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Majorana modes of giant vortices
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We study Majorana zero modes bound to giant vortices in topological superconductors or topological
insulator/normal superconductor heterostructures. By expanding in inverse powers of a large winding number
n, we find an analytic solution for asymptotically all n zero modes required by the index theorem. Contrary to
the existing estimates, the solution is not pinned to the vortex boundary and is composed of the warped lowest
Landau level states. While the dynamics which shapes the zero modes is a subtle interference of the magnetic
effects and Andreev reflection, the solution is very robust and is determined by a single parameter, the vortex
radius. The resulting local density of states has a number of features which give remarkable signatures for an
experimental observation of the Majorana fermions in two dimensions.
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Majorana quasiparticle excitations in various condensed
matter systems have been in a spotlight of theoretical and
experimental studies for over a decade [1–3]. A renowned
example of the Majorana quasiparticles is the zero-energy
states bound to the vortices in a topological superconduc-
tor [4,5] or on the interface between a topological insulator
and a normal superconductor [6]. The giant vortices of large
winding number n are of particular interest since they host
multiple zero modes [7] and can be used to study highly
nontrivial systems of interacting Majorana states such as the
Sachdev-Ye-Kitaev model [8]. The vortices with n > 1 have
already been observed in mesoscopic superconductors [9] and
can be engineered in the specially designed heterostructures.
Unambiguous identification of the zero modes in the vortex
core possess a great challenge for the modern experimen-
tal techniques [10,11], and the measurement of their spatial
distribution is a promising method to distinguish the true Ma-
jorana states [12]. Thus, the search and design of the systems
with the signature spatial properties of the zero modes as
well as the theoretical evaluation of their shape and the local
density of states are of primary interest. Though the existence
and stability of the zero modes are predicted by the index
theorem [13,14] and can be verified through a qualitative
analysis of the field equations, such an approach is too coarse
to catch subtle dynamical effects which significantly affect
the structure of the solution. On the other hand, the brute-
force numerical simulations may be insufficient to identify the
universal properties and characteristic features of the solution;
hence a form of quantitative analytic approach is mandatory.
A systematic analysis in this case is complicated by noninte-
grable nonlinear nature of the vortex dynamics. In this paper
we present such an analysis for the case of the giant vortices.
It is based on a novel method of the asymptotic expansion in
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inverse powers of the vortex winding number [15,16] and pro-
vides the analytic solution for almost all of the n zero modes
required by the index theorem. Our prediction for the density
of states has a number of remarkable properties which have
been overlooked before and can be used to get compelling
experimental evidence of the Majorana vortex states.

The equations for the Majorana zero modes can be inferred
from the Jackiw-Rossi theory of the charged massless two-
component Dirac fermion in 2 + 1 dimensions described by
the Lagrange density [7]

LJR = iψ̄ /Dψ + 1
2 (ψ̄ψcφ + ψ̄cψφ∗), (1)

where /D = γ μDμ, Dμ = ∂μ + iAμ is the gauge covariant
derivative, the Dirac matrices reduce to the Pauli matrices
γ μ = (σ3, iσ2,−iσ1), ψc = −iσ1ψ

∗ is the charge conjugate
spinor, and φ is a scalar field of charge 2 representing the
pair potential. For the static zero-energy states the field equa-
tions for the spinor components read

D±ψ± + φψ∗± = 0, (2)

where the chiral derivatives are D± = D1 ± iD2. We are in-
terested in the solution of Eq. (2) in the background of the
axially symmetric Abrikosov vortex [17] of the winding num-
ber n, which implies the following field configuration in polar
coordinates φ(r, θ ) = f (r)einθ , Aθ = −na(r)/2, Ar = 0, with
f (0) = a(0) = 0 and f (∞) = f∞, a(∞) = 1. For positive n
the negative chirality equation does not have a normalizable
solution and the n zero modes of positive chirality can be
written as follows,

ξ+
l = 1√

2
(eilθψ+

l + ei(n−1−l )θψ+
n−1−l ),

η+
l = i√

2
(eilθψ+

l − ei(n−1−l )θψ+
n−1−l ), (3)

where 0 � l � n/2 − 1 for even n and 0 � l � (n − 1)/2,
η+

(n−1)/2 = 0 for odd n. The partial wave amplitudes satisfy
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the following equations,(
d

dr
− l

r
+ na

2r

)
ψ+

l + f ψ+
n−1−l = 0,

(
d

dr
− n − l − 1

r
+ na

2r

)
ψ+

n−1−l + f ψ+
l = 0. (4)

After identification of ψl and ψn−1−l with the components of
the Nambu spinor, and of f with the pair potential, the above
system reproduces the Bogoliubov–de Gennes equations for
the Majorana vortex zero modes of the effective Dirac fermion
at zero chemical potential in the condensed matter systems
(see, e.g., [18]).

Let us outline the main idea of our approach. The solution
of Eq. (4) requires an explicit form of the vortex fields. In
general the functions a(r) and f (r) can be systematically
obtained only through the numerical calculation within the
self-consistent Bogoliubov–de Gennes formalism [19]. How-
ever, the vortex structure drastically simplifies for n � 1. In
this limit the vortices evolve into the thin-wall flux tubes [20]
with the nonlinear dynamics confined to a narrow boundary
layer outside the vortex core [15]. The boundary layer depth
is given by the maximal of the magnetic penetration length δ

and the correlation length ξ of the superconductor, while the
core radius grows with n as rn = 23/4√n ζ , where ζ = √

δξ

is the geometric average of the scales. Inside and outside the
core the dynamics of the gauge and scalar fields linearizes
up to the corrections exponentially suppressed for large n.
Inside the boundary layer the asymptotic vortex solution does
not depend on the winding number and gets the corrections
in powers of 1/

√
n. The method to obtain the large-n solu-

tion as well as the finite-n corrections based on the effective
field theory idea of scale separation has been developed in
Refs. [15,16]. In the present work it is applied to the analysis
of Eq. (4) in the giant vortex background. Throughout the
paper we consistently use the universal aspects of the leading
order result and neglect the model-dependent corrections.

It is convenient to decouple the gauge field by a field
redefinition

ψ+
l (r) = ul (r) exp

(
−n

2

∫ r

0

a(r′)
r′ dr′

)
(5)

and to transform the system Eq. (4) into the second-order
equation[

d2

dr2
−

(
n − 1

r
+ f ′

f

)
d

dr
+ l

r

(
n − l

r
+ f ′

f

)
− f 2

]
ul = 0,

(6)

where f ′ = df /dr. At r > rn the scalar and gauge fields expo-
nentially approach their vacuum values and the normalizable
solution of Eq. (4) reads

ψ+
l (r) ∝ Kμ(r/

√
2δ), (7)

where Kμ(z) is the μth modified Bessel function with μ =√
n2/4 − l (n − l ), and the relation f∞ = 1/

√
2δ is used.

Thus, the solution exponentially decays outside the core in-
dicating that the zero modes are localized in the vortex core or
on its boundary.

The field dynamics inside the vortex core is determined
solely by the gauge interaction giving the universal solution

[16]

f (r) = f0 exp

{
n

2

[
ln

(
r2

r2
n

)
− r2

r2
n

+ 1

]}
,

a(r) = r2

r2
n

, (8)

where r < rn, f0 is an inessential integration constant, and
a(r) corresponds to a homogeneous magnetic field. Though
the pair potential in Eq. (8) is exponentially suppressed, it is
a singular perturbation since the order of the Bogoliubov–de
Gennes equations for vanishing f is reduced. Indeed, for
r < rn the logarithmic derivative term f ′/ f = n/r(1 − r2/r2

n )
in Eq. (6) is not suppressed and must be kept to get two regular
solutions at r = 0. These solutions are

u(1)
l (r) = rl , u(2)

l (r) = r2n−lEν

(
nr2/2r2

n

)
, (9)

where Eν (z) is the νth exponential integral with ν = 1 + l −
n. The behavior of the second solution at large n is quite
peculiar. For l < n/2 it reduces to u(2)

l (r) ∼ rl ; i.e., the two
solutions are degenerate up to the exponentially suppressed
terms. For l > n/2, however, it transforms into u(2)

l (r) ∼
r2n−l e−nr2/2r2

n and is the only solution which gives an un-
suppressed contribution to ψ+

l (r). The gauge field factor in
Eq. (5) inside the core equals e−nr2/4r2

n and for the partial
waves in the large-n limit we finally get

ψ+
l (r) ∼ Nl

{
rle−nr2/4r2

n , l < n/2,

r2n−l e−3nr2/4r2
n , l > n/2,

(10)

where Nl is the normalization factor. Equation (10) describes
two groups of approximately Gaussian peaks. For l < n/2
the peaks of the width σ = rn/

√
n = 23/4ζ are centered at

r̄l = √
2l/n rn, while for l > n/2 the peaks have the width

σ ′ = σ/
√

3 and are centered at r̄′
l = √

(2/3)(2 − l/n) rn. The
solutions with l ≈ n/2 are localized inside the boundary layer
where the nonlinear effects are essential and an explicit ana-
lytical solution is not available. At the same time, for known
functions f (r) and a(r) the solution is given by

ψ+
n/2(r) ∝ r

n
2 exp

[
−

∫ r (
na(r′)

2r′ + f (r′)
)

dr′
]
, (11)

where n is assumed to be even. It describes a non-Gaussian
peak of an O(δ) width. Note that the functions f (r) and a(r)
do not depend on n inside the boundary layer and are known
explicitly for Ginzburg-Landau theory in the integrable limits
of large, critical, or small values of the Ginzburg-Landau
parameter κ = δ/ξ [16].

Let us now discuss the physical nature of the solution
Eq. (10). For l < n/2 it corresponds to the lowest Landau
level states formed by an approximately homogeneous mag-
netic field inside the vortex core. Each of these states encircles
an even number of the flux quanta. Hence, only about n/2
of the Landau states fit into the vortex core and are not af-
fected by the pair potential. For larger l the effect of Andreev
reflection on the localization of the states increases and for
l ≈ n it exceeds the effect of the magnetic field. This follows,
e.g., from a comparison of the exponential factor in Eq. (5)
due to the magnetic field to the one of u(2)

l due to the pair
potential. As has been pointed out for l > n/2 the Andreev
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FIG. 1. The normalized radial density of states for the Majorana
zero modes of a giant vortex with the winding number n = 4 (dotted
line), n = 16 (dashed-dotted line), n = 64 (dashed line), and n = 256
(solid line).

reflection squeezes the Gaussian peaks by the factor
√

3 and
displaces them toward the center of the vortex with the in-
nermost position

√
2/3 rn of the maximal angular momentum

partial wave. Remarkably such a significant effect is achieved
in the region where the pair potential is exponentially small;
i.e., the Andreev reflection in this case is a long-range phe-
nomenon. It can be attributed to the singular character of the
vanishing pair potential limit for the Bogoliubov–de Gennes
equations discussed above.

We are now able to compute the experimentally observ-
able radial density of states ρ(r) = 2π

∑n−1
l=0 [ψ+

l (r)]2 for the
Majorana zero modes. At large n the effect of the poorly ap-
proximated l ≈ n/2 states is negligible and the sum converges
to the function

ρ(r) ∼ ρ0

{
1/2, r/rn <

√
2/3,

2,
√

2/3 < r/rn < 1,
(12)

where ρ0 = 2n/r2
n = 1/

√
2 ζ 2 does not depend on n. The

function ρ(r) for a few finite values of the winding number
is plotted in Fig. 1. There the l = n/2 states are approximated
by the Gaussian peaks of the width σ centered at rn, which
does not significantly affect the distribution even for the mod-
erate values of n. As we can observe the convergence to the
asymptotic result is very fast for r <

√
2/3 rn and slow for√

2/3 rn < r < rn but the characteristic shape of the spatial
distribution becomes evident already at n = 4. Thus, it is more
important to estimate the accuracy of our prediction for the
local density of states at a given moderately large value of n,
i.e., the accuracy of each line in Fig. 1. Inside the core where
most of the states are localized the accuracy of the method is
exponential and for n = 4 the estimated error is about a few
percent. At the core boundary the accuracy deteriorates due
to the dependence of the l ≈ n/2 states on the exact form of
the pair potential. A conservative estimate of the uncertainty
for an individual state can be done by evaluating the factor
e− ∫

f (r′ ) dr′
in Eq. (11) where the integral runs over the bound-

ary layer of the depth δ. Approximating f (r) with f∞/2 we
get the correction factor e−1/2

√
2 corresponding to a 30% error.

This, however, affects only the tail of the distribution at r > rn

where the states with l ≈ n/2 give the dominant contribution.
Thus, our analysis is reasonably accurate already for n = 4.
The vortices with such winding number have already been
observed experimentally [9].

So far we have considered the case κ = O(1). For κ � 1
there appears another condition on the allowed values of n.
The method [15,16] relies on the scale hierarchy δ/rn 

1. This scale ratio is proportional to

√
κ/n. For κ > n the

magnetic field is expelled from the vortex core and the vor-
tex cannot be considered as a thin-wall flux tube. At the
same time, the superconductors with the large value of the
Ginzburg-Landau parameter may not be ideal for the experi-
mental realization of the giant vortices. Indeed, the free energy
in this case grows with n as n2 ln κ while for κ = O(1) it scales
as n/κ [16]. This makes the giant vortices for large κ much
less stable against the decay into the elementary vortices and,
hence, more difficult to create in an experiment.

In any case, an experimental realization of the giant
Abrikosov vortices with n = O(10) may not be an easy task.
At the same time the hard wall giant vortices of arguably very
large n can be created by a magnetic flux flowing through a
hole in the superconducting film on the surface of the topo-
logical insulator. Such a design has been originally suggested
in Ref. [8] for a physical realization of the Sachdev-Ye-Kitaev
model on the hole boundary, but it can also be an ideal place
for the study of two-dimensional Majorana zero modes in
the hole interior. The result Eq. (12) in this case should be
adjusted. The term f ′/ f in Eq. (6) now gets a very large
positive constant contribution proportional to the ratio of the
Cooper pair chemical potential to the superconductor energy
gap. This effectively makes the Andreev reflection short-range
so that all the states with l � n/2 get localized on the hole
edge. The radial density of states now takes the form

ρ(r) ∼ ρ0

2

(
1 + R

2
δ(r − R)

)
, (13)

where ρ0 = 2n/R2 and R is the hole radius. The delta function
in the above equation is in fact an approximation of the non-
Gaussian peak with the width of order δ 
 R, and R should
be taken larger than rn for a given n and ζ to have a stable
vortex configuration.

Though the spatial distributions in Eq. (12) and Eq. (13) are
quite similar, the physical properties of the two systems are
qualitatively different. For Abrikosov vortices the parameter
ρ0 which defines the average density of states is n-independent
and completely determined by the intrinsic properties of
the superconductor through the geometric average ζ of the
magnetic penetration and the correlation length. By contrast,
for the hard-wall vortices the parameter ρ0 is quantized in
the units of 2/R2 and is proportional to the number of the
magnetic flux quanta. Thus, it can be discreetly changed by
the variation of the applied magnetic field B. The corre-
sponding average rate of the density variation inside the core
evaluates to

dρ

dB
= πKJ , (14)

where KJ is the Josephson constant (the inverse of the mag-
netic flux quantum).
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Our solution Eq. (10) is qualitatively different from the
existing analysis where the role of the magnetic field on the
formation of the vortex states has been neglected. This is
indeed justified for an elementary vortex and for the large
values of the Ginzburg-Landau parameter κ � 1 when the
vortex states are predominantly formed through the Andreev
reflection and are localized near the core boundary [21–23].
However, with the increasing winding number the magnetic
flux through the vortex core grows and for the giant vortices
with n � κ the zero modes are formed through a fine interplay
between the magnetic effects and the long-range Andreev
reflection resulting in a set of the warped lowest Landau
level states. Note that the effect of the magnetic field on the
Majorana states has been recently studied for the magnetic
skyrmion-vortex pair [24] and magnetic-superconducting hy-
brid vortex [25] while the delocalization of the zero modes
for the elementary vortex lattice in magnetic field has been
discussed in Ref. [26].

Finally, let us discuss the potential finite-size effects on
the giant vortex Majorana states. For κ > 1/

√
2 the axially

symmetric field configurations with n > 1 are metastable in
the infinite superconducting plane and tend to decay into
the elementary vortex states. Experimentally this problem
is solved by designing sufficiently small mesoscopic super-
conducting islands where the stability of the n > 1 vortices
is realized through the finite-size boundary effects, which
may affect the excitation spectrum. Indeed, in the finite re-
gion Eq. (2) may have the normalizable negative chirality
solutions and the pairs of the opposite chirality zero modes
can be lifted by a perturbation. However, for large n and
κ = O(1) the giant vortices become neutrally stable [16] so
that the stabilizing interaction can be vanishingly weak. In
the existing experimental setup [9] the separation of the vor-
tex core from the superconductor boundary exceeds the core
radius which suggests the finite-size effects to be exponen-
tially suppressed. Moreover, the negative chirality modes are
exponentially small inside the core. Though in realistic setup

they may mix with and lift a few positive chirality zero modes
located within the boundary layer, their effect on the majority
of the magnetically gapped modes located inside the core is
negligible.

To conclude, we have applied an advanced asymptotic
method based on the scale separation and the expansion in
inverse powers of the winding number to find the analytical
solution for the Majorana zero modes of the giant vortices.
In the case of the Abrikosov vortices the solution reveals a
nontrivial dynamical origin and a simple universal structure,
provided the vortex winding number exceeds the value of the
Ginzburg-Landau parameter of the superconductor. It is not
sensitive to the form of the pair potential and is completely
determined by a single parameter, the vortex radius, which
can be directly measured in the experiment. The resulting
local density of states is confined to the vortex core, where
the nonzero modes are magnetically gapped. The density has
a characteristic profile which can be used as a signature for
the identification of the Majorana zero modes by scanning
tunneling microscopy [12]. For the hard-wall giant vortices
in the specially designed heterostructures [8] we have found
that a half of the zero modes are pinned to the vortex edge
with the other half filling the vortex core. The dependence of
the energy on the applied magnetic field, characteristic of the
nonzero modes, can therefore be used for a clear identification
of the Majorana core states. Moreover, the density of the zero
modes is quantized and changes discreetly under the variation
of the magnetic field with the universal average rate given
by the Josephson constant. These features establish the giant
vortices as an ideal laboratory for the search of compelling
experimental evidence of the Majorana fermions in two di-
mensions.
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