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Truncated Wigner approximation for the bosonic model of large spin baths
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The central spin model has a wide applicability. It is ideally suited to describe a small quantum system, for
instance a quantum bit, in contact to a bath of spins, e.g., nuclear spins or other small quantum systems in
general. According to previous work [R. Röhrig et al., Phys. Rev. B 97, 165431 (2018)], a large bath of quantum
spins can be described as a bath of quantum harmonic oscillators. But the resulting quantum model is still far
from being straightforwardly solvable. Hence we consider a chain representation for the bosonic degrees of
freedom to study how well a semi-classical truncated Wigner approximation of the effective model of harmonic
oscillators (bTWA) works in comparison with other approximate and exact methods. We find that the bTWA
works well for short times, but deviates from the results of other methods for long times. The general message is
that the applicability of semi-classical approaches strongly depends on the variables in terms of which the model
is formulated. Numerically, we examine the effect of the number of bath spins and of the truncation level, i.e.,
the chain length.
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I. INTRODUCTION

The central spin model (CSM) is a well-known model
describing the interaction of a single “central” spin with sur-
rounding spins [1,2], for instance, the interaction of the spin
of a localized electron with nuclear spins in quantum dots
[3–5]. In view of the intense search for physical realizations of
quantum bits [6], a localized electron in a quantum dot can be
seen as a two-level system and thus as a promising candidate
for quantum bits [7–9]. The CSM is a quantum many-body
system and major progress has been made to understand
its properties in its applications for phenomena in material
science and quantum information technology [10–13]. Polar-
ization recovery in a longitudinal field [14,15], nuclei-induced
frequency focusing [16–18], spin precession mode locking
[19,20], the effect of spin inertia [21,22], spin noise [23–27],
and many other effects belong to the particularly rich physics
of the CSM. Furthermore, the CSM is also used to understand
the dynamics of quantum sensors [28] which helps to reach
high sensitivities.

For a finite, not too large number of bath spins [29], it
is possible to use the Bethe ansatz [1,30,31] to diagonalize
the CSM Hamiltonian and to analyze rigorous restrictions of
the central spin dynamics stemming from conserved quantities
[32,33]. If all couplings are equal the CSM reduces to the so-
called box model allowing one to compute the spin dynamics
for large spin baths essentially analytically [34–36]. However,
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the complexity of the CSM in practical applications is related
mainly to the electron spin decoherence when interacting with
an (almost) infinite number of nuclei spins [5,37–42]. In this
scenario, the initial polarization and information on the spin
state is quickly and irreversibly lost.

To describe this decoherence of the central spin and to
conceive strategies against it, various approaches have been
conceived. Density-matrix renormalization group (DMRG)
deals with up to 1000 spins, but only up to relatively
short times [43,44] due to the fast growth of entangle-
ment. The linked-cluster and cluster-correlation expansions
[45–48] investigate the long-time spin decoherence, but of
finite, relatively small spin baths. Moreover, considering the
nuclear-electric quadrupolar interactions for a few spins, the
spin-noise spectrum at various timescales has been calcu-
lated using Chebyshev polynomials [27,49,50]. Furthermore,
a coherent interface between electron and nuclear spins was
recently developed [51] with the vision to realize long-lived
quantum memory.

Although a classical description of CSM with a large-
enough number of nuclear spins can be justified over a long
time, it neglects all quantum mechanical aspects [43,44]
which are vital for quantum bits. This originates from the
fact that the central spin is a truly quantum mechanical ob-
ject and its back-action on the bath spins is not classical.
The truncated Wigner approximation (TWA) [52] is a general
semi-classical approach in which quantum fluctuations are
partly taken into account through random initial conditions for
the classical equations of motion. Although the equations of
motion themselves are still purely classical, correlations and
the probabilities of quantum measurements can be simulated
to a certain degree. The TWA has often been used to simulate
the dynamics of the CSM [10,44,53–55]. The spins are taken
as classical vectors precessing around local classical fields.
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We abbreviate this semi-classical approach to spins sTWA. It
can be implemented for a moderate numbers of spins (N ≈
200) if one has to simulate long times. Experimentally, the
bath sizes range from 104 to 106 still exceeding numerical
resources by far even though a hierarchical chain representa-
tion based on generalized Overhauser fields helps to reconcile
large spin baths and long-time simulations [54].

In this framework, a fully quantum mechanical approach
[56] based on iterated equations of motion (iEoM) has been
suggested for large spin baths. The advantage of this approach
is that it is particularly suited to capture very large or even
infinitely large spin baths. The bath of spins is mapped to a
bath of hierarchically coupled bosons and the central spin is
mapped to a four-dimensional impurity. But the fully quan-
tum mechanical evaluation of the dynamics of the effective
bosonic model for long times represents still a tremendous
challenge. Hence, it is interesting to study approximate ways
to treat this effective bosonic model.

In this work, we study the application of the TWA to the
mapped effective bosonic model resulting from iEoM [56],
i.e., to the harmonic oscillators. The impurity is described by
two spins with S = 1/2 which, in turn, are treated as classical
vectors. To distinguish this TWA from the one resulting from
the classical treatment of the spins we call it bosonic TWA
(bTWA). Clearly, the bTWA would remove the restrictions
on the maximum number of bosonic modes which can be
simulated. The immediate aim is to describe the experimental
spin-noise spectra [26,57,58]. To benchmark the bTWA, we
compare our data to data from some of the above-mentioned
techniques under the same conditions.

This paper is organized as follows. In Sec. II, we review the
CSM and in Sec. III, we present its bosonic formulation. In
Sec. IV, we present our results and compare them with results
from other techniques. Finally, the paper is summarized in
Sec. V.

II. INITIAL MODEL

In this section, we briefly introduce the CSM. For our
proof-of-principle study, we restrict ourselves to the paradig-
matic isotropic version of the CSM. This implies that we
neglect dipole-dipole interaction [38,59], quadrupolar cou-
plings [49,60–63], and spin-orbit couplings [64–68] of the
nuclear spins which usually become relevant on very long
timescales. We start with the CSM comprising a central spin
�̂S0 with S = 1/2 interacting through the hyperfine coupling

with a bath of N spins �̂S�. The Hamiltonian reads

Ĥ =
N∑

�=1

J� �̂S0 · �̂S�, (1)

where J� denotes the hyperfine coupling of the �th spin in the
bath. In electronic quantum dots, the coupling constants J�

are proportional to the probability that the electron is present
at the site of the nucleus � [38,59], which is given by the
modulus squared of the electronic wave function. It is con-
venient to define a composite field for the effect of the bath

spins, �̂B = ∑N
�=1 J� �̂S�, which is called the Overhauser field.

With its help, the Hamiltonian can simply be rewritten as

Ĥ = �̂S0 · �̂B.
Let us consider an infinite spin bath (N → ∞) with de-

creasing couplings. We consider the generic parametrization
J� = C exp(−�γ ) [16,30,31,33,54] with � ∈ {1, 2, . . . , N},
where the prefactor C sets the energy scale. For γ > 0, the
exponential term is decreasing with �. The meaning of γ is
elucidated by the following argument. Even if N → ∞, there
is only a finite number of bath spins which is appreciably
coupled to the central spin. We denote this number by Neff

and define it by the ratio of the squared sum of all couplings
and the sum of all squared couplings [38,43,44,54,59,69], i.e.,

Neff := (
∑N

�=1 J�)
2
/J2

Q, where J2
Q := ∑N

�=1 J2
� . Inserting our

parametrization J� into Neff in the limit N → ∞, we find for
small values γ

Neff = 2

γ
+ O(γ ). (2)

So γ is about twice the inverse number of effectively coupled
spins. The electron spin in quantum dots is coupled to a very
large number of bath spins [38,59,70,71], Neff ≈ 104 to 106,
so, γ ≈ 10−4 to 10−6 is a realistic estimate. Moreover, we
set the energy scale for all simulations by requiring JQ = 1.
This results in C � √

2γ ≈ 10−2 to 10−3, which is a very
small number implying that the contribution of an individual
bath spin is negligible. Only suitable sums over all spins have
a sizable impact. In contrast, for large γ , we deal with a
small number of bath spins, see Eq. (2), and the dynamics
of the central spin can be determined using fully quantum
mechanical descriptions [27,48,49].

III. EFFECTIVE MODEL AND SEMI-CLASSICAL
APPROACH

In what follows, we sketch the mapping of the spin bath
on a bosonic bath (iEoM [56]). Then, we introduce the
semi-classical approach bTWA based on a hierarchical chain
representation to describe the long-time spin dynamics.

A. Objective

We begin with the application of the Heisenberg equa-
tion of motion to the CSM, ∂tÂ = i[Ĥ, Â] (throughout the
present work, h̄ is set to unity), where Â are operators of the
CSM forming a suitable operator basis for the products of all
components of spin operators at all sites [56]. In the end, we
are interested in the α-component of the spin-spin autocorre-
lation function of the central spin at infinite temperature

Sα (t ) = 〈
Ŝα

0 (t )Ŝα
0 (0)

〉
, (3)

for small values of the parameter γ corresponding to large
spin baths.

The spin bath is taken to be in the completely disordered
state initially. In particular, the long-term behavior of Sz(t )
provides information about the fate of state with the central
spin aligned along the z-axis initially, i.e., at t = 0. Assuming
infinite temperature is well justified because the thermal en-
ergy in the bath at temperatures of a few Kelvin is at least one
order of magnitude larger than the individual couplings in a
quantum dot [72].
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For motivation, we provide the autocorrelation if a constant
external or internal classical magnetic field is applied [38,43]

�̂S0(t ) = �n[�n · �̂S0(0)] + {�̂S0(0) − �n[�n · �̂S0(0)]} cos(Bt )

− [�n × �̂S0(0)] sin(Bt ), (4)

where �n points in the direction of the magnetic field B = | �B|.
This formula is identical to the classical one since �B is a
classical vector and the equations of motion are linear in
the spin operators so that the Ehrenfest theorem states that
the equations of motion of the operators or their expectation
values are identical to the ones of the corresponding classical
variables. Obviously, powers of B up to infinite order occur
so that a suitable operator basis needs operators including
high powers of the Overhauser field if we want to capture its
intrinsic quantum character and the ensuing dynamics.

If one neglects the dynamics of the Overhauser field com-
pletely, the frozen Overhauser field approximation is retrieved
for which one averages over all random directions and random
strengths of the Overhauser field [38,43] yielding

Sα (t ) = 1
12

[
2e−J2

Qt2/8
(
1 − J2

Qt2/4
) + 1

]
. (5)

This analytic result is convenient as reference, see the fig-
ures below.

B. Effective model with higher powers of the Overhauser field

The orthogonal Hermite polynomials of the Overhauser
field and similar composite weighted sums of the bath spin
were introduced by Röhrig et al. [56] as a suitable operator ba-
sis. These polynomials are orthogonal for a Gaussian weight
function [73] and can be applied to different components of
generalized Overhauser fields by the recursive relation

Ĝα
j Hn

(
Ĝα

j

) = √
nHn−1

(
Ĝα

j

) + √
n + 1Hn+1

(
Ĝα

j

)
, (6)

where α = {x, y, z} and H0(Ĝα
j ) = 1 by definition. The poly-

nomials Hn(Ĝα
j ) are the Hermite polynomials of degree n in

the generalized Overhauser field vectors �̂G. These fields are
defined by

Ĝα
j := 2

N∑
�=1

P j (J�)Ŝα
� , (7)

where the real orthogonal polynomials P j (x) are defined such
that they comply with the orthogonality relation [54,56]

δ j,m =
N∑

�=1

P j (J�)Pm(J�). (8)

The polynomials P j (J�) describe the weight of each bath
spin �S�.

In Eq. (1), we deal with the usual Overhauser field �̂B =∑N
�=1 J� �̂S�, while in Eq. (7), generalized Overhauser field

vectors �̂Gj are implemented. They arise hierarchically in their

equations of motion: the time derivative of �̂Gj requires �̂Gj+1

and so on. To find the orthonormal polynomials, we use the

standard Lanczos procedure

xP j (x) = η jP j+1(x) + χ jP j (x) + η j−1P j−1(x), (9)

where P0(x) = 0, P1(x) = x and χ j, η j are the usual recursion
coefficients of the orthonormal polynomials for the scalar

product (8). Hence, we obtain �̂G1 = 2 �̂B, meaning that the first
generalized Overhauser field is twice the usual Overhauser
field, where the factor of 2 is just needed for the orthonormal-
ization of polynomials. The generalized Overhauser fields use
orthonormal polynomials instead of simple powers because
the latter would yield highly unstable equations upon trunca-
tion [54].

The established EoM for this basis of operators tells us that
a single Hn(Gα

j ) is transformed into the terms
√

nHn−1(Gα
j )

and
√

n + 1Hn+1(Gα
j ). This is identical to the effect of

an annihilation (â) and creation (â†) bosonic operator, re-
spectively, applied to the eigenstates |n〉 of a harmonic
oscillator.

Eventually, a quantum mechanical representation of large
spin baths by means of the iEoM for the generalized Over-
hauser fields including an external magnetic field has been
obtained and developed, see Ref. [56] for further details. It
is shown that in the limit N → ∞ the isotropic CSM can
be mapped onto a four-dimensional impurity coupled to a
noninteracting bosonic bath yielding the effective Hamilto-
nian Ĥeff = ĤCS

eff + Ĥch
eff + ĤZ

eff in the presence of an external
Zeeman magnetic field h along the z-direction. It is given by

ĤCS
eff = 1

2

3∑
α=1

K̂α (â†
1,α + â1,α ), (10a)

Ĥch
eff = i

2

Ntr∑
j=1

3∑
α,β,δ=1

εαβδM̂β[χ j â
†
j,δ â j,α

+η j (â
†
j+1,δ â j,α − â†

j,α â j+1,δ )], (10b)

ĤZ
eff = −hK̂z, (10c)

where ĤCS
eff refers to the central spin located at the head of

a bosonic chain, whereas Ĥch
eff acts on a bosonic chain with

flavors α as depicted in Fig. 1. In the above equations, εαβδ

is the Levi-Civita tensor. The couplings η j and χ j result from
the recursion of the orthogonal polynomials P j which can be
expressed in the matrix form

T̂ =

⎛
⎜⎜⎝

χ1 η1 0 0 · · ·
η1 χ2 η2 0 · · ·
0 η2 χ3 η3 · · ·
...

...
. . .

. . .
. . .

⎞
⎟⎟⎠, (11)

with J�P j (J�) = T̂ P j (J�) using the vector of polynomials
P j (J�) = [P1(J�),P2(J�), . . . , Pn(J�)]�. By definition, we
have η0 = 0. While the chain is half-infinite for an infinite
bath, it is truncated at jmax in practical calculations [54,56] so
that we also have η jmax = 0. (In Ref. [54], the truncation level
was denoted by Ntr = jmax.)

The commutation and anticommutation of the operators
of the central spin with σ̂α (Pauli matrices) in the chain are

125421-3



MOHSEN YARMOHAMMADI et al. PHYSICAL REVIEW B 107, 125421 (2023)

FIG. 1. Sketch of the CSM described by Eqs. (10a) and (10b). The central spin and the bosons in the chain are shown by the black and
light gray solid spheres, respectively. The solid two-sided arrows inside the boxes illustrate the couplings χ j/2 between bosons of different
flavors at the same site of the chain, while the dotted ones indicate the couplings η j/2 between bosons on adjacent sites.

expressed by the matrices K̂α and M̂α with α ∈ {x, y, z}, re-
spectively, with matrix elements

〈〈n|K̂α|m〉〉 = 1
2 〈〈σ̂n|[σ̂α, σ̂m]〉〉

=
{

0 if nm = 0,

iεαβδ otherwise,
(12a)

〈〈n|M̂α|m〉〉 = 1
2 〈〈σ̂n|{σ̂α, σ̂m}〉〉

=
{

δn,α + δm,α if nm = 0,

iεαβδ otherwise,
(12b)

for {m, n} ∈ {0, x, y, z}. Note that M̂0 = Î4×4 and K̂0 = 0̂4×4.
The notation 〈〈. . . 〉〉 is used for the scalar product of operators
for which we use 〈〈Â|B̂〉〉 := 〈Â†B̂〉T =∞, i.e., the expectation
value at infinite temperature. Straightforwardly, we find

K̂α = i

⎛
⎜⎜⎝

0 0 0 0
0 0 δα,z −δα,y

0 −δα,z 0 δα,x

0 δα,y −δα,x 0

⎞
⎟⎟⎠, (13a)

M̂α =

⎛
⎜⎜⎝

0 δα,x δα,y δα,z

δα,x 0 0 0
δα,y 0 0 0
δα,z 0 0 0

⎞
⎟⎟⎠. (13b)

We emphasize that the chain Hamiltonian Ĥch
eff induces only

a slow dynamics because the coupling between the head of the
chain and its next site is JQ = 1, while the coupling between
different chain sites as well as the hopping processes between
different flavors at each site is of order

√
γ JQ ≈ 10−2 to

10−3. Therefore, the quantum effects such as the dynamics
in the bath and eventually dephasing and relaxation of the
polarization of the central spin due to the presence of the bath
of spins is slow.

Finally, we state that the autocorrelation expressed by the
derived effective model reads

Sα (t ) = 1
4 〈eα, 0|e−iĤeff |eα, 0〉, (14)

with eα = (0, δα,x, δα,y, δα,z )� and 0 being the vacuum of all
bosons. The autocorrelation (14) can be reformulated with the

help of the matrix M̂α and e1 = (1, 0, 0, 0)�

Sα (t ) = 1
4 〈e1, 0|M̂αe−iĤeff M̂α|e1, 0〉 (15a)

= 1
4 〈e1, 0|eiĤeff M̂αe−iĤeff M̂α|e1, 0〉 (15b)

= 1
4 〈e1, 0|M̂α (t )M̂α (0)|e1, 0〉, (15c)

where we used the fact that Ĥeff |e1, 0〉 = 0 since K̂αe1 = 0
and all bosonic terms in the chain part annihilate the bosonic
vacua.

C. Bosonic truncated Wigner approximation

Generally, the TWA is a semi-classical approach based
on the Wigner-Weyl quantization of the phase space [52]. It
describes the quantum mechanical evolution of expectation
values by computing classical trajectories in phase space for
quasiprobability distributions, the so-called Wigner functions,
of initial conditions. These distributions reflect the quantum
mechanical uncertainty in the knowledge of the initial ex-
pectation values: the values of position and momentum or
of the different components of angular momentum cannot
be known exactly. The classical trajectories can be motivated
by Feynman’s path-integral formalism: the stationarity of the
phase along these trajectories implies that they contribute the
most to the temporal evolution.

To set up a TWA we need a set of observables of which
we want to track the expectation values. For these, the equa-
tions of motion are derived and then approximated by their
classical counterparts similar to the Ehrenfest theorem. For
spins, this was nicely described in Ref. [55]. The initial
distributions can often be taken to be normal distributions
although this is not rigorously true, but successful in practice
[53]. Since the Ehrenfest theorem becomes exact for bilinear
bosonic Hamiltonians or linear spin Hamiltonian the TWA
becomes exact in these cases.

To apply a TWA to the effective model defined in the
previous section we need to represent the four-dimensional
impurity by objects which have classical counterparts. Here
we choose two spins with S = 1/2 which together span a
four-dimensional Hilbert space. We denote their singlet state
by |s〉 and their three triplet states by |tα〉 for α ∈ {x, y, z},
identified with the four-dimensional Cartesian vectors |s〉 =
(1 0 0 0)� and |tα〉 = (0 δαx δαy δαz )�. Elemen-
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tary linear algebra [74] yields the action of the spin operators
on these states

Ŝν,α|s〉 = − (−1)ν

2

∑
β

δαβ |tβ〉, (16a)

Ŝν,α|tβ〉 = − 1

2

[
2(−1)νδαβ |s〉 − i

∑
δ

εαβδ|tδ〉
]
, (16b)

where ν = {1, 2} labels the spin Ŝ1 and Ŝ2, respectively. With
these definitions, the matrices K̂ and M̂ in Eqs. (13a) and (13b)
can be expressed in terms of these spin operators

K̂α = − (Ŝ1,α + Ŝ2,α ), (17a)

M̂α = Ŝ1,α − Ŝ2,α. (17b)

The annihilation and creation operators of the harmonic oscil-
lators can be expressed by position and momentum operators
in the standard way

r̂ j,α = 1√
2

(â†
j,α + â j,α ), (18a)

p̂ j,α = i√
2

(â†
j,α − â j,α ). (18b)

With these relations, the Hamiltonian in Eq. (10) can be
rewritten into

ĤCS
eff = − 1√

2
( �̂S1 + �̂S2) · �̂r1, (19a)

Ĥch
eff = 1

2

Ntr∑
j=1

( �̂S2 − �̂S1) · [(χ j �̂r j + η j−1 �̂r j−1 + η j �̂r j+1) × �̂p j],

(19b)

ĤZ
eff = h( �̂S1,z + �̂S2,z ). (19c)

Note that, except for the Zeeman term, the linear spin opera-
tors always occur in a product with bosonic operators, namely,
position and momentum. Hence, it is not to be expected that a
TWA treatment becomes rigorously exact.

The ensuing time evolution of the operators �̂r, �̂p, �̂S1, and �̂S2

according to the Heisenberg equation of motion reads

d

dt
�̂r1 = χ1

2
( �̂S2 − �̂S1) × �̂r1 + η1

2
( �̂S2 − �̂S1) × �̂r2, (20a)

d

dt
�̂p1 = χ1

2
( �̂S2 − �̂S1) × �̂p1 + η1

2
( �̂S2 − �̂S1) × �̂p2

+ 1√
2

( �̂S2 + �̂S1), (20b)

for j = 1 while for general j > 1 we obtain

d

dt
�̂r j = χ j

2
( �̂S2 − �̂S1) × �̂r j + η j

2
( �̂S2 − �̂S1) × �̂r j+1

+η j−1

2
( �̂S2 − �̂S1) × �̂r j−1, (21a)

d

dt
�̂p j = χ j

2
( �̂S2 − �̂S1) × �̂p j + η j

2
( �̂S2 − �̂S1) × �̂p j+1

+η j−1

2
( �̂S2 − �̂S1) × �̂p j−1, (21b)

d

dt
�̂Sν = 1√

2
�̂Sν × �̂r1 − (−1)ν

2
�̂Sν ×

Ntr∑
j=1

[
χ j (�̂r j × �̂p j )

+η j (�̂r j+1×�̂p j )+η j−1(�̂r j−1 × �̂p j )
]−h �̂Sν × �z, (21c)

where we use �z = (0 0 1)� in the last term of Eq. (21c).
The sought autocorrelation (3) has been expressed for the
effective model in Eq. (15c) which implies

Sα (t ) = 1
4

〈[
Ŝα

1 (t ) − Ŝα
2 (t )

][
Ŝα

1 (0) − Ŝα
2 (0)

]〉
, (22)

where the expectation value is taken with respect to the singlet
state of spins 1 and 2 and the bosonic vacua.

Applying the standard TWA [52], the leading quantum
corrections are recovered by averaging classical trajectories
over distributions of initial conditions. The equations of mo-
tions (20) and (21) are viewed as differential equations for
classical vectors starting from random initial conditions. For
this purpose, normal distributions turned out to be particularly
suitable for the initial conditions. Their benefit is that only
the mean value and the variance are needed to determine
the distribution fully. We choose a normal distribution for
spin �S1 with vanishing mean value and variance 1/4 for each
component because (Ŝα )2 = 1/4 for S = 1/2 [53]. Since we
mimic a singlet state, �S2 is always chosen to be −�S1 initially.

The position and momentum components are also drawn
from a normal distribution with vanishing means. The
variances are straightforwardly computed considering (18)
yielding 〈r̂2

j,α〉 = 1/2 = 〈p̂2
j,α〉. In practice, the time evolution

of the central spin Sα (t ) in Eq. (22) is calculated for configu-
ration average over M classical trajectories with M being of
the order of 106–107 to keep statistical errors low.

IV. NUMERICAL RESULTS

Here we show results of the two TWAs which are the
protagonists of this study. The sTWA relies on the classi-
cal equations of motion for the spin operators of original
CSM. Either each spin is tracked individually or a hierar-
chical chain representation is used. This does not make any
discernible difference. We assume normal distributions of the
initial conditions with zero expectation values and variances
〈Sα

� Sβ
j 〉 = (1/4)δαβδ� j which have proven to yield reliable

results [44,53,55]. In contrast, the bTWA solves the classi-
cal equations of motion for the effective model obtained by
mapping the large spin bath to a bath of bosons.

Since JQ is the energy unit in the numerical calculations, all
times are measured in units of 1/JQ having set h̄ to unity. The
equations of motion have no lower or upper validity cutoff
in time and, thus, can be applied to discuss the spin-spin
correlation from t = 0 to t → ∞. The effective number of
coupled spins Neff can also be chosen arbitrarily, but we keep
in mind that the mapping to the effective model becomes exact
in the limit of large spin baths. Further details of the effect of
Neff = 2/γ in the bTWA are provided in Appendix A.

Figure 2 shows the autocorrelation of the central spin in
absence of external magnetic fields. This is the central result
of this paper. Clearly, we see that both approaches, sTWA
and bTWA, are converged with respect to the truncation level
jmax (for further details of the effect of jmax in the bTWA,
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FIG. 2. Comparison of Sz(t ) obtained by sTWA and by bTWA
for the truncation levels jmax = 16 and 32, fixed number of bath spins
N = 1000, γ = 0.01 (Neff = 200), and zero external magnetic field.

see Appendix B). The curves for jmax = 16 do not differ
discernibly from those for jmax = 32. In the inset, we focus on
the behavior on short to moderate times. Here the agreement
between both approaches is very good. Since we know from
previous studies [44] that the sTWA represents the quantum
mechanical result very well, we deduce that the bTWA also
works well in this temporal regime.

In the main panel of Fig. 2 we discern a significant dis-
crepancy between the sTWA and the bTWA. This is quite
surprising in view of the good agreement up to t ≈ 30/JQ.
The convincing results obtained previously with sTWA [44]
agrees with rigorous bounds [32,33] indicating a very slow
decay of the autocorrelation. Thus, the conclusion is indicated
that the bTWA does not approximate the long-time behavior
of the CSM well. Still, it is (i) desirable to corroborate this
conclusion further and (ii) important to understand whether
the mapping to the effective bosonic model introduces the
observed difference or whether it is the TWA applied to the
bosonic model which induces this discrepancy.

Among the other approaches we employ the Bethe ansatz
(BA) from which we use the data published in Ref. [33]. The
BA is exact also for long times, but it can be handled only for
a moderate number of bath spins. Second, in systematically
controlled numerical density matrix renormalization group
(DMRG) calculations we consider 4096 states [43] with a
threshold of 0.001 for the accumulated discarded weight with
second-order Trotter-Suzuki decomposition. The DMRG is
not able to follow the dynamics for long times due to the
rapid growth of entanglement. But up to t ≈ 50/JQ it is re-
liable. The quantum mechanical evaluation of the iEoM up
to jmax = 3 with {181,8,1} number of bosons, respectively,
yields reliable data as well up to t ≈ 50/JQ [56]. Data from
these methods are depicted in Fig. 3 for two different sets of
N and Neff . The results from BA and DMRG agree very nicely
for all times except for a tiny discrepancy at the minimum
which we attribute to numerical inaccuracies. Note that the
BA is evaluated based on Monte Carlo importance sampling
implying small statistical fluctuations [30,31].

The iEoM approach, i.e., the quantum mechanical evalua-
tion of the effective bosonic model also agrees well with the

5011

10-2

10-1

fOver.
BA
sTWA

DMRG
iEoM
bTWA

(a)

05011

10-2

10-1

(b)

FIG. 3. Comparison of Sz(t ) from various approaches (BA,
sTWA, DMRG, and iEoM) for fixed number of bath spins N = 36
and two different (a) γ = 1/18 (Neff = N = 36) and (b) γ = 1/12
(Neff = 24), see Appendix A for further details of the effect of γ in
the bTWA. The analytic data for random static (frozen) Overhauser
field (fOver) from Eq. (5) is included for comparison as well. In
both iEoM and the TWAs, we use the truncation level jmax = 3, see
Appendix B for further details of the effect of jmax in the bTWA.

BA and DMRG data, in particular, for the slow decay beyond
t ≈ 6/JQ. Only the wiggles at t ≈ 50/JQ indicate that the
evaluation with the limited number of bosons is at the verge of
its validitiy at this time. The discrepancies of the iEoM data
to BA and DMRG data can be attributed to the fact that the
mapping to the effective model is valid for large spin baths
only, see the discussion in Ref. [56]. The sTWA data do not
capture the minimum particularly well, but it agrees with the
other approaches (BA, DMRG, iEoM) for longer times. The
frozen Overhauser data from Eq. (5) are characterized by the
constant plateau for long times because no dynamics of the
Overhauser field is included.

What is the behavior of the data from bTWA? As we al-
ready saw in Fig. 2 for short and moderate times the agreement
with sTWA and thus with the other data is good. In view
of the long-time discrepancy observed in Fig. 2, we focus
on the longer times beyond 20/JQ. We discern that the data
from bTWA clearly lie below the other data which coincide
very well (except for the frozen Overhauser curve). This
observation corroborates our finding in Fig. 2 that the TWA
applied to the effective bosonic model does not approximate
the long-time behavior reliably. In addition, we learn that the
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FIG. 4. Comparison of the x-component of the spin-spin auto-
correlation obtained from DMRG, iEoM, and the bTWA at finite
magnetic field h/JQ = 10 along the z-direction. The parameters
are N = 500, jmax = 3, and Neff = 200. The period of the Lar-

mor precession is given by TL = 2π/
√

h2 + J2
Q/2 ≈ 0.63/JQ. The

envelope function shown as black line is given by Senv. func.(t ) =
1
4 exp(−J2

Qt2/8). For the effect of h as well as the z-component of the
spin-spin autocorrelation obtained from the bTWA, see Appendix C.

iEoM data, i.e., the quantum mechanical evaluation of the ef-
fective bosonic model, works fine at these times. Hence, Fig. 3
provides evidence that it is not the mapping to the effective
bosonic bath which is responsible for the discrepancy, but the
bTWA. Hence, the two questions posed above are answered.

This raises the question why the TWA is not as efficient
as it is when applied directly to the spins. We do not yet
have a concluding answer to this question but the hypothesis
suggesting itself is the following. In the CSM, the conserved
quantities of the quantum and of the classical model are the
same which makes their dynamics very similar [32,33,44,75].
Clearly, a large number of conserved quantities hinders relax-
ation and thus explains that the autocorrelations relax slowly.
In contrast, we presume that the conserved quantities of the
quantum effective bosonic model and of this classical counter-
part are not the same. This may explain why the semi-classical
approach to the effective bosonic model leads to a deviating
behavior. Note that this is no contradiction to the mapping [56]
which is established on the quantum level only.

Finally, we address the CSM in a finite magnetic field
which has been well investigated both theoretically and ex-
perimentally [76,77]. Data from DMRG, iEoM, and bTWA
are depicted in Fig. 4 for a magnetic field in the z-direction. In
the main panel, all data sets agree very well. All of them show
the clear signature of Larmor precession with a period TL =
2π/

√
h2 + J2

Q/2 ≈ 0.63/JQ, cf. Refs. [27,44]. The envelope

function of the Larmor precession is given by Senv. func.(t ) =
1
4 exp(−J2

Qt2/8) [38].
If we zoom far into the behavior at longer times after the

signal has dephased, only minor discrepancies occur. This
behavior is not unexpected since we learned already in the
previous figures that the bTWA works well for times below
30/JQ. Hence the Larmor precessions and the Gaussian de-
phasing as shown by the black envelope function are retrieved

reliably. Only the small discrepancies at later times indicate
that the approximate treatment is not perfect at long times. But
in a magnetic field the signal has essentially vanished anyway
in the long-time regime.

V. SUMMARY AND DISCUSSION

In this article, we theoretically studied the spin dynamics
of the central spin in the central spin model (CSM). The CSM
describes a so-called central spin coupled to spins in its envi-
ronment in a star-like topology, i.e., without coupling between
pairs of bath spins. This model is relevant for a plethora of
physical systems where a small quantum system is coupled
to a bath of other small quantum systems. A particularly
interesting framework is the realization of quantum bits and
their decoherence mechanisms due to their interaction with
spin baths.

For many phenomena the long-time dynamics of large
spin baths needs to be described reliably which poses an
insurmountable challenge to brute force numerical approaches
because of the exponential growth of the quantum Hilbert
space. Hence, accurate, systematically controlled approxima-
tive approaches are needed. One of them is the mapping of
the CSM with a large spin bath to a bath of bosons, i.e.,
to an effective bosonic model, including a four-dimensional
impurity at the head of the chain. The bosonic degrees of
freedom can be represented in a star topology or in a chain
topology [56]. The chain topology has the advantage that one
can add site by site of the chain to reach a reliable descrip-
tion up to longer and longer times. Thus, we employed this
representation here. Still, the quantum mechanical evaluation
of the resulting central spin dynamics is a great numerical
challenge. For this reason, we studied in the present article
how well a truncated Wigner approximation (TWA) for the
bosonic effective model, dubbed bTWA, captures the sought
dynamics. This kind of approximation averages correlations
of classical trajectories over distributions of initial conditions
and describes leading quantum correlations in this way [52].

We found that the bTWA works very nicely for short and
moderate times if the spin bath is large. This condition on the
size of the spin bath does not result from the TWA, but from
the mapping of the CSM to the effective bosonic model. Only
a few bosonic sites in the chain representation of the bosonic
bath are necessary.

Much to our surprise, however, we found a qualitative dis-
crepancy of the bTWA results compared to other approaches
at long times. In this regime, the bTWA results display a sig-
nificantly faster decay than the results by a direct application
of the TWA to the CSM, dubbed sTWA. This discrepancy
does not stem from the sTWA, but from the bTWA. Inspecting
and comparing the behavior at moderate times where results
from other approaches such as Bethe ansatz and DMRG are
available indicates clearly that the correlations from bTWA
are the deviating ones which are decaying too fast. Although
the origin of this unexpected discrepancy is still unclear,
we presume that the classical effective bosonic model, from
which the trajectories are derived, that are averaged in bTWA
over initial conditions, has different, probably less, conserved
quantities than the quantum effective bosonic model or the
original CSM. In contrast, the quantum and the classical CSM
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share the same conserved quantities [32,33,44,75] so that their
very similar behavior is plausible. Although we found this
differing behavior for a particular model, the central spin
model, we think it is fair to generalize it in the sense that the
applicability of semi-classical approaches strongly depends
on the set of variables which is employed to describe them.
This conclusion is supported by other findings in the literature
[53].

But clearly, further studies are called for to (i) identify un-
ambiguously the origin of the discrepancy and (ii) to conceive
reliable and efficient evaluation techniques for the effective
bosonic model. One idea suggesting itself is to use numerical
renormalization group techniques to evaluate its dynamics.
Surely, this will enhance our understanding of decoherence
and relaxation of small quantum systems suitable for realizing
quantum bits or quantum sensors.
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APPENDIX A: EFFECT OF THE EFFECTIVE NUMBER
OF BATH SPINS Neff IN THE bTWA

The effective number of bath spins Neff is one of the param-
eters influencing the minimum autocorrelation at intermediate
timescales as well as the decoherence rates at long timescales.
So, in the bTWA, it is important to investigate a range of
Neff for fixed jmax = 3 and N = 500 as depicted in Fig. 5,
namely, Neff = 200, 100, 40, 25, and 20, respectively, corre-
sponding to γ = 0.01, 0.02, 0.05, 0.08, and 0.10. We obtain
a square root behavior of Sz

min(tmin) as shown in the inset
of Fig. 5 for increasing γ (decreasing Neff). The coefficients
a = 0.285 ± 0.005 and b = Sz

min(tminJQ = √
12) in the fitting

function f (γ ) = a
√

γ + b depend on the set of the other
parameters. The spin-spin autocorrelation for γ = 0 equals
the one for the frozen Overhauser field with Sz

min(tminJQ =√
12) � 0.009 as a benchmark, see Eq. (5). This fact stems

from the hyperfine coupling to the ith bath that is proportional
to the square root of γ .

For larger values of γ beyond � 0.08 we observe that the
further changes of γ do not change the curves anymore, at
least up to moderate times. This observation agrees with what
was found by sTWA [54].

10 50
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10-1 0.01 0.02 0.05 0.08 0.10

0 0.05 0.1

0

0.05

0.1

FIG. 5. The effect of the effective number of bath spins charac-
terized by γ = 2/Neff in the bTWA on the spin-spin correlation at
fixed jmax = 3 and N = 500. The dotted fitting function in the inset
is f (γ ) = a

√
γ + b with a = 0.285 ± 0.005 and b = Sz

min(tminJQ =√
12), which confirms the square root proportionality of the mini-

mum value of the correlation on γ .

APPENDIX B: EFFECT OF THE TRUNCATION LEVEL
Jmax IN THE bTWA

Here we study the effect of the maximum number of
bosonic modes jmax in the bTWA, see Fig. 6, at a fixed num-
ber of bath spins N = 500 and γ = 0.01 (corresponding to
Neff = 200). The curve for jmax = 0 shows the result for the
frozen Overhauser field in Eq. (5). The curve for jmax = 1
induces only a very small temporal evolution of the Over-
hauser bath because the central spin is coupled only to a single
harmonic oscillator which has a small effect on the position
of the minimum. However, the long-time plateau value of the
autocorrelation stays close to the frozen Overhauser field one
for the studied times.

Taking into account a larger number of bosonic modes
jmax � 2, the difference between the static, frozen Overhauser
result and the dynamic autocorrelations further increases. The
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0
1
2
3
5
7

FIG. 6. The effect of truncation level characterized by jmax in the
bTWA on the spin-spin autocorrelation at fixed N = 500 and γ =
0.01 (Neff = 200).
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frozen Overhauser curve (dashed line) is always below the
other curves at short timescales. Clearly, the decay of the
autocorrelation sets in only for t > τ after a specific time
τ � 10/JQ which is almost independent of the set of param-
eters. For the shown time interval, the curves do not change
significantly anymore for jmax � 3 in accordance with previ-
ous results [56].

APPENDIX C: EFFECT OF THE EXTERNAL
MAGNETIC FIELD ON THE SPIN-SPIN

AUTOCORRELATION IN THE bTWA

In this Appendix, we address the role of a longitudinal
magnetic field in the bTWA with the parameters jmax = 3,
N = 500, and γ = 0.01 (Neff = 200) in Fig. 7. In this case,
the solution of Eq. (21c) displays the precession of the central
spin about the effective magnetic field, i.e., the Overhauser
field plus the external magnetic field. Depending on the
considered spin component, the Zeeman effect implies dif-
ferent behavior. For the z-autocorrelation of the central spin,
Fig. 7(a), one finds that the decoherence rate is strongly sup-
pressed by the magnetic field in a way that it approaches zero
at strong fields where the spin-spin autocorrelation becomes
almost time-independent and tends to take the initial value of
1/4. This implies that the central spin polarization parallel to
the external magnetic field is stabilized for h  JQ.

Upon increasing magnetic field, the minimum of the lon-
gitudinal autocorrelation occurs earlier and earlier before it
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FIG. 7. The effect of the external longitudinal magnetic field on
the (a) z-component and (b) x-component of the spin-spin autocorre-
lation at fixed jmax = 3, N = 500, and γ = 0.01. The longitudinal
central spin polarization is stabilized with the external longitu-
dinal field and the amplitude of the oscillations is damped for
increasing h such that, at strong-enough magnetic fields an almost
time-independent autocorrelation function Sz(t ) → 1/4 results. In
contrast, the transversal spin-spin autocorrelation displays prominent
Larmor precession which quickly dephase due to the random Over-
hauser field.

is reduced to small oscillations and eventually to an almost
constant plateau. In contrast to the longitudinal dynamics of
the central spin, the transversal dynamics, Fig. 7(b), displays
pronounced Larmor precessions with fast decreasing ampli-
tude due to the dephasing induced by the fluctuations of the
Overhauser field.
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