open questions for future studies.
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APPENDIX A: MASTER EQUATION

We derive the equation of motion for the reduced density
matrix ρPD of the quantum dots of GKLS form as stated in the
main text in Eq. (5).

1. Effective Hamiltonian

The dot Hamiltonian of Eq. (2), in its eigenbasis ordered as
|00〉, |10〉, |01〉 and |11〉, takes the following form:

HPD =

⎛
⎜⎜⎝

0 0 0 0
0 ε1 0 0
0 0 ε2 0
0 0 0 ε1 + ε2 + U

⎞
⎟⎟⎠. (A1)

To find the effective Hamiltonian, we need to determine the
Lamb shift HLS describing the renormalization of the system’s
eigenenergies due to the coupling to the leads. The latter is
beyond the secular approximation given by [44]

HLS = 1

2

∑
lmn

∑
ab

[Sab(ωml ) + Sab(ωmn)]

× X (a)
lm X (b)

mn |l〉〈n|. (A2)

The operators X (a), X (b), a, b = 1, . . . , 4, correspond to the
physical processes generated in the dots by the tunneling
Hamiltonian in Eq. (4), i.e.,

X (1) = d†
1 , X (2) = d†

2 ,

X (3) = d1, X (4) = d2. (A3)

Furthermore, l, m, n label the eigenbasis of HPD, while ωmn =
Em − En denote the corresponding energy differences. Finally,
Sαβ (ω) is determined by the odd Fourier transform,

iSab(ε) =
∫ D

−D
dτ sgn(τ )Cab(τ )eiωτ

= i

2π
P

∫ D

−D
dω

Cab(ω)

ε − ω
, (A4)

where D is the bandwidth. The function Cab(ω) =∫
dτ Cab(τ )eiωτ , is in turn the Fourier transform of the
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lead correlation function

Cab(t − t ′) = Tr[Y (a)(t )Y (b)(t ′)ρL]. (A5)

Here, ρL is the state of electrons in the leads, assumed to be
given by the grand canonical ensemble and the evolution in
the interaction picture [i.e., with the lead HL in Eq. (3)]. The
operators Y (i) are defined as [cf. Eq. (4)]

Y (1) =
∑

s=L,R

∑
k

t∗
1,kscsk, Y (2) =

∑
s=L,R

∑
k

t∗
2,kscsk,

Y (3) =
∑

s=L,R

∑
k

t1,ksc
†
sk, Y (4) =

∑
s=L,R

∑
k

t2,ksc
†
sk . (A6)

Equations (A3) and (A6) are a standard choice when treating
nonequilibrium transport setups [47]. Note that due to the con-
servation of the electron number in the leads, i.e., [Ns, HL] = 0
[cf. Eq. (3)], and the initial state such that [Ns, ρL] = 0; we
have C12(τ ) = C21(τ ) = C34(τ ) = C43(τ ) = 0.

In the continuum limit, with the assumption of tunneling
amplitudes being independent from momentum k, the Fourier

transforms of nonzero correlation functions are given by

C13(ω) = 2πν
∑

s=L,R

|t1s|2[1 − fs(ω)],

C14(ω) = 2πν
∑

s=L,R

t∗
1st2s[1 − fs(ω)] = C∗

23(ω),

C24(ω) = 2πν
∑

s=L,R

|t2s|2[1 − fs(ω)],

C31(ω) = 2πν
∑

s=L,R

|t1s|2 fs(−ω),

C32(ω) = 2πν
∑

s=L,R

t1st
∗
2s fs(−ω) = C∗

41(ω),

C42(ω) = 2πν
∑

s=L,R

|t2s|2 fs(−ω). (A7)

Here, ν is the density of states (assumed constant) and the
Fermi distribution

fs(ω) = 1

e(ω−μs )/Ts + 1
, (A8)

with the temperature Ts and the chemical potential μs for the
lead s.

In the limit of a large bandwidth D → ∞, for Sαβ (ω) we
make use of the principal value integral [37,44,59]

lim
D→∞

P
∫ D

−D
dω

fs(ω)

ε − ω
≈ −Re

{
�

[
1

2
+ i

βs(ε − μs)

2π

]}
+ ln

(
Dβs

2π

)
≡ Bs(ε), (A9)

with the inverse temperature βs and the digamma function �, to arrive at the Lamb shift Hamiltonian HLS with the following
nonzero entries:

〈00|HLS|00〉 =
∑
j=1,2

∑
s=L,R

|t js|2Bs(−ε j ), 〈10|HLS|10〉 = −
∑

s=L,R

|t1s|2Bs(−ε1) +
∑

s=L,R

|t2s|2Bs(−ε2 − U ),

〈01|HLS|01〉 = −
∑

s=L,R

|t2s|2Bs(−ε2) +
∑

s=L,R

|t1s|2Bs(−ε1 − U ), 〈11|HLS|11〉 =
∑
j=1,2

∑
s=L,R

|t js|2Bs(−ε j − U ), (A10)

〈10|HLS|01〉 = (〈01|HLS|10〉)∗ = −1

2

∑
j=1,2

∑
s=L,R

t∗
1st2s[Bs(−ε j ) + Bs(−ε j − U )].

The Lindblad dynamics feature a weak symmetry with
respect to the number of electrons NPD on the dots. From
Eqs. (A1) and (A10), the effective Hamiltonian conserves the
number of electrons, [NPD, Heff] = 0.

2. Jump operators

To construct the jump operators for Eq. (5), we follow the
approach presented in [42]. For the model of two parallel
quantum dots we proceed as follows.

(1) Each jump operator is identified with a physical jump
process between the quantum dot system and the leads, see
Eq. (A3). For the parallel dots there are eight jump processes
in total.

(a) The electron arrives from the left lead to dot 1 (or
dot 2), i.e., X (1) [or X (2)], with the corresponding tunneling
amplitude t∗

1L (or t∗
2L).

(b) The electron leaves dot 1 (or dot 2) into the left lead,
X (3) [or X (4)], with the tunneling amplitude t1L (or t2L).

(c) The electron arrives from the right lead to dot 1
(or dot 2), i.e., X (1) [or X (2)], the corresponding tunneling
amplitude is t∗

1R (or t∗
2R).

(d) The electron leaves dot 1 (or dot 2) into the right
lead, X (3) [or X (4)], with the tunneling amplitude t1R (or
t2R).
(2) The processes for each lead are combined [42], which

yields

J̃+L = t∗
1LX (1) + t∗

2LX (2),

J̃−L = t1LX (3) + t2LX (4),

J̃+R = t∗
1RX (1) + t∗

2RX (2),

J̃−R = t1RX (3) + t2RX (4). (A11)
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(3) Finally, each jump operator is reweighted in the eigen-
basis of HPD of Eq. (2) according to the energy differences,
by the corresponding distribution of the resonant energy in
the lead before the electron exchange [cf. Eq. (A8)], and the

corresponding density of states ν (assumed constant),

(J+s)mn = (J̃+s)mn

√
2πν

√
fs(Em − En),

(J−s)mn = (J̃−s)mn

√
2πν

√
1 − fs(En − Em), (A12)

where fs(ε) is the Fermi distribution for energy ε in lead s = L, R, so that

J+L =
√

2πν

⎛
⎜⎜⎜⎜⎝

0 0 0 0

t∗
1L

√
fL(ε1) 0 0 0

t∗
2L

√
fL(ε2) 0 0 0

0 −t∗
2L

√
fL(ε2 + U ) t∗

1L

√
fL(ε1 + U ) 0

⎞
⎟⎟⎟⎟⎠,

J−L =
√

2πν

⎛
⎜⎜⎜⎜⎝

0 t1L
√

1 − fL(ε1) t2L
√

1 − fL(ε2) 0

0 0 0 −t2L
√

1 − fL(ε2 + U )

0 0 0 t1L
√

1 − fL(ε1 + U )

0 0 0 0

⎞
⎟⎟⎟⎟⎠,

J+R =
√

2πν

⎛
⎜⎜⎜⎜⎝

0 0 0 0

t∗
1R

√
fR(ε1) 0 0 0

t∗
2R

√
fR(ε2) 0 0 0

0 −t∗
2R

√
fR(ε2 + U ) t∗

1R

√
fR(ε1 + U ) 0

⎞
⎟⎟⎟⎟⎠,

J−R =
√

2πν

⎛
⎜⎜⎜⎜⎝

0 t1R
√

1 − fR(ε1) t2R
√

1 − fR(ε2) 0

0 0 0 −t2R
√

1 − fR(ε2 + U )

0 0 0 t1R
√

1 − fR(ε1 + U )

0 0 0 0

⎞
⎟⎟⎟⎟⎠, (A13)

in the basis of |00〉, |10〉, |01〉 and |11〉.
The jump operators of Eq. (A13) increase or decrease the

number of electrons only by 1,

[NPD, Jαs] = α Jαs, (A14)

where α = +,− and s = L, R. In particular, Eq. (A14) leads
to [NPD, J†

αsJαs] = 0, so that the average particle current in
Eq. (10) is determined only by the components ρPD(t ) diag-
onal in charge. Therefore, the left and right eigenmatrices of
the Liouville operator can be chosen as eigenmatrices of NPD,
see also Appendix B 1.

APPENDIX B: PERTURBATIVE DYNAMICS
AND METASTABILITY

1. Dynamics with strong symmetry

Here, we discuss further the dynamics in the presence of
the strong swap symmetry, cf. Eqs. (15) and (16).

Next to the stationary states in Eq. (17) and the projections
in Eq. (19), there are two decay modes corresponding to the
classical dynamics,

R(0)
5 = |00〉〈00| − |+〉〈+|,

R(0)
6 = |−〉〈−| − |11〉〈11|, (B1)

and

L(0)
5 = f̄ (ε)|00〉〈00| − [1 − f̄ (ε)]|+〉〈+|,

L(0)
6 = f̄ (ε + U )|−〉〈−| − [1 − f̄ (ε + U )]|11〉〈11|, (B2)

with the degenerate pair of eigenvalues given by Eq. (20)
There is also a decay of the quantum coherences in the

bonding/antibonding basis,

R(0)
3 = [

R(0)
4

]† = |+〉〈−|, (B3)

L(0)
3 = [

L(0)
4

]† = |−〉〈+|, (B4)

with the conjugate pair of eigenvalues in Eq. (21).

2. Perturbation theory for strong symmetry breaking

We now investigate dynamics of the Liouville operator L
using the non-Hermitian perturbation theory with respect to
perturbations away from dynamics featuring the strong swap
symmetry, see Eq. (24). Those arise due to perturbations in
the effective Hamiltonian and the jump operators, cf. Eqs. (15)
and (16), when dynamical parameters are changed according
to Eqs. (22) and (23).

a. Perturbations of Liouvillian

The resulting perturbations to the Liouville operator caused
by perturbations of the dynamical parameters are of all orders.
This is due to the fact that the effective Hamiltonian and the
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jump operators are nonlinear functions of the dot energies and the tunneling rates, see Appendix A. In particular, we have that
the first-order perturbation of the Liouvillian [cf. Eqs. (5) and (24)] is given by

L(1)(ρPD) = −i
[
H (1)

eff , ρPD
] +

∑
α=+,−
s=L,R

{
J (1)
αs ρPD

[
J (0)
αs

]† + J (0)
αs ρPD

[
J (1)
αs

]†} − 1

2

∑
α=+,−
s=L,R

{
ρPD,

[
J (1)
αs

]†
J (0)
αs + [

J (0)
αs

]†
J (1)
αs

}
, (B5)

which stems from the first-order perturbations to the effective Hamiltonian in Eq. (15)and the jump operators in Eq. (16).
Similarly, the second-order perturbation of L is given by

L(2)(ρPD) = − i
[
H (2)

eff , ρPD
] +

∑
α=+,−
s=L,R

{
J (2)
αs ρPD

[
J (0)
αs

]† + J (0)
αs ρPD

[
J (2)
αs

]†}

− 1

2

∑
α=+,−
s=L,R

{
ρPD,

[
J (2)
αs

]†
J (0)
αs + [

J (0)
αs

]†
J (2)
αs

} +
∑

α=+,−
s=L,R

{
J (1)
αs ρPD

[
J (1)
αs

]† − 1

2

{
ρPD,

[
J (1)
αs

]†
J (1)
αs

}}
, (B6)

where both the first- and second-order perturbations to the effective Hamiltonian and the jump operators contribute. We will
denote the contribution from the first-order perturbations only as

L(2)′ (ρPD) =
∑

α=+,−
s=L,R

{
J (1)
αs ρPD

[
J (1)
αs

]† − 1

2

{
ρPD,

[
J (1)
αs

]†
J (1)
αs

}}
. (B7)

Below, we only give first-order perturbations to the effective Hamiltonian and the jump operators, as they fully determine the
leading second-order corrections to the long-time dynamics, via L(1) and L(2)′ , which is argued in Appendix B 2 b.

For the dot Hamiltonian of Eq. (2) the perturbation is linear in δε

δHPD = HPD − H (0)
PD = H (1)

PD = δε(|+〉〈−| + |−〉〈+|), (B8)

see also Eq. (22).
For the Lamb shift Hamiltonian, we have, up to the second order in δε and δ� [cf. Eq. (A10) and see Eqs. (22) and (23)]

δHLS =HLS − H (0)
LS = H (1)

LS + · · · = −�

π

{
δε

[
B̄′(−ε)+B̄′(−ε − U )

]+δ�

�
[B̄−(−ε)+B̄−(−ε − U )]

}
(|+〉〈−| + |−〉〈+|) + · · · ,

(B9)

where B̄′(−ε) = ∂εB̄(−ε) and B̄−(−ε) = [BL(−ε) − BR(−ε)]/2.
For the jump operators, we have up to the second order [cf. Eq. (A13) and see Eqs. (22) and (23)]

δJ+L = J+L − J (0)
+L = J (1)

+L + · · ·

=
√

�

2

√
fL(ε)

[
δε

f ′
L(ε)

fL(ε)
− δ�

�

]
|−〉〈00| −

√
�

2

√
fL(ε + U )

[
δε

f ′
L(ε + U )

fL(ε + U )
− δ�

�

]
|11〉〈+| + · · · ,

δJ−L = J−L − J (0)
−L = J (1)

−L + · · ·

= −
√

�

2

√
1 − fL(ε)

[
δε

f ′
L(ε)

1 − fL(ε)
+ δ�

�

]
|00〉〈−| +

√
�

2

√
1 − fL(ε + U )

[
δε

f ′
L(ε + U )

1 − fL(ε + U )
+ δ�

�

]
|+〉〈11| + · · ·

δJ+R = J+R − J (0)
+R = J (1)

+R + · · ·

=
√

�

2

√
fR(ε)

[
δε

f ′
R(ε)

fR(ε)
+ δ�

�

]
|−〉〈00| −

√
�

2

√
fR(ε + U )

[
δε

f ′
R(ε + U )

fR(ε + U )
+ δ�

�

]
|11〉〈+| + · · · ,

δJ−s = J−s − J (0)
−s = J (1)

−s + · · ·

= −
√

�

2

√
1 − fR(ε)

[
δε

f ′
R(ε)

1 − fR(ε)
− δ�

�

]
|00〉〈−| +

√
�

2

√
1 − fR(ε + U )

[
δε

f ′
R(ε + U )

1 − fR(ε + U )
− δ�

�

]
|+〉〈11| + · · · ,

(B10)

where f ′
s (ε) = ∂ε fs(ε).
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We note that the effective Hamiltonian and the jump op-
erators feature symmetry-breaking perturbations only in the
first order. In fact, it can be shown that symmetry-breaking
perturbations of those operators appear in odd orders, while
symmetry-preserving perturbations appear in even orders.
This is a consequence of the fact that choosing perturbations
with the opposite signs in Eqs. (22) and (23), directly cor-
responds to the dynamics with the dots swapped. Under this
transformation, |−〉 is replaced by −|−〉 and |11〉 by −|11〉 in
the bonding/antibonding basis. Since the simultaneous change
of all perturbation signs changes the sign of odd-order cor-
rections, those must correspond to the symmetry-breaking
contributions, while even orders must be accompanied only
by symmetry-preserving contributions.

b. Perturbative corrections to dynamics

As the dynamics, no matter the size of perturbation, pre-
serve the weak symmetry with respect to NPD, the only
unperturbed modes that contribute to the perturbed dynamics
ofρPD, as considered in the main text, are the modes diagonal
in charge (see Sec. IV A and Appendix A).

We consider the perturbation theory for the reduced dy-
namics of the first two eigenmodes of the dynamics, LP ,
where P (ρPD) = ρss + Tr(L2ρPD)R2 [cf. Eqs. (8) and (9)]. We
have that P = P (0) + P (1) + ... where P (0) is the projection
on the zero-eigenspace of the unperturbed dynamics L(0),

P (0)(ρPD) =
∑
i=1,2

ρss
i Tr(PiρPD). (B11)

The first-order corrections to the reduced dynamics are
always within that subspace and are formally given by
P (0)L(1)P (0) [45]. We now show that these corrections are
zero for the dynamics considered in this paper. This can
be seen as the consequence of the classicality of the zero-
eigenspace of the unperturbed dynamics (cf. Ref. [11]).

In the first order, the perturbations of the effective Hamil-
tonian and the jump operators are symmetry-breaking and

give rise to the first-order corrections to the Liouvillian L(1),
given in Eq. (B5), which break the strong symmetry. That
is, L(1)(ρss

i ) is a linear combination of coherences |+〉〈−|
and |−〉〈+|. Since the coherences decay to 0 under the un-
perturbed dynamics, Tr(Pi|+〉〈−|) = 0 = Tr(Pi|−〉〈+|), the
first-order corrections vanish, P (0)L(1)P (0) = 0.

For P (0)L(1)P (0) = 0, the second-order corrections to the
reduced dynamics, are found within the zero subspace of L(0)

and formally given by P (0)L(2)P (0) − P (0)L(1)R(0)L(1)P (0)

[45], where R(0) is the reduced resolvent of L(0) at 0, so
that R(0)L(0) = L(0)R(0) = I − P (0), with the identity map
I (ρPD) = ρPD. In terms of the eigenmatrices of L(0) we can
write [Eqs. (21), (20), (B1), and (B3) ]

R(0)(ρPD) =
6∑

i=3

1

λi
R(0)

i Tr
[
L(0)

i ρPD
]
. (B12)

We now show that the contribution to the second-order dy-
namics stem only from the first-order corrections to the
effective Hamiltonian and the jump operators.

Indeed, let us note that L(2) − L(2)′ is of an analogous
form to L(1) but with the first-order perturbations H (1)

eff and
J (1)
αs replaced by the second-order perturbations H (2)

eff and
J (2)
αs [cf. Eqs. (B5)–(B7)]. Those perturbations are symmetry-

preserving, [L(2) − L(2)′ ]†(Pi ) = 0 for i = 1, 2, and the trace
within the support of ρss

i is preserved by L(2) − L(2)′ , which
leads to P (0)[L(2) − L(2)′ ] = 0. Thus, the second-order cor-
rections to the effective Hamiltonian and the jump operators
do not contribute to second-order corrections in the reduced
dynamics.

We conclude that the second-order corrections to
the reduced dynamics are given by P (0)L(2)′P (0) −
P (0)L(1)R(0)L(1)P (0). We now use this results to calculate
the decay rates in Eq. (25). In the operator basis of
|+〉〈−|, |−〉〈+|, |00〉〈00|, |+〉〈+|, |−〉〈−|, |11〉〈11| (which
we index by I, II, III, IV, V, VI, respectively), the first-order
perturbation L(1) of the Liouvillian has the following structure

ˆ̂L(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 ˆ̂L(1)
I,III

ˆ̂L(1)
I,IV

ˆ̂L(1)
I,V

ˆ̂L(1)
I,VI

0 0
[ ˆ̂L(1)

I,III

]∗ [ ˆ̂L(1)
I,IV

]∗ [ ˆ̂L(1)
I,V

]∗ [ ˆ̂L(1)
I,VI

]∗

ˆ̂L(1)
III,I

[ ˆ̂L(1)
III,I

]∗
0 0 0 0

[ ˆ̂L(1)
I,V

]∗ ˆ̂L(1)
I,V 0 0 0 0

[ ˆ̂L(1)
I,IV

]∗ ˆ̂L(1)
I,IV 0 0 0 0

ˆ̂L(1)
VI,I

[ ˆ̂L(1)
VI,I

]∗
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B13)

Here, the complex conjugation relations between the first and second columns, and between the first and second rows, follow

from the fact that L(1) is Hermiticity preserving. We also have ˆ̂L(1)
I,IV = ˆ̂L(1)

V,II,
ˆ̂L(1)

I,V = ˆ̂L(1)
IV,II,

ˆ̂L(1)
II,IV = ˆ̂L(1)

V,I , and ˆ̂L(1)
II,V = ˆ̂L(1)

IV,I, as
those contributions arise only due to the effective Hamiltonian.
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The structure of the second-order perturbation L(2)′ due to the first-order perturbations of the jump operators

ˆ̂L(2)′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[ ˆ̂L(2)′
]

I,I 0 0 0 0 0

0
[ ˆ̂L(2)′

]∗
I,I 0 0 0 0

0 0 − ˆ̂L(2)
V,III 0 ˆ̂L(2)

III,V 0

0 0 0 − ˆ̂L(2)
VI,IV 0 ˆ̂L(2)

IV,VI

0 0 ˆ̂L(2)
V,III 0 − ˆ̂L(2)

III,V 0

0 0 0 ˆ̂L(2)
VI,IV 0 − ˆ̂L(2)

IV,VI

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B14)

can be understood as corresponding to the strong symmetry with |00〉〈00| − |+〉〈+| + |−〉〈−| − |11〉〈11|, with which the first-
order perturbations of the jump operators commute. We then use the trace preservation of L(2)′ to connect the diagonal terms to

the off-diagonal ones, and its Hermiticity preservation to note that [ ˆ̂L(2)′ ]II,II = [ ˆ̂L(2)′]∗I,I.
Therefore, the decay rates in Eq. (25) are

γ1 = [1 − f̄ (ε)] ˆ̂L(2)
V,III + f̄ (ε) ˆ̂L(2)

VI,IV + 1

2�

⎛
⎝ [1 − f̄ (ε)] ˆ̂L(1)

I,III + f̄ (ε) ˆ̂L(1)
I,IV

1 − f̄ (ε) + f̄ (ε + U ) − i
π

[
B̄(−ε) + B̄(−ε − U )

]{ ˆ̂L(1)
III,I + [ ˆ̂L(1)

I,V

]∗} + H.c.

⎞
⎠,

γ2 = [1 − f̄ (ε + U )] ˆ̂L(2)
III,V + f̄ (ε + U ) ˆ̂L(2)

IV,VI

+ 1

2�

⎛
⎝ [1 − f̄ (ε + U )] ˆ̂L(1)

I,V + f̄ (ε + U ) ˆ̂L(1)
I,VI

1 − f̄ (ε) + f̄ (ε + U ) − i
π

[B̄(−ε) + B̄(−ε − U )]

{[ ˆ̂L(1)
I,IV

]∗ + ˆ̂L(1)
VI,I

} + H.c.

⎞
⎠, (B15)

where

ˆ̂L(1)
I,III = �

{
fL(ε)

[
δε

f ′
L(ε)

fL(ε)
− δ�

�

]
+ fR(ε)

[
δε

f ′
R(ε)

fR(ε)
+ δ�

�

]}
,

ˆ̂L(1)
I,IV = i

(
δε − �

π

{
δε

[
B̄′(−ε) + B̄′(−ε − U )

] + δ�

�

[
B̄−(−ε) + B̄−(−ε − U )

]})

− �

2

{
fL(ε + U )

[
δε

f ′
L(ε + U )

fL(ε + U )
− δ�

�

]
+ fR(ε + U )

[
δε

f ′
R(ε + U )

fR(ε + U )
+ δ�

�

]}

− �

2

{
[1 − fL(ε)]

[
δε

f ′
L(ε)

1 − fL(ε)
+ δ�

�

]
+ [1 − fR(ε)]

[
δε

f ′
R(ε)

1 − fR(ε)
− δ�

�

]}
= [ ˆ̂L(1)

I,V

]∗
,

ˆ̂L(1)
I,VI = �

{
[1 − fL(ε + U )]

[
δε

f ′
L(ε + U )

1 − fL(ε + U )
+ δ�

�

]
+ [1 − fR(ε + U )]

[
δε

f ′
R(ε + U )

1 − fR(ε + U )
− δ�

�

]}
,

ˆ̂L(1)
III,I = −�

{
[1 − fL(ε)]

[
δε

f ′
L(ε)

1 − fL(ε)
+ δ�

�

]
+ [1 − fR(ε)]

[
δε

f ′
R(ε)

1 − fR(ε)
− δ�

�

]}
,

ˆ̂L(1)
VI,I = −�

{
fL(ε + U )

[
δε

f ′
L(ε + U )

fL(ε + U )
− δ�

�

]
+ fR(ε + U )

[
δε

f ′
R(ε + U )

fR(ε + U )
+ δ�

�

]}
, (B16)

and

ˆ̂L(2)
V,III = �

2

{
fL(ε)

[
δε

f ′
L(ε)

fL(ε)
− δ�

�

]2

+ fR(ε)

[
δε

f ′
R(ε)

fR(ε)
+ δ�

�

]2
}

,

ˆ̂L(2)
VI,IV = �

2

{
fL(ε + U )

[
δε

f ′
L(ε + U )

fL(ε + U )
− δ�

�

]2

+ fR(ε + U )

[
δε

f ′
R(ε + U )

fR(ε + U )
+ δ�

�

]2
}

,

ˆ̂L(2)
III,V = �

2

{
[1 − fL(ε)]

[
δε

f ′
L(ε)

1 − fL(ε)
+ δ�

�

]2

+ [1 − fR(ε)]

[
δε

f ′
R(ε)

1 − fR(ε)
− δ�

�

]2
}

,

ˆ̂L(2)
IV,VI = �

2

{
[1 − fL(ε + U )]

[
δε

f ′
L(ε + U )

1 − fL(ε + U )
+ δ�

�

]2

+ [1 − fR(ε + U )]

[
δε

f ′
R(ε + U )

1 − fR(ε + U )
− δ�

�

]2
}

. (B17)

using Eqs. (B8) to (B10).
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Third-order corrections to the reduced dynamics projected
on the zero subspace of L(0) in general contribute to the first-
order perturbations of the stationary state in Eq. (26) and the
eigenmatrices in Eq. (28) corresponding to the second eigen-
value. But here the third-order corrections (see Supplemental
Material in Refs. [9] and [45]) are projected to 0 as, when
acting on ρss

1 and ρss
2 , they give rise to linear combinations

of |+〉〈−| and |−〉〈+|. In particular, we have, λ
(3)
2 = 0. These

results can be seen to hold for all odd-order corrections, as
the opposite sign of the perturbations in Eqs. (22) and (23)
corresponds to the dynamics with the dots swapped, which,
however, leaves ρss

1 and ρss
2 unchanged.

c. Perturbative corrections to metastable and stationary states

Beyond the zero-subspace spanned by the stationary states
of L(0) in Eq. (17), the first-order corrections to the pro-
jection P on the stationary state and the second eigenmode
are given by P (1) = −R(0)L(1)P (0) [45]. These corrections
determine the first-order corrections to the metastable phases
as −R(0)L(1)(ρss

1 ) and −R(0)L(1)(ρss
2 ); see Supplemental Ma-

terial in Ref. [9].
We now assess the first-order corrections to the unique

stationary state for L, cf. Eq. (24). Again, due to the weak
symmetry with respect to NPD, the only unperturbed modes
that contribute are the symmetric ones, cf. Appendix B 1. The
first-order corrections to the stationary state in Eq. (26) are
given by

ρ
ss(1)
PD = − R(0)L(1)

[
ρ

ss(0)
PD

]
. (B18)

Here, the projected third-order corrections to the reduced
dynamics should also contribute (cf. Supplemental Material
in Refs. [9] and [45]), but they vanish for the considered
perturbations, as we explained above.

d. Perturbative corrections to initial dynamics

Generally, the dynamics taking place before the metastable
regime can be analyzed in terms of the perturbative cor-
rections to the remaining fast eigenmodes. The leading
corrections for the eigenvalues are of second order, but for
the eigematrices of first order.

The eigenvalues corresponding to the coherence decay in
Eq. (21) will acquire second-order corrections as in the first
order λ

(1)
3,4 = Tr[L(0)

3,4L(1)R(0)
3,4] = 0, as the symmetry-breaking

perturbations of the effective Hamiltonian and jumps cannot
contribute here. The first-order corrections to the correspond-
ing eigenmatrices in Eqs. (B3) and (B4) will be present in
general.

The degeneracy of the classical decay of eigenvalues in
Eq. (20) will only be lifted in the second order, with the
first-order corrections being zero (cf. Fig. 3). The first-order
corrections to the corresponding matrices in Eqs. (B1) and
(B2) will be present.

3. Metastable phases and long-time dynamics—all orders

Formally, the long-time dynamics in Eq. (9) is a projection
onto the subspace of the first two eigenmatrices of the Liou-
villian. Here, we review the construction first introduced in
[9] that allows for considering it in a physical basis, and thus

considering Eq. (25) not only up the second, but to all orders,
as in Fig. 2(b).

a. Metastable phases

To explain how to construct the metastable states in terms
of the first two eigenmodes of the dynamics, as used in
Fig. 2(b), we follow [9,10].

The metastable manifold is spanned by two extreme
metastable states

ρ̃1 = ρss
PD + cmax

2 R2,

ρ̃2 = ρss
PD + cmin

2 R2. (B19)

The coefficients cmin
2 and cmax

2 are the smallest and largest
eigenvalues of the left eigenmatrix L2. Using the results of
Appendix B 2, up to the first-order corrections, we obtain
ρ̃1 = ρss

1 + · · · and ρ̃2 = ρss
2 + · · · .

The approximation in Eq. (9) for any state during the
metastable regime corresponds to the projection P on the
stationary state and the second eigenmode, and can be equiv-
alently expressed as a linear combination

P[ρPD(t )] = p̃1(t )ρ̃1 + p̃2(t )ρ̃2, (B20)

with p̃i(t ) defined via the observables

P̃1 = (
L2 − cmin

2 1
)
/�c2,

P̃2 = (−L2 + cmax
2 1

)/
�c2, (B21)

with �c2 = cmax
2 − cmin

2 as p̃i(t ) = Tr[P̃iρPD(t )] for i = 1, 2.
The metastable phases ρ̃i defined above feature trace 1, but are
in general not positive and thus are not described by density
matrices. In contrast, p̃i(t ) always correspond to probabilities
[9,10]. Up to the first-order corrections, we have P̃i = Pi +
· · · , so that p̃i(0) = pi(0) + · · · .

b. Long-time dynamics

The time evolution of P[ρPD(t )] corresponds to the evo-
lution of the probabilities in Eq. (B20) governed by the
generator

d

dt

[
p̃1(t )
p̃2(t )

]
= − λ2

�c2

(−cmax
2 −cmin

2
cmax

2 cmin
2

)[
p̃1(t )
p̃2(t )

]
, (B22)

which represents classical stochastic dynamics [9,10]. In the
second order, the generator in Eq. (B22) coincides with the
one in Eq. (25), cf. Supplemental Material in Ref. [11].

c. Stationary state

In terms of the two metastable phases in Eq. (B19) the
stationary state decomposes as

ρss
PD = p̃ss

1 ρ̃1 + p̃ss
2 ρ̃2, (B23)

where p̃ss
1 and p̃ss

2 are the stationary probabilities for the clas-
sical dynamics in Eq. (B22) [cf. Eq. (B20)], which in the
zeroth order equal the stationary probabilities of Eq. (25).
Thus, Eq. (B23) in the zeroth order corresponds to Eq. (26).

APPENDIX C: FULL COUNTING STATISTICS

The stationary current and its noise can be derived using
full counting statistics as described in Refs. [36,47,48]. Below,
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we give the main aspects of the derivation and the resulting
expressions.

1. Tilted Liouville operator

The value of the particle current from lead s integrated up
to time t equals the difference between the total numbers of
electrons that have entered the dots from lead s and that have
left the dots to that lead up to time t . For the parallel dots
initially in ρPD(0), the characteristic function ϕs(χ, t ) for its
distribution is then encoded as

ϕs(χ, t ) = Tr{etLs (χ )[ρPD(0)]} (C1)

by the tilted operator,

Ls(χ ) = L +
∑

α=+,−
(eiαχ − 1)Lαs (C2)

where Lαs(ρPD) = JαsρPDJ†
αs describe processes of exchang-

ing an electron between lead s and the parallel dots, with
α = + corresponding to the electron entering the dots, and
α = − to the electron leaving. In particular, Ls(χ ) reduces to
the Liouvillian in Eq. (7) for χ = 0, so that ϕs(0, t ) = 1 as
expected.

2. Case of unique stationary state

Since the nth cumulant of the integrated particle current
equals the nth derivative of the characteristic function, up to a
factor in, it is asymptotically linear in time when the stationary
state ρss

PD is unique. In particular, the asymptotic rates for
average and the variance of the integrated particle current are
given by [cf. Eq. (10)]

Is =Tr
[
(L+s − L−s)

(
ρss

PD

)]
, (C3)

Ss(0) =Tr
[
(L+s + L−s)

(
ρss

PD

)]
− 2Tr

[
(L+s − L−s)R(L+s − L−s)

(
ρss

PD

)]
, (C4)

respectively. Here, R(ρPD) = ∑
i�2 λ−1

i RiTr(LiρPD) is the re-
duced resolvent of L at 0.

3. Case of two stationary states

In the case when the dynamics of Eq. (8) features two
stationary states denoted by ρss

1 and ρss
2 of Eq. (17), a general

asymptotic state is their probabilistic mixture

ρss
PD = p1ρ

ss
1 + p2ρ

ss
2 . (C5)

The probabilities are determined as p1 = Tr[P1ρPD(0)] and
p2 = Tr[P2ρPD(0)] [cf. Eq. (19)]. Then the average integrated
current is also asymptotically linear in time, with the asymp-
totic rate as in Eq. (C3), that is,

Is =p1Is1 + p2Is2, (C6)

where Is1 and Is2 are the asymptotic rates for initial states
found asymptotically in ρss

1 and ρss
2 , respectively [or the av-

erage currents for those stationary states, cf. Eq. (18)]. In
contrast, the variance of the integrated current in general di-
verges quadratically in time with the coefficient

σs =p1 p2(Is1 − Is2)2. (C7)

Only when the system is found asymptotically in either in ρss
1

or ρss
2 , the variance is asymptotically linear in time, with the

rates S(0)s1 or S(0)s2 given by Eq. (C4) with ρss
PD replaced by

ρss
1 or ρss

2 . In fact, Eq. (C4) in general gives the rate of the
asymptotically linear contribution to the variance with ρss

PD as
in Eq. (C5).

4. Case of perturbation away from two stationary states

When the dynamics is perturbed away from the twofold
degeneracy of zero eigenvalue, Eqs. (C3) and (C4) can be
expressed in the leading order as [Eqs. (C3) and (C4)]

Is = Tr
{[
L(0)

+s − L(0)
−s

][
ρ

ss(0)
PD

]} + · · ·
= pss

1 Is1 + pss
2 Is2 + · · · , (C8)

Ss(0) = − 2

λ
(2)
2

Tr
{[
L(0)

+s − L(0)
−s

][
R(0)

2

]}
× Tr

{
L(0)

2

[
L(0)

+s − L(0)
−s

][
ρ

ss(0)
PD

]} + · · ·

= − 2

λ
(2)
2

pss
1 pss

2 (Is1 − Is2)2 + · · · , (C9)

so that the fluctuation rate diverges inversely with the square
of perturbation strength [11], see also Eqs. (26) and (29).

APPENDIX D: PAULI RATE EQUATION
FOR PARALLEL DOTS

Here, we compare the Pauli rate equation from Eq. (5)
and consider the resulting stationary distributions. A Pauli
rate equation for the diagonal entries of the density matrix in
any basis can be obtained by neglecting the contribution from
coherences.

In the basis |00〉, |10〉, |01〉, and |11〉, the Pauli rate equa-
tion [37] features a single stationary probability distribution.
Even for the parameters chosen as in Eqs. (12) and (14), which
lead to stationary state degeneracy in the Lindblad dynamics
of Eq. (5), the distribution remains unique.

In Figs. 5(a) and 5(b), the stationary differential conduc-
tance and stationary current for the rate equation are plotted
[37]. The stability diagrams significantly differ from those for
the stationary state of Eq. (5), cf. Fig. 1(b) and Fig. 6(a). Here,
the differential conductance recovers the typical Coulomb
diamond structure for a single spinful dot. In fact, when ε1 =
ε2 = ε and �1s = �2s = �s, additionally with ε � U , the dy-
namics corresponds to a single spin-degenerate dot, where
coherences are suppressed because spin is a good quantum
number in both leads and dot. Such systems are used as charge
sensors [1], where the parameters are chosen along the high
conductance lines, where small changes in the gate voltage VG

results in large response in the current.
For large detuning, |ε1 − ε2| → ∞, a Pauli rate equa-

tion captures the true evolution Eq. (5). In the low-
est order, classical dynamics arises between |00〉〈00|,
|01〉〈10|, |10〉〈10|, and |11〉〈11| that are left invariant by the
Hamiltonian, and is given by the Pauli rate equation in the
local basis. The real parts of the eigenvalues for the rapidly
oscillating coherences |10〉〈01| and |01〉〈10| are both given
by −∑

j=1,2

∑
s=L,R � js [1 − fs(ε j ) + fs(ε j + U )]/2. The
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(a) (b)(a) (b)

FIG. 5. (a) Differential conductance and (b) current of the paral-
lel dots described by Pauli rate equation in the local basis. All other
parameters are chosen as in Fig. 1(b). (c) Spectrum of the Liouvillian
[as in Fig. 3(a), purple solid lines indicating purely real λ1, λ2, λ5, λ6,
while purple dashed lines the complex eigenvalues λ3 and λ4] and of
the Pauli rate equation for the local basis (black dotted lines). For
large δε, the coherences in the evolution are eliminated and the rate
equation becomes exact.

corresponding eigenvalue spectrum in Fig. 5(c) indicate such
behavior.
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FIG. 6. (a) Stationary current, (b) noise, (c) signal rate, and (d)
the error with the same parameters as Fig. 1(b) as functions of VB and
VG. The structure of the error in (d) within the Coulomb diamond
is due to the current, noise, and sensitivity not being exactly zero,
but exponentially suppressed in this region. The star indicates the
position in the stability diagram used for Fig. 4.

APPENDIX E: STABILITY DIAGRAMS

Figure 6 shows the nontrivial structure in the current and
noise, and thus also in the sensitivity and error as functions of
the gate and bias voltage. The overall structure is caused by
the Lamb shift and leads to an asymmetry in the bias voltage.
It is therefore desirable to stay in the parameter regime that
corresponds to lower noise when operating the parallel dots
as a sensor and within this regime an optimal operation point
may be found.
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[49] B. Buča and T. Prosen, A note on symmetry reductions of the
Lindblad equation: Transport in constrained open spin chains,
New J. Phys. 14, 073007 (2012).

125424-18

https://doi.org/10.1103/PhysRevB.59.915
https://doi.org/10.1103/PhysRevLett.109.020403
https://doi.org/10.1103/PhysRevX.7.021020
https://doi.org/10.1103/PhysRevE.90.042147
https://doi.org/10.1103/PhysRevB.96.165444
https://doi.org/10.1126/science.aaz8541
https://doi.org/10.1088/1367-2630/9/5/118
https://doi.org/10.1038/s41467-018-08112-x
https://doi.org/10.1103/PhysRevLett.98.186802
https://doi.org/10.1103/PhysRevB.98.085425
https://doi.org/10.1103/PhysRevB.92.075446
https://doi.org/10.1021/acs.nanolett.8b02207
https://doi.org/10.1039/C4CS00203B
https://doi.org/10.1088/0957-4484/18/42/424014
https://doi.org/10.1103/PhysRevB.64.125309
https://doi.org/10.1103/PhysRevLett.96.146801
https://doi.org/10.1103/PhysRevB.75.115313
https://doi.org/10.1103/PhysRevLett.102.136805
https://doi.org/10.1103/PhysRevLett.98.186805
https://doi.org/10.3390/e18120447
https://doi.org/10.1103/PhysRevB.93.235452
https://doi.org/10.1016/j.physa.2021.126347
https://doi.org/10.1103/PhysRevB.80.245107
https://doi.org/10.1103/PhysRevB.99.125406
https://doi.org/10.1103/PhysRevB.80.235306
https://doi.org/10.1016/j.cpc.2017.07.024
https://doi.org/10.1088/1367-2630/9/5/123
https://doi.org/10.1088/1367-2630/9/5/120
https://doi.org/10.1063/1.522979
https://doi.org/10.1007/BF01608499
https://doi.org/10.1103/PhysRevB.97.035432
https://doi.org/10.1103/PhysRevB.102.115109
https://doi.org/10.1103/PhysRevLett.122.150603
https://doi.org/10.1103/PhysRevA.93.022103
https://doi.org/10.1103/PhysRevLett.100.150601
https://doi.org/10.1088/1367-2630/14/7/073007


METASTABILITY AND QUANTUM COHERENCE ASSISTED … PHYSICAL REVIEW B 107, 125424 (2023)

[50] V. V. Albert and L. Jiang, Symmetries and conserved quantities
in Lindblad master equations, Phys. Rev. A 89, 022118 (2014).

[51] D. Burgarth, P. Facchi, H. Nakazato, S. Pascazio, and K. Yuasa,
Eternal adiabaticity in quantum evolution, Phys. Rev. A 103,
032214 (2021).

[52] W. D. Heiss, Exceptional points of non-Hermitian operators,
J. Phys. A: Math. Gen. 37, 2455 (2004).

[53] Y. Hu, H. O. H. Churchill, D. J. Reilly, J. Xiang, C. M.
Lieber, and C. M. Marcus, A Ge/Si heterostructure nanowire-
based double quantum dot with integrated charge sensor,
Nat. Nanotechnol. 2, 622 (2007).

[54] G. J. Podd, S. J. Angus, D. A. Williams, and A. J. Ferguson,
Charge sensing in intrinsic silicon quantum dots, Appl. Phys.
Lett. 96, 082104 (2010).

[55] J. Salfi, S. Roddaro, D. Ercolani, L. Sorba, I. Savelyev, M.
Blumin, H. E. Ruda, and F. Beltram, Electronic properties

of quantum dot systems realized in semiconductor nanowires,
Semicond. Sci. Technol. 25, 024007 (2010).

[56] D. J. Reilly, C. M. Marcus, M. P. Hanson, and A. C. Gossard,
Fast single-charge sensing with a RF quantum point contact,
Appl. Phys. Lett. 91, 162101 (2007).

[57] M. C. Cassidy, A. S. Dzurak, R. G. Clark, K. D. Petersson,
I. Farrer, D. A. Ritchie, and C. G. Smith, Single shot charge
detection using a radio-frequency quantum point contact,
Appl. Phys. Lett. 91, 222104 (2007).

[58] M. J. Biercuk, D. J. Reilly, T. M. Buehler, V. C. Chan,
J. M. Chow, R. G. Clark, and C. M. Marcus, Charge sensing
in carbon-nanotube quantum dots on microsecond timescales,
Phys. Rev. B 73, 201402(R) (2006).

[59] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables
(Dover, Mineola, NY, 1964).

125424-19

https://doi.org/10.1103/PhysRevA.89.022118
https://doi.org/10.1103/PhysRevA.103.032214
https://doi.org/10.1088/0305-4470/37/6/034
https://doi.org/10.1038/nnano.2007.302
https://doi.org/10.1063/1.3318463
https://doi.org/10.1088/0268-1242/25/2/024007
https://doi.org/10.1063/1.2794995
https://doi.org/10.1063/1.2809370
https://doi.org/10.1103/PhysRevB.73.201402

