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Spin current and internal Zeeman field in spin-orbit coupled rings
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We investigate the one-dimensional quantum ring constructed by the spin-orbit coupled material, in which
the quantum spin-Hall Bernevig-Zhang (BZ) Hamiltonian and Rashba-Dirac (RD) type spin-orbit coupling are
taken into account (called RD-BZ Hamiltonian in this paper). It is known that the curvature of the ring generates
an out-of-plane effective magnetic field, acting as an internal Zeeman field. We find that only the BZ coupling
can change the strength of the internal Zeeman field, which enables us to detect the effect of the internal Zeeman
field. Furthermore, we find that the total angular momentum is conserved in the RD-BZ Hamiltonian, and the
energy eigenvalue and wave function must be modified to fit the conserved quantity, which are ignored in the
previous studies. The conductance without leads is discussed. Different from the previous results, we find that
the conductance behaves like a beat phenomenon resulting from the interplay between the magnetic flux and
Aharonov-Casher (AC) phase, and thus, it can oscillate without passing through the insulating state in some
regimes of magnetic flux or AC phase. Importantly, we find that the conductance with integer and half-integer
magnetic flux provides us a method to measure the AC phase. The cancellation of the internal Zeeman field due
to the BZ coupling can be detected by using specific fractional magnetic flux. In the ring with nonvanishing RD
and BZ couplings, the conductance can exhibit a quasiplateau near the small RD coupling. The increase in the
strength of BZ coupling would result in wider quasiplateau in conductance, which implies that the ring could
remain insulating state (or conducting state) regardless of the small change in RD coupling. The thermal average
of spin and charge currents are calculated at low temperatures without impurities. Importantly, we find that the
persistent spin and charge currents as a function of the magnetic flux exhibit nodelike lines, which amazingly
are perpendicular to each other. As a consequence, the persistent spin current could be nonzero even when the
charge current vanishes at nonzero magnetic flux. The result suggests a pure spin current in quantum rings, and
its direction can be reversed by changing the magnetic flux. The increase in the BZ coupling would exhibit the
plateaulike pure spin current.
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I. INTRODUCTION

Berry proposed a pioneering result that the cyclic and
adiabatic evolution of quantum states acquires a phase with
geometric nature [1]. This geometric phase depends only on
the geometry of the path traveled by the quantum state in the
parameter space, which was observed in various experiments
[2]. The geometric phase governed by the topology of the
quantum sate opens up a new field in the quantum transport
[3]. The interplay between the quantum geomtric phase with
the spatial shape of nanostructures has been utilized for ex-
otic electronics [4]. On the other hand, broken symmetry in
semiconductor gives rise to various intrinsic spin-orbit in-
teraction (SOI). Two typical examples are Dresselhaus SOI
induced by bulk inversion symmetry [5] and the Rashba SOI
induced by structure inversion symmetry [6]. As a result,
the transport affected by the spin-orbit interaction in semi-
conductor heterostructure plays the central part in growing

*hcjhsu@nccu.edu.tw
†twchen@mail.nsysu.edu.tw

studies of spintronics [7,8] and facilitates the integration of
quantum computer [9]. Moreover, many investigations has
strongly boosted by the study of the Rashba SOI in low
dimensional systems [10], including magnetoconductance os-
cillations [11,12] and persistent charge current [13,14], and
the effect of strong light-matter coupling was recently inves-
tigated [15]. The transport phenomenon in mesoscopic rings
with SOI was studied experimentally [16]. The persistent cur-
rent was also extensively investigated within the quantum ring
[17–20] and observed [21].

One of the important features of quantum rings is quantum
interference which can be caused by the two typical phases:
Aharonov-Bohm (AB) [22] and Aharonov-Casher (AC) ef-
fects [23]. The quantum interference has been demonstrated
experimentally [24]. The theoretical study relies on construct-
ing an effective model Hamiltoinian. Nitta et al. proposed
a spin-interference device with Rashba spin-orbit interaction
and the resulting conductance can be modulated by the AC
phase [25]. This proposed structure is a one-dimensional
ring, but the Hamiltonian is non-Hermitian. The procedure
for constructing correct one-dimensional Hamiltonian of a
quantum ring from two-dimensional Hamiltonian has been
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proposed by Meijer et al. [26], which corresponds to the
quantization approach for nonrelativistic particles constrained
to lower dimensions [27]. This procedure was also applied to
the ring with various shapes [28], in which the topologically
nontrivial spin textures were exhibited by deforming the shape
of the ring. The transfer matrix method for calculating the
conductance with leads was proposed in Ref. [29]. We also
note that the spin current resulting from AB and AC effects in
mesoscopic rings with both Rashba and Dresselhaus SOI was
studied in Ref. [30], and the conductance in rings with heavy
holes has been investigated in number of studies [31,32].

Another important feature of quantum rings is the curva-
ture induced effective magnetic field on the ring, proposed by
Ying et al. in Ref. [28]. In the absence of spin-orbit interaction,
the curvature of the ring still provides an effective local field
in the direction perpendicular to the plane of the ring, which
is called the internal Zeeman field. However, the resulting
energy splitting due to the internal Zeeman field is ambiguous
in the absence of spin-orbit interaction. This is because the
curvature of the ring also affects the orbital angular momen-
tum of the particle on the ring, and thus, the energy splitting
should take the total angular momentum into account. We also
note that the conservation of angular momentum in the ring
with leads was discussed in Ref. [12], but the correction to
the internal Zeeman field was ignored. Therefore we need an
effective system that can mimics the internal Zeeman field
in the ring and investigate its influence to the conductance.
An intriguing question arises: can we cancel the internal Zee-
man field and detect the existence of the local field on the
ring?

Moreover, the mechanism of spin-orbit coupling enable us
to manipulate spin by using electric field. Quantum-spin Hall
material shows the transport of spin at edges of sample with
vanishing charge-Hall conductance in the absence of an exter-
nal magnetic field [33]. Topological insulators in the strong
regime of spin-orbit interaction exhibit the helical electron
states at the surface of sample [34,35]. We also note that the
quantum transport of two-dimensional Dirac electrons in a
ring structure has been studied. [36]. It has been shown that
the opposite geometric phase for two valleys leads to valley-
polarized transport in a quantum ring. Recently, the quantum
ring in contact with topological superconducting nanowire
was investigated [37]. Interestingly, the quantum spin-Hall
effect has a simple classical analog [33]. The charged particle
has an orbital motion under the action of two-dimensional
simple harmonic oscillator. The spin part of the charged par-
ticle couples to the orbital motion such that only z component
of spin survives and the total angular momentum is conserved.
In this regard, the ring constructed by the quantum spin-Hall
materials can be a proper candidate to investigate the behavior
of the internal Zeeman interaction and its influences to the
spin current in the ring.

Motivated by these previous studies, we investigate the
quantum ring in the presence of Bernevig-Zhang (BZ) [33]
and Rashba-Dirac (RD) spin-orbit couplings. Interestingly,
we find that the BZ coupling plays the role of an internal
Zeeman field. The RD type coupling governs the tangential
component of spin on the ring. Furthermore, because of the
cylindrical symmetry, the resulting Hamiltonian also has a
conserved total angular momentum. This leads to the mod-

ifications of the energy eigenvalue and eigenvectors, which
were ignored in the previous works on quantum rings. The
Zeeman interaction (coupling of spin and external magnetic
field) is neglected in the present paper. In this regard, the
phase acquired by the charged particle with spin can be di-
vided into two part: pure electronic part (magnetic flux) and
pure spin part [Aharonov-Casher (AC) phase]. The resulting
conductance (without leads) then shows the beat phenomena
and can oscillate without passing insulating state. Further-
more, the fractional quantized magnetic flux (or AC phase)
can lead to the vanishing of oscillations in conductance. We
also find that the internal Zeeman field can be controlled by
the BZ coupling, which results in the increase of quasiplateau
in conductance. The thermal average of spin and charged
currents are calculated without the presence of impurities.
The spin current vanishes when BZ coupling exactly cancels
the internal Zeeman field. Furthermore, both the spin and
charge currents exhibit nodelike lines which perpendicular to
each other, and thus, pure spin current can be obtained in the
quantum ring.

This paper is organized as follows. In Sec. II, the one-
dimensional Hamiltonian for the ring with RD and BZ
couplings is derived. The energy eigenvalues and eigenvec-
tors are obtained by considering the quantum number from
the conservation of total angular momentum. In Sec. III, the
local spin orientation and internal Zeeman field are derived.
The conductance is calculated and the effects of BZ coupling
are discussed in Sec. IV. The thermal average of spin and
charge currents are calculated and discussed in Sec. V. The
conclusions are given in Sec. VI.

II. EFFECTIVE HAMILTONIAN

We study the Bernevig-Zhang (BZ) Hamiltonian in-
cluding Rashba-Dirac (RD) type spin-orbit coupling, here-
and-after called RD-BZ Hamiltonian in this paper. The
two-dimensional Hamiltonian reads

H2D = p2
x + p2

y

2m
+ HR + HC + HBZ + V (r), (1)

V (r) = 1
2 K (|r| − R)2 is the confining potential, where R is

the radius of the one-dimensional ring. The term HR and
HC are Rashba [6] and Dirac-type Hamiltonians, respectively,
and HBZ is the BZ hamiltonian [33]. These Hamiltonians are
written as

HR = α(σx py − σy px ),

HC = η(σx px + σy py),

HBZ = g1(ypx − xpy)σz + g2(x2 + y2).

(2)

The Pauli spin matrices are denoted as σx, σy, σz. In the
presence of external magnetic field, B = Bêz. The momentum
in Eq. (1) is replaced by

p → � = p − eA, (3)

where e = −|e| for an electron, and the vector potential A is
given by

A = (Ax, Ay, Az ) = (− 1
2 yB, 1

2 xB, 0
)
. (4)
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Equation (1) is written as

H2D = �2
x + �2

y

2m
+ α(σx�y − σy�x )

+ η(σx�x + σy�y)

+ g1(y�x − x�y)σz + g2(x2 + y2) + V (r). (5)

Consider the circular ring of radius R (constant curvature
1/R), we define the azimuthal angle φ as x = R cos φ and y =
R sin φ, and the Pauli spin matrices in the planar coordinate
are give by σ = σxêx + σyêy + σzêz = σr êr + σφ êφ + σzêz.
Use the coordinate transformations êx = cos φêr − sin φêφ ,
and êy = sin φêr + cos φêφ , we have

σr = σx cos φ + σy sin φ,

σφ = −σx sin φ + σy cos φ.
(6)

It can be shown that the commutation relations of σr , σφ and
σz are given by

[σr, σφ] = 2iσz, [σz, σr] = 2iσφ, [σφ, σz] = 2iσr . (7)

Follow the procedure given in Ref. [26], where the strictly
one-dimensional Hamiltonian is derived by averaging Ĥ2D

with the ground-sate radial wave function. Neglect the irrel-
evant additional constant terms (only shift the zero energy),
the one-dimensional ring with RD-BZ spin-orbit interaction is
replaced by H2D → Ĥ0, we have the following compact form
(the derivation is given in Appendix A):

Ĥ0 = εD̂2
0, ε = h̄2

2mR2
, (8)

where the operator D̂0 is given by

D̂0 = �̂z

h̄
+ γ0 + Zασr + Zησφ − bσz, (9)

with the orbital angular momentum operator

�̂z = −ih̄
∂

∂φ
. (10)

In the absence of Dirac and BZ coupling (Zη = 0 and b =
0), Eq. (9) goes back to the pure Rashba result as shown in
Ref. [29]. The coefficients γ0, Zα , Zη, and b are dimensionless
quantities, which are given by

Zα = mRα

h̄
, Zη = mRη

h̄
, b = mR2g1

h̄
, (11)

where h̄ = h/2π and h is the Planck constant. The symbol γ0

is the magnetic flux denoted as

γ0 = �

�0
, (12)

where � = BπR2 is the magnetic flux through the ring and
�0 = h/|e| is the flux quantum. The energy eigenvalues and
eigenvectors of Eq. (8) can be exactly solved, and we discuss
this in the following sections.

A. Absence of RD-BZ coupling

In the absence of RD-BZ spin-obit interaction, dimension-
less parameters Zα, Zη, and b vanish, and the Hamiltonian

Eq. (8) reduces to

Ĥ0 = ε

(
−i

∂

∂φ
+ γ0

)2

. (13)

The energy eigenvalue is then given by

E = ε(γ0 + n)2 (14)

with the corresponding eigenvectors

ψ (φ) = 1√
2π

einφ, n = 0,±1,±2, . . . (15)

The magnetic flux γ0 can be eliminated by using the gauge
transformation ψ (φ) → ψ (φ)e−iγ0φ . This means that the
magnetic flux γ0 in the eigenvalue is attributed to the phase
acquired by the charged particle traveling a polar angle φ,
which is the pure electronic behavior.

B. Presence of RD-BZ SOC

In the presence of RD-BZ spin-orbit interaction, we find
that the operator D̂0 [Eq. (9)] commutes with the total angular
momentum (see Appendix) Ĵz = �̂z + (h̄/2)σz, i.e.,[

�̂z + h̄

2
σz, ĥ0

]
= 0. (16)

The energy eigenvectors of Eq. (8) should be characterized by
using quantum numbers of Ĵz. The eigenvector of Ĵz can be
written as |n, σ 〉, where

|n,↑〉 = einφ|↑〉, Ĵz|n,↑〉 = (
n + 1

2

)
h̄|n,↑〉,

|n,↓〉 = einφ|↓〉, Ĵz|n,↓〉 = (
n − 1

2

)
h̄|n,↓〉,

(17)

where

|↑〉 =
(

1
0

)
, |↓〉 =

(
0
1

)
(18)

are the eigenvectors of spin z-component σz. This implies that
the trial energy eigenvector of Ĥ0 would be of the form

|Trial〉 =
(

χ1ei( jz− 1
2 )φ

χ2ei( jz+ 1
2 )φ

)
, (19)

where jz is the eigenvalue of the total angular momentum
�̂z + h̄

2 σz. It is easy to show that |Trial〉 is the eigenvector of
the total angular momentum operator Ĵz = �̂z + (h̄/2)σz with
eigenvalue jz, i.e.,

Ĵz|Trial〉 = jz h̄|Trial〉. (20)

After straightforward algebraic calculations, the eigenvectors
of the Hamiltonian (8) are given by (see Appendix)

ψ↑(φ) = ei j↑z φ

√
2π

(
cos ξ

2 e−iφ/2

sin ξ

2 eiθ eiφ/2

)
(21)

and

ψ↓(φ) = ei j↓z φ

√
2π

(
− sin ξ

2 e−iφ/2

cos ξ

2 eiθ eiφ/2

)
, (22)

where σ = ↑ represents the plus sign (lower energy), and
σ = ↓ represents the minus sign (greater energy). The total
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FIG. 1. The energy dispersion as a function of b, given by
Eq. (27), with Z = 0 and n = −2, −1, 0, 1, 2. (a) γ0 = 0, (b) 1/4,
and (c) 1/2 and an additional band for E−3↑ is included to show the
degeneracy between (−3, ↑) and (2,↓).

angular momentum quantum number is

jσz = n + 1
2σ (23)

and it will be further discussed below. The parameter ξ and θ

are given by

tan θ = Zη

Zα

, tan ξ = − |Z|
b + 1

2

, (24)

where

Z = Zα + iZη

= |Z|eiθ , |Z| =
√

Z2
α + Z2

η .
(25)

The coordinate ξ is the local spin tilt angle. In the present case,
we have 〈ψ↑(φ)|σz|ψ↑(φ)〉 = + cos ξ (called spin-up state)
and 〈ψ↓(φ)|σz|ψ↓(φ)〉 = − cos ξ (called spin-down state).
We also note that

tan
ξ

2
= +b + 1

2

|Z| ± 1

|Z|

√
|Z|2 +

(
b + 1

2

)2

(26)

and the choice of eigenvectors [Eq. (21) and (22)] correspond
to the minus sign in Eq. (26). The corresponding energy eigen-
values of Hamiltonian (8) are given by

Enσ = ε

(
γ0 + jσz − σ

√
|Z|2 +

(
b + 1

2

)2)2

, (27)

The energy as a function of b for three values of γ0 and Z = 0
is shown in Fig. 1. When γ0 = 0 [Fig. 1(a)], the states with
opposite jσz are degenerate. When γ0 = 0.25 [Fig. 1(b)], the
degenerate bands split and extra band crossings appear at b =
−0.25,−0.75. The degenerate pairs of quantum number at
band crossings for spin up states are (n,−n − 1), whereas for
the spin down states are (n,−n). When γ0 = 0.5 [Fig. 1(c)],
the states with (n + 1,↑) and (−n,↓) are degenerate. Al-
though the spin up and down states are degenerate, their
quantum number n differ by 2n + 1.

The term jσz in the wave function is the total angular
momentum quantum number, which should be jσz = n + qσ

with n = 0,±1,±2, . . . describing the rotation of electron in
the sense of counterclockwise (“+” plus sign) or clockwise
(“−” minus sign). In the absence of spin-orbit interaction, we
should have

E↑ = E↓ = ε(γ0 + n)2 (28)

regardless of the sense of rotation. By using Eq. (27), we have
q↑ − 1

2 = q↓ + 1
2 = 0, and this gives q↑ = 1

2 and q↓ = − 1
2 .

That is, jσz = n + 1
2σ . and this also leads to the result that the

wave function is single valuedness ψσ (φ + 2π ) = ψσ (φ).
An improper result in determining the eigenenergy is due

to replacing jσz = n + (1/2)σ by jz = n + (1/2) for both
spin-up state and spin-down state, then the energy eigenvalue
becomes Eσ = ε[γ0 + n + 1

2 − σ
√

|Z|2 + (b+ 1/2)2]2, which
is incorrect. This is because in the absence of spin-orbit in-
teraction, this result will leads to E↑ = ε(γ0 + n)2 and E↓ =
ε(γ0 + n + 1)2. That is, E↑ �= E↓, the energy of the spin-up
state will be different from that of the spin-down state even in
the absence of the Zeeman interaction, and this is unphysical
[38].

In short, we stress that the energy eigenvectors and eigen-
values used in this paper are different from the previous
literatures. The discrepancy is due to the total angular mo-
mentum Ĵz = �̂z + (h̄/2)σz, in which the eigenvalue depends
on the spin state. For those systems without conservation of
angular momentum, the eigenstates should be expanded by
the orbital angular momentum states with different quantum
number n.

III. INTERNAL ZEEMAN FIELD

In the local Frenet-Serret reference frame [28], the spin
orientation is expressed as 〈σ〉 = 〈σr〉êr + 〈σφ〉êφ + 〈σz〉êz,
where the expectation value 〈· · · 〉 is obtained by using the
eigenstates of the operator D̂0 [Eq. (9)], D̂0|ψσ 〉 = �σ |ψσ 〉,
which can be written as

−i
∂

∂s
|ψσ 〉 = Ĝ(s)|ψσ 〉, (29)

where s = Rφ is the arclength of the ring and

Ĝ(s) = 1

R
(�σ − γ0) + 1

R
(−Zασr − Zησφ + bσz ). (30)

Therefore the spatial derivation of 〈σ〉 can be written as

∂

∂s
〈σ〉 = i〈[σ, Ĝ(φ)]〉 +

〈
∂σ

∂s

〉
. (31)

We also note that in the local frame of spin, we have ∂σr/∂φ =
σφ and ∂σφ = −σr . Hence, we obtain〈

∂σ

∂s

〉
= 〈σφ〉

R
êr − 〈σr〉

R
êz. (32)

Equation (32) is independent of spin-orbit interaction. By
substitution of Eqs. (30), (7), and (32) into Eq. (31), after a
straightforward calculation, we have the following spin-torque
equation:

∂

∂s
〈σ〉 = BL × 〈σ〉, (33)
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where BL-field is called the effective local field,

BL = 2Zα

R
êr + 2Zη

R
êφ + −2b − 1

R
êz. (34)

We note that the external magnetic field B does not alter the
spin orientation because the Zeeman interaction is neglected
in the present case. The Rashba-Dirac spin-orbit interaction
control an in-plane effective local field. For the energy eigen-
vectors [Eqs. (21) and (22)], the local spin 〈σ〉 can be written
as

〈σ〉↑ ≡ 〈ψ↑|σ|ψ↑〉
= 〈σr〉êr + 〈σφ〉êφ + 〈σz〉êz

= (sin ξ cos θ )êr + (sin ξ sin θ )êφ + (cos ξ )êz

(35)

and 〈σ〉↓ = −〈σ〉↑. We find that

〈σφ〉
〈σr〉 = tan θ. (36)

Namely, the in-plane component of spin can be generated by
the Dirac type spin-orbit coupling η, which is also similar
to the nonconstant curvature of the ring [28]. Importantly,
in the absence of spin-orbit interaction, the local field is still
nonzero,

BL = − 1

R
êz; Zα = Zη = 0, b = 0, (37)

which reveals the presence of an nonvanishing BL field in the
z direction, and is here-and-after called the internal Zeeman
field. When the spin state is taken into account, this internal
Zeeman field would change the electronic energy even in
the absence of spin-orbit interaction. Interestingly, we find
that the internal Zeeman field can be tuned by changing BZ
coupling. This enable us to detect the effect of the internal
Zeeman field in the ring. When the BZ coupling has a specific
value b = −1/2, we have

BL = 0, Zα = Zη = 0, b = −1/2. (38)

By using the form of BL field, the energy eigenvalue (27)
then can be simplified as E↑ = ε(γ0 + j↑z − |h|)2 and E↓ =
ε(γ0 + j↓z + |h|)2, where the h field is defined as

h = R

2
BL

= Zα êr + Zηêφ −
(

b + 1

2

)
êz. (39)

Furthermore, the eigenvalues (27) can be expressed as

Enσ = ε

(
γ0 + n + 1

2
σ − σ |h|

)2

= ε

(
γ0 + n − �σ

2π

)2

, (40)

where �σ is written as

�σ = σ�AC (41)

and

�AC = 2π |h| − π (42)

is the so-called the AC phase in the ring. It is interesting
to note that in the absence of spin-orbit interaction, |Z| =
b = 0 and we have |h| = 1/2 and the AC phase vanishes
�AC = 0. However, if the RD coupling vanishes |Z| = 0, but
the BZ coupling is b = −1/2, then |h| = 0 and AC phase
is �AC = −π . In the following section, we will discuss the
effect of BZ coupling by calculating the conductance without
leads. We close this section by addressing the issues about the
modification of energy spectrum. It is easy to show that the
symmetry of Eq. (40) is given by

γ0 = 0, E−n↓ = En↑
γ∗ = 0, En↑ = En↓,

(43)

where γ∗ = �AB/2π .
In the previous literature, the term �σ in Eq. (40) is ex-

pressed as �o
σ = −π (1 − 2σ |h|). However, by considering

the conserved angular momentum in the present system, the
term �σ is written as �σ = σ (−π )(1 − 2|h|). In the absence
of spin-orbit interaction (|h| = 1/2), we have �σ = 0, and
energy spectrum goes back to Eq. (14). For the old version,
in the absence of spin-orbit interaction (|h| = 1/2), we have
�0

↑ = 0, but �0
↓ = −2π . Furthermore, for nonzero spin-orbit

interaction (|Z| �= 0 and b �= 0), we have �o
↑ = �AC and

�o
↓ = −�AC − 2π . The additional 2π phase in �o

↓ will not
have a detectable result in the interference pattern. Although
the old energy spectrum is improper, it is still safe to discuss
the vanishing spin-orbit interaction in the conductance, which
stems from the effect of interference.

IV. CONDUCTANCE

A. Classification of eigenstates

We return to the eigenstates of Ĵz. By observing the to-
tal angular momentum quantum number jσz , we found that
the energy eigenvectors can be classified by two angular
momentum states: parallel and antiparallel orientation of �̂z

and σz. For the convenience of description, we write n as
λn̄, with λ = ± and n̄ = 0, 1, 2, 3, . . . . The term λ = +
represents the counterclockwise rotation of an electron and
λ = − represents the clockwise rotation of an electron. The
parallel state is marked by ⇑, which has two eigenvalues
for Ĵz,

n̄ + 1
2 , −n̄ − 1

2 . (44)

On the other hand, the antiparallel state is marked by ⇓, which
also has two eigenvalues for Ĵz,

n̄ − 1
2 , −n̄ + 1

2 . (45)

Therefore we conclude that the eigenvectors of total angular
momentum |n, σ 〉 can be classified to |J, λ〉. Namely, we
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have1

|n̄,↑〉 = |⇑,+〉, Jz|⇑,+〉 = (
n̄ + 1

2

)
h̄|⇑,+〉,

|−n̄,↑〉 = |⇓,−〉, Jz|⇓,−〉 = (−n̄ + 1
2

)
h̄|⇓,−〉,

|n̄,↓〉 = |⇓,+〉, Jz|⇓,+〉 = (
n̄ − 1

2

)
h̄|⇓,+〉,

|−n̄,↓〉 = |⇑,−〉, Jz|⇑,−〉 = (−n̄ − 1
2

)
h̄|⇑,−〉,

(46)

where n̄ � 0. The term ⇑ means the orbital angular momen-
tum is parallel to the spin, and ⇓ means the orbital angular
momentum is antiparallel to the spin.

We now turn to the energy eigenvectors. Consider parallel
states [Eq. (44)], the first state corresponds to n = +n̄ and σ =
↑ in Eq. (21), and the second state corresponds to n = −n̄ and
σ = ↓ in (22). Therefore we have

|ψ+
⇑ (φ)〉 = exp(in̄φ)√

2π

(
cos(ξ/2)

sin(ξ/2)ei(φ+θ )

)
,

|ψ−
⇑ (φ)〉 = exp(−in̄φ)√

2π

(− sin(ξ/2)e−iφ

cos(ξ/2)eiθ

)
.

(47)

It can be shown that |ψ+
⇑ (φ)〉 is the eigenvector of the to-

tal angular momentum Ĵz = �̂z + (h̄/2)σz, i.e., Ĵz|ψ+
⇑ (φ)〉 =

(n̄ + 1/2)h̄|ψ+
⇑ (φ)〉. We also have Ĵz|ψ−

⇑ (φ)〉 = (−n̄ −
1/2)h̄|ψ+

⇑ (φ)〉. Because |ψ+
⇑ (φ)〉 and |ψ−

⇑ (φ)〉 correspond to
different eigenvalues, they are orthogonal, i.e., it can be shown
that 〈ψ+

⇑ (φ)|ψ−
⇑ (φ)〉 = 0.

Consider antiparallel states [Eq. (44)], the first state corre-
sponds to n = +n̄ and σ = ↓ in Eq. (22), and the second state
corresponds to n = −n̄ and σ = ↑ in (21). Therefore we have

|ψ+
⇓ (φ)〉 = exp(in̄φ)√

2π

(− sin(ξ/2)e−iφ

cos(ξ/2)eiθ

)
,

|ψ−
⇓ (φ)〉 = exp(−in̄φ)√

2π

(
cos(ξ/2)

sin(ξ/2)ei(φ+θ )

)
.

(48)

It can be shown that Ĵz|ψ+
⇓ (φ)〉 = (n̄ − 1/2)h̄|ψ+

⇓ (φ)〉 and

Ĵz|ψ−
⇓ (φ)〉 = (−n̄ + 1/2)h̄|ψ−

⇓ (φ)〉. Furthermore, we have
〈ψ+

⇓ (φ)|ψ−
⇓ (φ)〉 = 0. The eigenstate can be written as

∣∣ψλ
J (φ)

〉 = exp
(
iλn̄J

λφ
)

√
2π

∣∣χλ
J

〉
, (49)

where J = ⇑,⇓. In the following section, we calculate the
conductance by using the projection operator exhibited by
Eqs. (47) and (48).

B. Calculation of conductance

Without leads, the conductance due to the interference of
the four total angular momentum states is obtained by

G = e2

4h

∑
σ,σ ′

|〈σ ′|σout〉|2, (50)

1The completeness of |J, λ〉 is given by
∑

J=⇑,⇓ |J, λ〉〈J, λ| = 1
and

∑
λ=+,− |J, λ〉〈J, λ| = 1.

where σ = ↑,↓ and the factor 4 means that there are four
available channels of the quantum ring. The mixed total angu-
lar momentum state leave the ring at φ = π , and we have

|σout〉 =
∑
J,λ

ein̄J
λπ

∣∣χλ
J (π )

〉〈
χλ

J (0)
∣∣σ 〉

, (51)

where J = ⇑,⇓ and the sign λ = ± represents the direction of
the channels. We note that because the injection of spin in the
ring should obey the conservation of total angular momentum,
the projection operator should be constructed by the parallel
and antiparallel states. This is because, for example, an up
spin in the ring will transport only through upper channel
(parallel state) or lower channel (antiparallel state). By using
the completeness

∑
σ |σ 〉〈σ | = 1, Eq. (50) can be written as

G = e2

4h

∑
λ,J

∑
λ′,J ′

〈
χλ

J (0)
∣∣χλ′

J ′ (0)
〉〈
χλ′

J ′ (π )
∣∣χλ

J (π )
〉
ei(nJ

λ−nJ′
λ′ )π .

(52)

By using Eqs. (47) and (48) into Eq. (52), and after
straightforward calculations, we obtain

G = e2

h

{
1 + 1

2
[cos(n̄⇑

+π − n̄⇓
−π ) + cos(n̄⇓

+π − n̄⇑
−π )]

}
.

(53)

The first term in the bracket [· · · ] of Eq. (53) corresponds to
the interference of only spin-up wave function, and the second
term corresponds to the interference of only the spin-down
wave function as shown in Fig. 2(b).

Importantly, we note that Eq. (53) was discussed in the
previous papers [25,39]. However, we note that the orbital
quantum number is related to the parallel and antiparallel
states, but not the spin angular momentum. The orbital quan-
tum number nJ

λ are

n̄⇑
+ : n̄ + 1

2 , n̄⇑
− : −n̄ − 1

2 ,

n̄⇓
+ : n̄ − 1

2 , n̄⇓
− : −n̄ + 1

2 .
(54)

We stress that the state ⇑ does not mean the spin is in the up
state, and vice versa. We note that, n̄⇑

+ represents n = +n̄ and
σ = ↑, and the corresponding energy is ε(γ0 + n̄⇑

+ + 1/2 −
|h|)2. On the other hand, n̄⇓

− represents n = −n̄ and σ = ↑,
and the corresponding energy is ε(γ0 − n̄⇓

− + 1/2 − |h|)2, and
so on. The corresponding eigenvalues are

n̄⇑
+ : E+

⇑ = ε
(
γ0 + n̄⇑

+ + 1
2 − |h|)2

,

n̄⇑
− : E−

⇑ = ε
(
γ0 − n̄⇑

− − 1
2 + |h|)2

,

n̄⇓
+ : E+

⇓ = ε
(
γ0 + n̄⇓

+ − 1
2 + |h|)2

,

n̄⇓
− : E−

⇓ = ε
(
γ0 − n̄⇓

− + 1
2 − |h|)2

.

(55)

By imposing the Fermi energy to the energy eigenvalue,
Eλ

s = EF , we have EF /ε = (γ0 + n̄⇑
+ + 1/2 − |h|)2 = (γ0 −

n̄⇓
− + 1/2 − |h|)2. Simple algebraic calculations, we have
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FIG. 2. (a) Schematic diagram showing the parallel (left) and
antiparallel (right) states defined in Eq. (46). (b) Schematic diagram
showing the spin up (left) and spin down (right) states. The interfer-
ence is within each spin state, as given by Eq. (53).

(n̄⇑
+ + n̄⇓

−)(n̄⇑
+ − n̄⇓

− + 1 − 2|h| + 2γ0) = 0. This implies

n̄⇑
+ − n̄⇓

− = 2|h| − 1 − 2γ0

= �AC

π
− 2γ0. (56)

Furthermore, we also have

n̄⇓
+ − n̄⇑

− = 1 − 2|h| − 2γ0

= −�AC

π
− 2γ0. (57)

Because we neglect the Zeeman term that couples the spin and
external magnetic field, the phase change is attributed to pure
spin part (AC phase �AC) and pure electronic part (magnetic
flux 2πγ0). For the external magnetic flux, the phase 2πγ0 due
to the pure electronic properties is the same for spin up and
spin down states. The difference is the phase caused by the
spin-orbit interaction, the AC phase acquired by spin up state
is opposite to that by spin-down state. Equation (53) becomes

G = e2

h

{
1 + 1

2
[cos(�AC − 2πγ0) + cos(�AC + 2πγ0)]

}
= e2

h
{1 + cos(2πγ0) cos �AC}.

(58)

Equation (58) is one of the main results in this paper, which is
a periodic oscillation exhibited by γ0 and �AC. We also note

FIG. 3. (a) the conductance Eq. (58) as a function of the magnetic
flux 2πγ0 and the AC phase �AC; (b) the conductance with �AC =
δQ0 and Q0 = 2πγ0, where δ = 1 and δ = 1.25 correspond to the
solid line and dashed line in (a), respectively; (c) the conductance
v.s. the AC phase for different values of magnetic flux γ0. For the
one-quarter quantum flux, γ0 = 1/4, the conductance is a constant
regardless of the strength of spin-orbit interaction.

that the conductance (58) is similar to the result in the hole
ring [31]. Equation (58) as a function of γ0 and �AC is plotted
in Fig. 3(a).

If the phase of magnetic flux is equal to the AC phase (mod
2π ), i.e., Q0 ≡ 2πγ0 = ±�AC, then the conductance becomes

G = e2

h
{1 + cos2 Q0π}, Q0π = 2πγ0 = ±�AC.

The Q0 value corresponds to the off-diagonal line of the
Fig. 3(a) with positive slope or negative slope. The minima
of G is e2/h and the maxima is 2e2/h. Interestingly, we set
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�AC = δQ0 and 2πγ0 = Q0, and the conductance becomes

G = e2

h

{
1 + 1

2
[cos((δ − 1)Q0) + cos((δ + 1)Q0)]

}
. (59)

The resulting conductance is plotted in Fig. 3(b). We find that
the when δ = 1.25 [along the dashed line in Fig. 3(a)], the
conductance has the beat phenomenon. An important result
from the beat phenomena is that the conductance can vary
periodically without passing the insulating state.

When γ0 is an one-quarter quantum flux, γ0 =
±1/4,±3/4,±5/4, . . . , then the conductance remains
constant G = e2/h, regardless of the strength of spin-orbit
interaction as shown in Fig. 3(c). This is because the
phase accumulated by an electron is eiγ0φ for a travel
through angle φ. The accumulated phase of the electronic
wave function through the ring is ei2πγ0 and the resulting
interference is cos(2πγ0). The magnetic flux γ0 = 1/4
leads to the complete destructive interference for both
spin-up and spin-down electrons. Therefore the conductance
contains only four channels with pure electronic transport,
i.e., G = (e2/4h) × 4 = e2/h. Moreover, if �AC shows
half-integer numbers, �AC = ±π/2,±3π/2,±5π/2, then
the conductance also becomes a constant G = e2/h regardless
of the strength of the magnetic flux.

In the absence of magnetic flux, γ0 = 0, the conductance
Eq. (58) becomes

G0 = e2

h
{1 + cos �AC}. (60)

Equation (60) was obtained in the previous works by many
authors (Refs. [39,40] and other reference therein). Our re-
sult shows that Eq. (58) goes back to Eq. (60) not only
when the magnetic flux vanishes but an integer number γ0 =
0,±1,±2, . . . . However, unlike the result Eq. (60), for half-
integer numbers γ0 = ±1/2,±3/2 ± 5/2 . . . , Eq. (58) gives
a rather different result,

G1/2 = e2

h
{1 − cos �AC}. (61)

From Eqs. (60) and (61), we can obtain the AC phase by
measuring G0 and G1/2,

�AC = cos−1

(
G0 − G1/2

G0 + G1/2

)
. (62)

Equation (62) enables us to detect the existence of the internal
Zeeman field in the quantum ring.

C. Effect of only BZ coupling

In this section, we discuss the conductance in the absence
of Rashba and Dirac-type coupling, Zα = Zη = 0. The AC
phase becomes

�AC = 2π
∣∣b + 1

2

∣∣ − π. (63)

If we further turn off the BZ coupling (b = 0), this leads to
�AC = 0, and the conductance [Eq. (58)] is given by

G = e2

h
[1 + cos(2πγ0)]. (64)

In this case, in the absence of external magnetic field (γ0 = 0),
the conductance is the maximum value G = 2e2/h. Neverthe-
less, if the BZ coupling exactly cancels the internal Zeeman
field, (b + 1/2) = 0, then �AC = −π and the conductance
[Eq. (58)] becomes

G = e2

h
[1 − cos(2πγ0)]. (65)

We find that in this case, the conductance vanishes even
in the absence of an external magnetic field (and integer
flux quantum, γ0 = ±1,±2,±3, . . . ). The conductance goes
back to 2e2/h when γ0 is an half-integer number γ0 =
±1/2,±3/2,±5/2, . . .

If the BZ coupling is zero, Eq. (60) leads to G0 = 2e2/h,
however, Eq. (61) leads to vanishing conductance G1/2 = 0.
Inversely, the cancellation of internal Zeeman field (�AC =
−π ) implies that G0 = 0 and G1/2 = 2e2/h. Therefore we
conclude that

b = 0

{
G = 0, γ0 = ±1/2,±3/2, . . .

G = 2e2/h, γ0 = 0,±1,±2, . . .
(66)

and

(b + 1/2) = 0

{
G = 0, γ0 = 0,±1,±2, . . .

G = 2e2/h, γ0 = ±1/2,±3/2, . . .
. (67)

The difference between the vanishing spin-orbit interaction
and the cancellation of internal Zeeman field can be observed
by using integer magnetic flux and half-integer magnetic flux.

D. Effect of RD coupling

In the presence of both Rashba-Dirac and BZ coupling,
the h-field |h| =

√
|Z|2 + (b + 1/2)2 indicates that |Z|2 and

(b + 1/2)2 plays the same role in �AC. For a fixed γ0, the
conductance behaves like a spherical wave due to the point
source, where the location of the source point is at b = −1/2
and |Z| = 0, as shown in Fig. 4. The change of magnetic
flux from integer to half-integer can alter the maximum and
minimum positions. Because of the width between maximum
values in the pattern of conductance, when b + 1/2 �= 0 the
conductance can have a quasiplateau in |Z|. In Fig. 4, we find
that the BZ interaction b can change the width of the quasi-
plateau of the conductance. For larger values of BZ coupling,
we could have a wider plateau in conductance.

On the other hand, as shown in Fig. 5, if the BZ coupling
cancels the internal Zeeman field (b + 1/2 = 0), then the con-
ductance is still a periodic function of |Z| as well as γ0. The
plateau appears when b = 0, i.e., the internal Zeeman field is
non zero. When we increase the value of the BZ coupling,
which is equivalent to enhance the internal Zeeman field, and
the plateau becomes larger. Because of the periodicity of the
conductance, the quasiplateau could be a conducting state or
an insulating state regardless of the small change in the RD
coupling |Z|.

V. PERSISTENT SPIN CURRENT AT LOW TEMPERATURE

It is known that the AC effect manifests the persistent
spin current in the ring with spin-orbit coupling [41,42]. In
this section, we calculate the spin current by using canonical
partition function [42]. The orbital angular momentum �̂z is
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FIG. 4. Figures showing the influence of the spin-orbit interac-
tion to the conductance, we use (a) γ0 = 1 and (b) 1/2. The location
of conductance maximum and minimum interchanged in (a) and
(b) as a result of the phase difference π .

the generalized momentum in Hamiltonian Ĥ0, which is de-
noted as pφ = �̂z = −ih̄∂/∂φ. The velocity operator is given
by

v̂ = ∂Ĥ0

∂ pφ

= ε

{
∂D̂0

∂ pφ

, D̂0

}
= 2ε

h̄
D̂0,

(68)

where the notation {A, B} = AB + BA was used. The conven-
tional definition of spin current is J z

s = 1
2 {v̂, h̄

2 σz}, and we
have

J z
s = 1

2

{
v̂,

h̄

2
σz

}

= ε

[(
�̂z

h̄
+ γ0

)
σz − b

]
,

(69)

where {σr, σz} = 0 and {σφ, σz} = 0 were used. The thermal
equilibrium expectation value (thermal average) 〈O〉β of the

FIG. 5. Figures showing the influence of the BZ coupling to the
conductance in the presence of Rashba-Dirac coupling. From left to
right, the value of the BZ interaction is −1/2, 0, 1/2, respectively.

observable O is given by the canonical ensemble,

〈O〉β = 1

Z Tr[e−βĤ0O]

= 1

Z

∞∑
n=−∞

∑
σ

e−βEnσ 〈ψnσ |O|ψnσ 〉,
(70)

where 〈ψnσ |O|ψnσ 〉 is the quantum mechanical average

〈ψnσ |O|ψnσ 〉 =
∫ 2π

0
dφψ†

nσ (φ)Oψnσ (φ) (71)

and the partition function Z reads

Z = Tr[e−βĤ0 ] =
∞∑

n=−∞

∑
σ

e−βEnσ . (72)

We find that the quantum mechanical average of spin
components satisfy2 〈ψnσ |σx|ψnσ 〉 = 〈ψnσ |σy|ψnσ 〉 = 0 and
〈ψnσ |σz|ψnσ 〉 = σ cos ξ . In the presence of external magnetic
flux (γ0 �= 0), the thermal average of spin current is given by
(after some straightforward calculations)〈

J z
s

〉
β

= εJ̄s, J̄s = P↑ − P↓
Z↑ + Z↓

cos ξ, (73)

where γ∗ = �AC/2π , ε is defined in Eq. (8),

cos ξ = b + 1/2√
|Z|2 + (b + 1/2)2

, (74)

and

P↑ =
∞∑

n=−∞
(n + γ0 − γ∗)e−βEn↑ ,

P↓ =
∞∑

n=−∞
(n + γ0 + γ∗)e−βEn↓ ,

Z↑ =
∞∑

n=−∞
e−βEn↑ , Z↓ =

∞∑
n=−∞

e−βEn↓ ,

(75)

where En↑(↓) are defined in Eq. (40). Until now no approxima-
tions have been done in deriving Eq. (73). The nonzero value
of Eq. (73) is the so-called persistent spin current. Here-and-
after we simply call 〈J z

s 〉β the spin current and J̄s is called the
scaled spin current.

In the absence of magnetic flux γ0 = 0, it can be shown that
Eq. (73) reproduces the result shown in Ref. [42], but the en-
ergy spectrum is different. Furthermore, in this case, we have
E−n↓ = En↑ [see also Eq. (43)], and thus, the thermal average
of spin vanishes 〈σ〉β = 0. However, the thermal average of
the spin current 〈J z

s 〉β would be nonzero as has been shown
in Ref. [42].

2The expectation value of spin x component by using a
spinor is given by ψ†

nσ (φ)σxψnσ (φ) = (σ/2π ) sin ξ cos(θ + φ),
and thus, it vanishes because of the cylindrical symmetry∫ 2π

0 dφψ†
nσ σxψnσ = 0. For y component, we have ψ†

nσ σyψnσ (φ) =
(σ/2π ) sin ξ sin(θ + φ), and we also have a vanishing spin y com-
ponent

∫ 2π

0 dφψ†
nσ σyψnσ = 0.
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TABLE I. The thermal average of spin and charge currents
[Eqs. (73) and (78)] for cases of vanishing spin-orbit interaction
γ∗ = 0, vanishing magnetic flux γ0 = 0, and vanishing internal Zee-
man field b + 1/2 = 0. The symbol “0” means always zero, and the
symbol “×” means nonzero in general except to the nodelike lines.

γ∗ = 0 γ0 = 0 b + 1/2 = 0

〈J z
s 〉β 0 × 0

〈Je〉β × 0 ×

Looking at Eqs. (73) and (74), some simple relations be-
tween spin current and γ0 and γ∗ are apparent. In the absence
of spin-orbit interaction (γ∗ = 0), the internal Zeeman field
still tilt spin with an angle ξ = 0. However, in this case we
have En↑ = En↓ = ε(n + γ0)2, and the thermal average gives
P↑ = P↓. Therefore the spin current vanishes even in the
presence of magnetic flux (γ0 �= 0). Furthermore, if BZ cou-
pling exactly cancels the internal Zeeman field b + 1/2 = 0,
we have cos ξ = 0 for |Z| �= 0. That is, the spin current also
vanishes regardless of the strength of Rahsba-Dirac spin-orbit
interaction (see also Table I). Except to the cancellation of
internal Zeeman field and vanishing spin-orbit interaction, the
spin current would be nonzero. We note that the transmission
of spinful electrons in a single ring with metallic-like con-
tact at high temperature was investigated in Ref. [43], which
showed that in the Rashba system spin interference effects are
not suppressed by the thermal average.

In the present case, we discuss this phenomenon at low
temperature in the following subsections. The energy scale
of the quantum ring is ε = h̄2/2mR which is about 6.5 ×
10−5 eV for InAs ring with R ≈ 1 µm. Therefore, for the
low temperature T ≈ 10−3 K, we have βε ≈ 100, which will
necessitate summing only finite values of n, and make the
computation feasible.

A. In the presence of only BZ coupling

This subsection is to numerically calculate Eq. (73) in the
presence of only BZ coupling, i.e, |Z| = 0. In this case, we
have γ∗ = |b + 1/2| − 1/2 and cos ξ = (b + 1/2)/|b + 1/2|.
For the convenience of discussion, we focus on the value of
b + 1/2 � 0. The cosine of the tilt angle cos ξ , which is a
sign function of (b + 1/2), is always positive in the range of b
discussed. We also discuss small changes in BZ coupling near
by b = −1/2, and the value γ∗ = b ranges from −1/2 to 1.
The scaled spin current [J̄s in Eq. (73)] becomes

J̄s = P↑ − P↓
Z↑ + Z↓

. (76)

The numerical results of Eq. (76) at low temperature is
shown in Fig. 6(a), which we take the value βε = 100 in our
calculation. Because the large value of βε, the contribution
of terms of large n are neglected. In the present calculation,
the maximum n is 10. We observe that the spin current is
a periodic function of BZ coupling b and magnetic flux γ0.
At those values of b = −1/2, 0, 1/2, 1, the spin currents are
vanishingly small regardless of the strength of magnetic flux.
For upper subfigure in Fig. 6(a), we find that the spin current
has abrupt changes near b = −1/2 and b = 1/2 when γ0 = 0,

FIG. 6. (a) Numerical results of the persistent spin current
[Eq. (76), J̄s ≡ 〈J z

s 〉β/ε] for Z = 0 as a function of γ0 and b. The
upper (lower) subfigure showing J̄s as a function of BZ coupling b
(γ0) with different values of γ0 (BZ coupling b). The nodelike lines
at b = 1, 0.5, 0, −0.5, −1 are parallel to the axis of γ0. (b) Numerical
results of the charge current [Eq. (78), J̄e ≡ 〈Je〉β/(2eε/h̄)] as a
function of magnetic flux γ0 and AC phase γ∗. The upper (lower)
subfigure showing J̄e as a function of γ∗ (γ0) with different values
of γ0 (γ∗). The nodelike lines at γ0 = −1, −0.5, 0, 0.5, 1 are perpen-
dicular to the axis γ0.

which is similar to the result observed in Ref. [42]. We find
that when the magnetic flux increases, the spin current de-
creases and these abrupt changes shifts to the locations γ0 = 0
and γ0 = 1/2. For lower subfigure in Fig. 6(a), the persistent
spin current has a zigzaglike change with the changing of
magnetic flux. The increase of BZ coupling (b = γ∗) also
results in the shift of the magnitude of the spin current, but
the tip positions of the zigzaglike shape do not have explicit
change.

B. Persistent spin current without charge current

We start from the charge current operator that is given by

Je = ev̂ = 2eε

h̄
ĥ0, (77)

where the velocity operator [Eq. (68)] was used. After
straightforward calculation, the thermal averaged the charge
current (simply called charge current) is

〈Je〉β = 2eε

h̄
J̄e, J̄e = P↑ + P↓

Z↑ + Z↓
. (78)

In the absence of spin-orbit interaction (γ∗ = 0), we have
P↑ = P↓, Eq. (78) shows that the charge current is in general
nonzero, but the spin current [Eq. (73)] vanishes. On the other
hand, J̄e in Eq. (78) can be written as

J̄e = γ0 + 1

Z

∞∑
n=−∞

n(e−βEn↑ + e−βEn↓ )

+ γ∗
Z

∞∑
n=−∞

(e−βEn↑ − e−βEn↓ ), (79)
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FIG. 7. Numerical results of both charge current J̄e and spin
current J̄s [Eq. (73), cos ξ is taken into account] as a func-
tion of magnetic flux γ0 and Rashba-Dirac coupling |Z| for b =
−1, −1/2, 0, 1/2. We note that the choice of b in the present case
leads to an additional nodelike line at |Z| = 0 [see Fig. 6(a)]. For
other choice of b, there is in general no nodelike line at |Z| = 0.

where J̄e is called the scaled charge current. In the absence
of magnetic flux γ0 = 0, we have E−n↓ = En↑ [see also
Eq. (43)], and thus the second line of Eq. (79) vanishes. More-
over, follow the same reason, we have

∑+∞
n=−∞ ne−βEn↓ =∑+∞

n=−∞(−n)e−βEn↑ by using the change of dummy index
n → −n. The second term of the first line of Eq. (79) also
vanishes. As a result, the thermal average of the charge current
always vanishes in the absence of the magnetic flux (see also
Table I).

Similar to the thermal average of spin current, we find that
the interference that stems from γ0 and γ∗ is not suppressed
by the thermal average. Interestingly, from Fig. 6(b), we ob-
serve that the charge current always vanishes at half-integer
magnetic flux (γ0 = 0,±1/2,±1, . . . ) forming nodelike lines
and independent of spin-orbit interaction. This is similar to
the spin current, there exists nodelike lines of γ∗ that results in
vanishing spin current regardless of the magnetic flux. We will
go back to this point later. Furthermore, parallel to these node-
like lines, the charge current as a function of γ∗ has a zigzag
structure [see upper subfigure in Fig. 6(b)]. Perpendicular to
the nodelike lines, the charge current has abrupt changes [see
lower subfigure in Fig. 6(b)].

Explicitly, compare Fig. 6(a) with Fig. 6(b), we find that
the nodelike lines of spin current is perpendicular to that of
the charge current. Alternatively, we further plot the charge
and spin currents as a function of the magnetic flux γ0 and
Rashba-Dirac coupling |Z| for various BZ couplings at low
temperature (βε = 100), as shown in Fig. 7. The dashed lines
locate the zero charge and spin current.

The nodelike lines of spin current are perpendicular to that
of the charge current. The positions of nodelike lines exhibited
by the AC phase γ∗ changes with the strength of the spin-orbit
interaction, but the nodelike lines of the charge current are
fixed for γ0. Therefore we conclude that when magnetic flux
is half-integer numbers (γ0 = 0,±1/2,±1, . . . ), the charge
current vanishes but the spin current does not vanish in general
(except to its nodelike lines) and vice versa. Interestingly,
because of the perpendicular node phenomenon, there exists
some points (nonzero γ0 and nonzero |Z|) that both spin and
charge currents vanish.

FIG. 8. Spin current J̄s [Eq. (73), cos ξ is taken into account] as a
function of Rashba-Dirac coupling |Z| and BZ coupling for (a) γ0 =
0, (b) γ0 = 1/2, (c) γ0 = 1, where the charge currents all vanishes.
Numerically, we find that (a) is the same as (c), and thus, the spin
current has a period φ0/2. For (d) γ0 = 1/2, plateaulike spin current
is exhibited by the increase in the BZ coupling.

We emphasize that the BZ coupling is not the key point in
generating pure spin current, but the internal Zeeman field. As
shown in Figs. 8(a)–8(c) (see also Fig. 7 for b = 0), the charge
currents are zero and only spin current survives. For b = 0,
the spin current is still nonzero in general. By inspection of
Fig. 8, the spin current has the similar concentric circular
structure as the conductance in Fig. 4. It follows that we also
have the quasiplateau structure in spin current. For instance,
consider Fig. 8(b), we find that the pure spin current regime is
broader for large BZ coupling than for the small BZ coupling,
as shown in Fig. 8(d).

The charge and spin current have been investigated in pre-
vious studies. In Ref. [14], flux dependencies of charge and
spin currents were investigated, where the electron number
and barrier strength were taken into account. The pure spin
current could be generated in a quantum ring. In Ref. [44], the
authors showed that the pure spin current can appear within a
quantum ring with Rashba spin-orbit interaction under finite
bias. In contrast to previous studies, our results point out the
effect of internal Zeeman field and show that the interference
survives thermal average.

VI. CONCLUSION

In this paper, we investigate Rashba-Dirac (RD) and
Bernevig-Zhang (BZ) spin-orbit coupling in the quantum ring.
The conservation of total angular momentum was taken into
account in obtaining energy eigenvalues and eigenvectors.
The wave function is classified to parallel and antiparallel
states. We found that the resulting conductance depends on
both the external magnetic flux and Aharonov-Casher (AC)
phase. The beat behavior of the conductance shows that the
conductance can oscillate without passing insulating states.
Interestingly, when the magnetic flux is one-quarter flux quan-
tum, the conductance is a constant regardless of the strength of
RD-BZ spin-orbit interaction. We also found that the internal
Zeeman field can be changed by tuning the BZ coupling. By
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using the fractional magnetic flux (integer and half-integer),
we can distinguish the difference between vanishing BZ cou-
pling and the cancellation of the internal Zeeman field. We
also showed that the existence of internal Zeeman field and
BZ coupling can result in the quasiplateau in conductance
near the weak Rashba-Dirac coupling regime. Furthermore,
the increase in BZ coupling leads to the wider quasiplateau.
The quasiplateau of the ring in the large BZ coupling could be
at conducting state or insulating state, which triggered by the
integer and half-integer magnetic flux. Moreover, the persis-
tent spin and charge currents are nonzero even after thermal
average. By tuning the magnetic flux and the spin-orbit inter-
action, the pure spin current with vanishing charge current can
be achieved. Similar to the quasiplateau in conductance, the
persistent and pure spin current regime (as a function of RD
coupling) is broader in strong BZ coupling than in the weak
BZ coupling.
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APPENDIX A: DERIVATIONS OF EQ. (8) AND (9)

In this Appendix, we will derive Eqs. (8) and (9) from
Eq. (5) by using the method shown in Ref. [26]. For the
convenience of reading, we repeat the two equations (8) and
(9) here,

Ĥ0 = εD̂2
0, ε = h̄2

2mR2
, (A1)

where the operator D̂0 is given by

D̂0 = �̂z

h̄
+ γ0 + Zασr + Zησφ − bσz. (A2)

We define a new operator L̂z = �̂z

h̄ + γ0, and D̂2
0 can be written

as

D̂2
0 = (L̂z + Zασr + Zησφ − bσz )2

= (L̂z + Zασr + Zησφ )2 − b{σz, Zασr + Zησφ}
− 2bσzL̂z + b2

= (L̂z + Zασr + Zησφ )2 − 2bσzL̂z + b2,

(A3)

where {σz, σr} = {σz, σφ} = 0 and σ 2
z = 1 were used. Further-

more, we have

(L̂z + Zασr + Zησφ )2

= L̂2
z + {L̂z, Zασr + Zησφ} + (Zασr + Zησφ )2

= L̂2
z + {L̂z, Zασr + Zησφ} + Z2

α + Z2
η

= L̂2
z + [L̂z, Zασr + Zησφ] + 2(Zασr + Zησφ )L̂z

+ (
Z2

α + Z2
η

)
, (A4)

where we have used {σr, σφ} = 0 and σ 2
r = σ 2

φ = 1, and thus
(Zασr + Zησφ )2 = Z2

α + Z2
η . The irrelevant constants b2 and

Z2
α + Z2

η that only shift the energy spectrum will be neglected.
Therefore the operator D̂2

0 can be written as

D̂2
0 = L̂2

z + [L̂z, Zασr + Zησφ]

+ 2(Zασr + Zησφ )L̂z − 2bσzL̂z

+ irrelevant constants. (A5)

In the following, we will show that Eq. (5) lead to Eq. (A1)
with the equivalent form Eq. (A5) for the operator D̂2

0. Equa-
tion (5) can be written as

H2D = �2

2m
+ Hα + Hη + Hb + V (r), (A6)

where V (r) = 1
2 k(r − R)2 and

� = p − eA, A = (− 1
2 yB, 1

2 xB, 0
)
, (A7)

and

Hα = α(σx�y − σy�x ),
Hη = η(σx�x + σy�y),

Hb = g1(y�x − x�y)σz + g2(x2 + y2).

(A8)

The vector potential A satisfies the Coulomb gauge ∇ · A =
0, and we have

�2 = p2 − 2eA · p + e2A2. (A9)

By using � = Bπr2 and �0 = h/|e|, the second term of
Eq. (A9) can be written as

2eA · p = eB(xpy − ypx )

= eB�̂z, �̂z = −ih̄
∂

∂φ

= −2
�

�0

h̄

r2
�̂z

= −2
h̄γ0

r2
�̂z, (A10)

where γ0 = �/�0, and the third term of Eq. (A9) becomes

e2A2 = γ 2
0

h̄2

r2
, (A11)

where x2 + y2 = r2 was used. On the other hand, based on
the coordinate transformation x = r cos φ and y = r sin φ, we
have

∂

∂x
= cos φ

∂

∂r
− sin φ

r

∂

∂φ
,

∂

∂y
= sin φ

∂

∂r
+ cos φ

r

∂

∂φ
,

(A12)

and thus, the operator p2 becomes

p2 = −h̄2

(
∂2

∂x2
+ ∂2

∂y2

)
= −h̄2

(
∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂φ2

)
= −h̄2

(
∂2

∂r2
+ 1

r

∂

∂r

)
+ 1

r2
�̂2

z . (A13)
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Inserting Eqs. (A10), (A11), and (A13) into Eq. (A9), we
obtain

�2 = −h̄2

(
∂2

∂r2
+ 1

r

∂

∂r

)
+ 1

r2
�̂2

z + 2
h̄γ0

r2
�̂z + γ 2

0
h̄2

r2

= −h̄2

(
∂2

∂r2
+ 1

r

∂

∂r

)
+ h̄2

r2

(
�̂z

h̄
+ γ0

)2

= −h̄2

(
∂2

∂r2
+ 1

r

∂

∂r

)
+ h̄2

r2
L̂2

z . (A14)

Furthermore, by using Eq. (A12), straightforward calculations
lead to the results

�x = (px − eAx ) = −ih̄ cos φ
∂

∂r
− sin φ

r
h̄L̂z,

�y = (py − eAy) = −ih̄ sin φ
∂

∂r
+ cos φ

r
h̄L̂z. (A15)

Substitute Eq. (A15) into Eq. (A8), and after straightforward
calculations, we can obtain

Hα = α

(
ih̄σφ

∂

∂r
+ σr

h̄

r
L̂z

)
,

Hη = η

(
−ih̄σr

∂

∂r
+ σφ

h̄

r
L̂z

)
,

Hb = −g1h̄L̂zσz + g2r2.

(A16)

Define the Hamiltonian H0 as

H0 = − h̄2

2m

(
∂2

∂r2
+ 1

r

∂

∂r

)
+ 1

2
k(r − R)2, (A17)

and insert Eqs. (A14), (A16), and (A17) into Eq. (A6), we
have

H2D = H0 + h̄2

2mr2
L̂2

z + α

(
ih̄σφ

∂

∂r
+ σr

h̄

r
L̂z

)
+ η

(
−ih̄σr

∂

∂r
+ σφ

h̄

r
L̂z

)
− g1h̄L̂zσz + g2r2

= H0 + h̄2

2mr2
L̂2

z + ih̄(ασφ − ησr )
∂

∂r
+

(
αh̄

r
σr L̂z + ηh̄

r
σφ L̂z

)
− g1h̄σzL̂z + g2r2

= H0 + h̄2

2mr2
L̂2

z − h̄[L̂z, ασr + ησφ]
∂

∂r
+ (ασr + ησφ )

h̄

r
L̂z − g1h̄σzL̂z + g2r2,

= H0 + h̄2

2mr2

{
L̂2

z −
[

L̂z,
2mαr2

h̄
σr + 2mηr2

h̄
σφ

]
∂

∂r
+

(
2mαr

h̄
σr + 2mηr

h̄
σφ

)
L̂z − 2mg1r2

h̄
σzL̂z

}
+ g2r2, (A18)

where in the third equality we have used the results [−ih̄ ∂
∂φ

, σr] = −ih̄σφ and [−ih̄ ∂
∂φ

, σφ] = ih̄σr , which can be written as

σφ = i[L̂z, σr] and σr = −i[L̂z, σφ]. We also stress that in the presence of only Rashba coupling (η = 0 and b = 0) the second
equality of Eq. (A18) is exactly the same with the result given in Ref. [26].3 Follow the procedure shown in Ref. [26], the term
H0 is the unperturbed Hamiltonian, and its lowest energy eigenstate is

R0(r) =
√

N

R
√

π
e−(1/2)N2(r−R)2

, N = mk

h̄2 , (A19)

which leads to the result [26] 〈
∂

∂r

〉
= 〈R0(r)| ∂

∂r
|R0(r)〉 = − 1

2R
. (A20)

Therefore the expectation value of H2D with respect to the eigenstate Eq. (A19) is given by

〈H2D〉 = h̄2

2mR2

{
L̂2

z +
[

L̂z,
mαR

h̄
σr + mηR

h̄
σφ

]
+ 2

(
mαR

h̄
σr + mηR

h̄
σφ

)
L̂z − 2mg1R2

h̄
σzL̂z

}
+ 〈H0〉 + g2R2

= h̄2

2mR2

{
L̂2

z + [L̂z, Zασr + Zησφ] + 2(Zασr + Zησφ )L̂z − 2bσzL̂z
} + 〈H0〉 + g2R2

= εD̂2
0 − h̄2

2mR2

(
b2 + Z2

α + Z2
η

) + 〈H0〉 + g2R2, (A21)

where we have used Eq. (A5). Equation (A21) is obtained by integrating the radial part (r) only. Thus the differential
operator with respect to the azimuthal angle and the spin operators are still present in the equation. The terms − h̄2

2mR2 (b2 + Z2
α +

Z2
η ) + 〈H0〉 + g2R2 is a irrelevant term that only shifts the energy spectrum and can be neglected. As a result, the Hamiltonian

of the quantum ring is Eq. (A21) by neglecting those irrelevant terms. In this sense, we obtain Eq. (A1), namely, Eqs. (8)
and (9).

3There is an overall minus sign for the definition of L̂z in comparison with Ref. [26], which is due to the use of the charge of electron,
e = −|e|. In our paper, the quantum flux is �0 = h/|e|, and in Ref. [26], the quantum flux is �0 = h/e.
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APPENDIX B: ANGULAR MOMENTUM OPERATOR

In this Appendix, we will show that the total angular mo-
mentum Ĵz = �̂z + h̄

2 σz commutes with Ĥ0 = εD̂2
0, where

D̂0 = �̂z

h̄
+ γ0 + Zασr + Zησφ − bσz. (B1)

Because the commutator [Ĵz, Ĥ0] can be written as [Ĵz, Ĥ0] =
εD̂0[Ĵz, D̂0] + ε[Ĵz, D̂0]D̂0, we will show that [Ĵz, D̂0] = 0.
Firstly, we have[

�̂z

h̄
+ 1

2
σz, D̂0

]
=

[
�̂z

h̄
+ 1

2
σz,

�̂z

h̄
+ Zασr + Zηση − bσz

]
= Zα

[
�̂z

h̄
, σr

]
+ Zη

[
�̂z

h̄
, σφ

]
+ 1

2
(Zα[σz, σr] + Zη[σz, σφ]).

(B2)

The first term of the second equality of Eq. (B2) can be written
as [

�̂z

h̄
, σr

]
=

[
−i

∂

∂φ
, σr

]
= −iσφ. (B3)

Furthermore, we have[
�̂z

h̄
, σφ

]
=

[
−i

∂

∂φ
, σφ

]
= iσr . (B4)

Using commutators in Eqs. (7) together with Eqs. (B3) and
(B4), then Eq. (B2) becomes[

�̂z

h̄
+ 1

2
σz, D̂0

]
= Zα (−iσφ ) + Zη(iσr ) + 1

2
[Zα (2iσφ ) + Zη(−2iσr )]

= 0. (B5)

Therefore we have [
�̂z + h̄

2
σz, Ĥ0

]
= 0. (B6)

Namely, the total angular momentum is conserved. The corre-
sponding quantum number jσz must be included in the energy
eigenvalues and eigenvectors.

APPENDIX C: ENERGY EIGENVECTORS
AND EIGENVALUES

In this Appendix, we will show that the eigenvectors of
the Hamiltonian Eq. (8) are given by Eqs. (21) and (22)
with eigenvalues given in Eq. (27). Consider the Hamiltonian
[Eqs. (8)]

Ĥ0 = εD̂2
0, (C1)

where ε is a constant and the operator D̂0 [Eq. (9)] is given by

D̂0 = −i
∂

∂φ
+ γ0 + Zασr + Zησφ − bσz. (C2)

For the convenience of derivations, we neglect the irrelevant
normalized constant 1/

√
2π . One of eigenvectors ψ↑(φ) can

be written as

|ψ↑(φ)〉 = ei j↑z φ

(
cos

ξ

2
e−iφ/2|↑〉 + sin

ξ

2
eiθ eiφ/2|↓〉

)
= cos

ξ

2
ei( j↑z −1/2)φ |↑〉 + sin

ξ

2
eiθ ei( j↑z +1/2)φ|↓〉,

(C3)

where |↑〉 and |↓〉 are eigenvectors of σz [see also Eq. (18)],
i.e., σz|↑〉 = |↑〉 and σz|↓〉 = −|↓〉. It follows that

σx|↑〉 = |↓〉, σx|↓〉 = |↑〉,
σy|↑〉 = i|↓〉, σy|↓〉 = (−i)|↑〉. (C4)

This implies that

σr |↑〉 = eiφ |↓〉, σr |↓〉 = e−iφ |↑〉,
σφ|↑〉 = ieiφ|↓〉, σφ|↓〉 = (−i)e−iφ|↑〉.

(C5)

Use Eqs. (C3), (C5), and (C2), after straightforward calcu-
lations, we have

(D̂0 − γ0)|ψ↑(φ)〉 = C↑ cos
ξ

2
ei( j↑z −1/2)φ|↑〉

+ C↓ sin
ξ

2
ei( j↑z +1/2)φeiθ |↓〉, (C6)

where Zα + iZη = |Z|eiθ was used [see Eq. (25)], and the
coefficients C↑ and C↓ are given by

C↑ = j↑z − 1

2
− b + |Z| tan

ξ

2
,

C↓ = j↑z + 1

2
+ b + |Z| 1

tan ξ

2

.

(C7)

Furthermore, use Eq. (26), we have

C↑ = j↑z − 1

2
− b + |Z| tan

ξ

2

= j↑z − 1

2
− b + |Z|

(
b + 1/2

|Z| −
√

|Z|2 + (b + 1/2)2

|Z|

)
= j↑z −

√
|Z|2 + (b + 1/2)2.

(C8)
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For C↓, we have

C↑ = j↑z + 1

2
+ b + |Z| 1

tan ξ

2

= j↑z + 1

2
+ b + |Z|

(
|Z|

(b + 1/2) −
√

|Z|2 + (b + 1/2)2

)

= j↑z + 1

2
+ b

+ |Z|2[(b + 1/2) +
√

|Z|2 + (b + 1/2)2]
1

−|Z|2

= j↑z + 1

2
+ b − [(b + 1/2) +

√
|Z|2 + (b + 1/2)2]

= j↑z −
√

|Z|2 + (b + 1/2)2.

(C9)

We have to stress that up to this step we did not impose any
constraint on the value j↑z . Therefore we have

D̂0|ψ↑(φ)〉 =
(

γ0 + j↑z −
√

|Z|2 +
(

b + 1

2

)2)
|ψ↑(φ)〉.

(C10)
For the other eigenstate, we have

|ψ↓(φ)〉 = ei j↓z φ

(
− sin

ξ

2
e−iφ/2|↑〉 + cos

ξ

2
eiθ eiφ/2|↓〉

)
= − sin

ξ

2
ei( j↓z −1/2)φ |↑〉 + cos

ξ

2
eiθ ei( j↓z +1/2)φ |↓〉.

(C11)

Using Eqs. (C2), (C5), and (C11) and after straightforward
calculations, we have

(D̂0 − γ0)|ψ↑(φ)〉 = C′
↑

(
− sin

ξ

2

)
ei( j↓z −1/2)φ |↑〉

+ C′
↓ cos

ξ

2
ei( j↓z +1/2)φeiθ |↓〉, (C12)

where Zα + iZη = |Z|eiθ was used [see Eq. (25)], and the
coefficients C′

↑ and C′
↓ are given by

C′
↑ = j↑z − 1

2
− b − |Z| 1

tan ξ

2

,

C′
↓ = j↑z + 1

2
+ b − |Z| tan

ξ

2
.

(C13)

By using Eq. (26), we have

C′
↑ = j↓z − 1

2
− b − |Z|

(
|Z|

(b + 1/2) −
√

|Z|2 + (b + 1/2)2

)

= j↓z − 1

2
− b − |Z|2 (b + 1/2) +

√
|Z|2 + (b + 1/2)2

−|Z|2

= j↓z − 1

2
− b +

(
b + 1

2

)
+

√
|Z|2 + (b + 1/2)2

= j↓z +
√

|Z|2 + (b + 1/2)2.

(C14)

For C′
↓, we have

C′
↓ = j↓z + 1

2
+ b − |Z| tan

ξ

2

= j↓z + 1

2
+ b − |Z|

(
(b + 1/2) −

√
|Z|2 + (b + 1/2)2

|Z|

)

= j↓z + 1

2
+ b −

(
b + 1

2

)
+

√
|Z|2 + (b + 1/2)2

= j↓z +
√

|Z|2 + (b + 1/2)2.

(C15)

Therefore we obtain

D̂0|ψ↓(φ)〉 = (γ0 + j↓z +
√

|Z|2 + (b + 1/2)2)|ψ↓(φ)〉.
(C16)

We also stress that up to this step we didn’t impose any
constraint on the value j↓z . Equations (C10) and (C16) give
us the result

Ĥ0|ψσ (φ)〉 = εD̂2
0|ψσ (φ)〉

= ε

(
γ0 + jσz − σ

√
|Z|2 +

(
b + 1

2

))2

|ψσ (φ)〉,
(C17)

where σ = ↑,↓ and ↑ indicates plus sign +; ↓ indicates
minus sign − for the term σ

√
|Z|2 + (b + 1/2)2. Importantly,

hamiltonian Ĥ0 cannot directly determine the value j↑z and j↓z .
This quantum number must be determined by using another
conserved operator. We find that Ĵz = �̂z + h̄

2 σz commute with
Ĥ0, and the quantum number jσz can be uniquely determined,
as shown in Sec. II.
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