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Geometrical effects on the downstream conductance in
quantum-Hall–superconductor hybrid systems
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We consider a quantum Hall (QH) region in contact with a superconductor (SC), i.e., a QH-SC junction. Due
to successive Andreev reflections, the QH-SC interface hosts hybridized electron and hole edge states called
chiral Andreev edge states (CAES). We theoretically study the transport properties of these CAES by using a
microscopic, tight-binding model. We find that the transport properties strongly depend on the contact geometry
and the value of the filling factor. We notice that it is necessary to add local barriers at the corners of the junction
in order to reproduce such properties when using effective one-dimensional models.
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I. INTRODUCTION

Combining systems displaying a quantum Hall effect and
superconductors is a difficult task, as the magnetic field
needed to realize the quantum Hall effect tends to suppress
superconductivity. If successful, it leads to interesting phe-
nomena as the superconductor may induce correlations in the
chiral edge states of the quantum Hall system. In particular,
the formation of so-called chiral Andreev edge states (CAES)
has been predicted. Semiclassically, these CAES result from
skipping orbits of electrons and holes involving Andreev
reflections at the quantum Hall-superconductor (QH-SC) in-
terface [1–4]. Quantummechanically, the edge states along
that interface are described as hybridized electron and hole
states [5–9]. Their use for topologically protected quantum
computing was also considered [10–12].

A number of recent experiments have succeeded in cre-
ating QH-SC hybrid systems using either graphene [13–16]
or InAS two-dimensional electron gas (2DEG) [17], and
observing evidence for CAES in the so-called downstream
conductance. Namely, the downstream conductance measures
the conversion of electrons into holes, involving the transfer of
Cooper pairs into the superconductor along the interface. The
larger the conversion probability, the smaller the downstream
conductance and, in particular, it becomes negative when
the conversion probability exceeds one half. While the ex-
periments [13–17] did indeed measure negative downstream
conductances, questions remain about the magnitude and the
parameter dependence of the effect that do not match simple
models: the observed signal is much smaller than expected.
Furthermore, it shows either an irregular pattern [13–15] or
remains roughly constant [17] when sweeping the field or the
gate voltage, while simple models predict a regular oscillation.
This stimulated further theoretical research. A suppression of
the measured signal may be explained by the absorption of
quasiparticles in the superconductor, for example, by subgap
states in nearby vortices [14,18–20], whereas the oscillations
may be strongly affected by disorder [18,19].

Here we explore a different aspect that has not been
addressed before: the role of the geometry. Namely, the

downstream conductance does not probe only the properties
of the QH-SC interface, but also the scattering properties at
the point where this interface meets the QH-vacuum interface.
We find that these scattering probabilities strongly depend on
the geometry of the contact region. In particular, a pronounced
dependence of the angle between the QH-vacuum interface
and the QH-SC interface is observed. Interestingly, this opens
the possibility of creating asymmetric structures, where the
angles are different on the two sides of the superconductor,
that may display an enhanced overall electron-hole conver-
sion probability. This may even lead to a situation where the
downstream conductance becomes negative on average.

Note that to study the effect of geometry, a full two-
dimensional description of the system is necessary–simple
one-dimensional models commonly used in the literature are
not sufficient. Some aspects may be captured by using a gen-
eralized one-dimensional model, though there is no obvious
way to determine its parameters.

The paper is organized as follows. In Sec. II, we present
the system and the downstream conductance formula based
on edge state transport whose parameters have to be com-
puted. To do so, we first use a two-dimensional model in
Sec. III. In particular, we start by studying a continuous
model in Sec. III A that allows one to determine the prop-
erties of the edge states at an infinitely long interface. We
then use a tight-binding model in Sec. III B to obtain the
scattering probabilities at the points where two different in-
terfaces, i.e., QH-vacuum and QH-SC, meet. With these two
ingredients, we have all that is needed to compute the down-
stream conductance. In Sec. IV, we address the question
whether the prior results may be obtained from an effective
one-dimensional model. Further considerations on the role of
additional nonchiral edge states and the effects of temperature
can be found in Sec. V, before we conclude in Sec. VI. Some
details were relegated to the appendices.

II. SYSTEM AND CONDUCTANCE FORMULA

The conductance along the edge of a system in the quan-
tum Hall regime can be attributed to the properties of its
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FIG. 1. QH-SC setup: the edge of the quantum Hall region is
in contact with a grounded superconductor over a finite length L.
The geometry of the corners at the beginning and end of that region
can be characterized by two angles each: θQH,i and θSC,i. Both the
QH-vacuum and QH-SC interface host chiral edge states that can
be probed by measuring the differential downstream conductance
Gd = ∂I/∂V , where V is the voltage applied to the upstream reser-
voir and I is the current flowing into the downstream reservoir. While
(quasi)electron and (quasi)hole states have opposite directions of
quasimomentum along the interface, they have the same propaga-
tion direction. A typical process contributing to Gd is shown. An
incoming electron |e〉 scatters at the first corner, propagates along
the QH-SC interface as a superposition of quasielectron |qe〉 and
quasihole |qh〉 CAES, then scatters at the second corner, and finally
exits the superconductor in a superposition of electron |e〉 and hole
|h〉. The hole probability Ph = |ph|2 of the outgoing state depends on
the scattering processes at the corners as well as the interference of
the CAES propagation along the QH-SC interface.

chiral edge states. We are interested in the regime, where
one spin-degenerate Landau level is occupied in the quantum
Hall region, i.e., there are two chiral edge states. Introducing
particle-hole space to be able to incorporate superconduc-
tivity, we can describe one spin state as an electron state
and the other spin state as a hole state. While the chi-
ral edge states along an edge with the vacuum are either
pure electron or hole states, the CAES along an edge with
a superconductor are a superposition of electron and hole
components. In the following, we will call them quasielec-
tron when their momentum at the Fermi level is negative
and quasihole when their momentum at the Fermi level
is positive. As we will see below, for the system under
consideration, this choice is in agreement with the pure elec-
tron and hole states obtained when Andreev processes are
suppressed.

We want to study the situation where the edge of the quan-
tum Hall system is in contact with a superconductor over a
region with finite length L as shown in Fig. 1. In that case, we
can define a probability Ph that an incoming electronlike state
is transformed into an outgoing holelike state. It depends on
the properties of the CAES along the QH-SC interface as well
as the scattering amplitudes at the two corners, which begin
and end that interface. Assuming ballistic propagation along

the interface with a given material, the probability Ph can be
written as [8]

Ph = τ1(1 − τ2) + τ2(1 − τ1) + 2
√

τ1(1 − τ2)τ2(1 − τ1)

× cos(2k0L + φ12), (1)

where τ1 is the probability that the electron is converted into a
quasihole at the beginning of the QH-SC interface, whereas τ2

is the probability that a quasielectron is converted into a hole
at the end of the QH-SC interface. The second line describes
the interference resulting from the fact that the particle may
propagate along the QH-SC interface either as a quasielectron
with momentum −k0 or as a quasihole with momentum +k0.
The phase shift φ12 depends on the phases of the scattering
amplitudes at the two corners. At zero temperature, the differ-
ential downstream conductance, Gd (0) = ∂I/∂V |V =0, where
V is the voltage applied to the upstream reservoir and I is the
current flowing into the downstream reservoir (see Fig. 1),
is directly related to the probability Ph at the Fermi level,
namely Gd (0) = G0(1 − 2Ph), where G0 = 2e2/h is the con-
ductance quantum. A negative downstream conductance is
a clear signature of the Andreev conversion taking place at
the QH-SC interface. Note that the average conductance is
given as Ḡd = G0

∏
i=1,2(1 − 2τi ). For τ1 = τ2 it is limited

to positive values, whereas τ1 �= τ2 allows one to realize
Ḡd < 0. For completeness, let us mention that the maximal
downstream conductance is Gmax

d = G0[1 − 2(
√

τ1(1 − τ2) −√
τ2(1 − τ1) )2], while the minimal downstream conduc-

tance is Gmin
d = G0[1 − 2(

√
τ1(1 − τ2) + √

τ2(1 − τ1) )2]. In
the symmetric case τ1 = τ2 ≡ τ, this yields Gmax

d = G0 and
Gmin

d = G0[1 − 8τ (1 − τ )].
Thus, to model the experimentally measured downstream

conductance, we need to determine k0 as well as the proba-
bilities τi associated with the contact points between the QH
region, the vacuum, and the superconductor. In the following,
we show that k0 can be obtained semianalytically from a
microscopic model of an infinite QH-SC interface. By con-
trast, there is no simple model for the probabilities τi. We
study their dependence on system parameters and, in partic-
ular, the geometry of the contact points using tight-binding
simulations. To conclude, we compare with an effective
1D model.

III. TWO-DIMENSIONAL MODEL

A. Continuum model of an infinite QH-SC interface

We will consider an interface along the y axis such that the
region x < 0 is in the quantum Hall regime whereas the region
x > 0 is a superconductor. The microscopic Hamiltonian can
be written in the form

H =
(

H0 − μ(x) �(x)

�∗(x) −H∗
0 + μ(x)

)
(2)

with r = (x, y) and

H0 = 1

2m
(−i∇ − eA(x))2 + V (x), (3)

using units where h̄ = 1. Here, μ(x) = μQH�(−x) +
μSC�(x) accounts for the drop of the chemical potential
measured from the band bottom in the 2DEG and the

125416-2



GEOMETRICAL EFFECTS ON THE DOWNSTREAM … PHYSICAL REVIEW B 107, 125416 (2023)

superconductor, μQH and μSC, respectively, �(x) = ��(x)
is the superconducting order parameter with amplitude �

(that we will choose to be real in the following), the po-
tential V (x) = V0δ(x) with strength V0 models an interface
barrier, and �(x) is the Heaviside function. Note that we
neglect self-consistency of the order parameter. Furthermore,
we assume that the magnetic field in the superconductor is
screened. Thus, choosing the Landau gauge that preserves
translational invariance along the interface, we set A(x) =
Bx�(−x)ûy. The wave functions can then be written in
the form:

	(r) = eikyy√
Ly

ψky (x), (4)

where Ly is the length of the system along the y direction
and ψky is the transverse wave function associated with lon-
gitudinal wave vector ky. Following [21], we can determine
the CAES by writing the wave functions ψ

QH
ky

(x) in the half-

space x < 0 and ψSC
ky

(x) in the half-space x > 0, and matching
them at the interface to obtain an eigenstate of Eq. (2) at
energy E .

In the QH region, one obtains

ψ
QH
ky

(x) = cQH
+

(
1
0

)
χ+(x) + cQH

−

(
0
1

)
χ−(x) (5)

with

χ±(x) = N±U

(
− μQH ± E

ωc
,−

√
2

lB

(
x ∓ kyl2

B

))
, (6)

where U (a, z) are parabolic cylinder functions that vanish as
z → −∞ (see Ref. [22] for the formal definition), and N±
are normalization coefficients such that

∫ 0
−∞ dx |χ±(x)|2 = 1.

Here we introduced the cyclotron frequency ωc = eB/m and
the magnetic length lB = 1/

√
eB.

Restricting ourselves to the regime |E | < �, the wave
functions in the SC region take the form [23]:

ψSC
ky

(x) = cSC
+

1√
2

(
γ

1

)
φ(x) + cSC

−
1√
2

(
γ ∗
1

)
φ∗(x) (7)

with φ(x) = √
2 Im q eiqx,

q2 = (
kSC

F

)2 − k2
y + 2im�

√
1 − ε2, (8)

and γ = ε + i
√

1 − ε2, where ε = E/� and kSC
F = √

2mμSC.
The matching procedure, ψ

QH
ky

(0) = ψSC
ky

(0) and ∂xψ
SC
ky

(0)

− ∂xψ
QH
ky

(0) = 2mV0ψ
SC
ky

(0), yields the following secular
equation for the energy E (ky) [5]:

s(E , ky) ≡ GH (c2 + d2) + G′H ′ + d (G′H + GH ′)

+ c
ε√

1 − ε2
(G′H − GH ′) = 0 (9)

with the shorthand notations c = Re q, d = Im q + 2mV0,
G = χ+(0), G′ = χ ′

+(0), H = χ−(0), and H ′ = χ ′
−(0), where

the primes denote derivatives with respect to x.
When the filling factor ν ≡ 2μQH/ωc is in the range 1 <

ν < 3, the chemical potential lies between the first and second
(spin-degenerate) Landau levels of the QH region, and one
obtains a single pair of CAES. An example of the spectrum

−2 −1 0 1 2
kylB

−1.0

−0.5

0.0

0.5

1.0

E
/Δ

−k0lB k0lB

qe

qh

FIG. 2. Energy spectrum of the states along the QH-SC interface
obtained from Eq. (9). The crossings of the CAES with the Fermi
level are indicated by red lines. Here the parameters are μQH =
μSC = 10�, ν = 2.4, and V0 = 0.

is shown in Fig. 2, where we considered an ideal interface,
i.e., μQH = μSC and V0 = 0. At low energies, we see the
two linearly dispersing CAES with energies E±(ky) = vCAES

(ky ± k0).
The Fermi momentum k0 appearing in the interference

term for the downstream conductance, cf. (1), can be ob-
tained by solving s(0,∓k0) = 0, which in general has to be
done numerically. We observe that, as long as � � μQH, μSC,
the momentum k0 does not depend on �. In the limit of a
large interface barrier Z ≡ 2mV0/kQH

F 
 1 and ν → 3, we
find k0lB � 1 and an analytical solution is possible, namely
k0 ≈ (3 − ν)

√
π/4lB [9]. In Fig. 3, we show the evolution of

k0 as a function of the barrier strength Z for various values
of the filling factor. Typically k0 decreases with increasing
ν, except for a small region of intermediate values of Z and
fillings ν close to three.

The velocity of the low-energy states is given as
vCAES = −∂ky s(E , ky)/∂E s(E , ky)|E=0,|ky|=k0 . One may also

0 4 8 12 16 20
Z

0.0

0.5

1.0

1.5

k
0
l B

ν = 1.2

ν = 1.6

ν = 2.0

ν = 2.4

ν = 2.8

FIG. 3. Fermi momentum k0 as a function of barrier strength
Z for various values of the filling factor ν at μQH = μSC = 10�.
Except for a small region of intermediate Z and ν close to three,
the momentum k0 decreases with increasing ν.
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FIG. 4. Hole content f +
h of the quasielectron CAES versus the

barrier’s strength Z for various values of the filling factor ν at
μQH = μSC = 10�. While at Z = 0, the hole content is close to 1/2:
it vanishes as Z 
 1. Interestingly, it is enhanced in an intermediate
region for ν > 2.

compute the electron and hole content of the states, ψ (x) =
(ψe(x), ψh(x)). We define

fh =
∫ ∞

−∞
dx |ψh|2 = 1 −

∫ ∞

−∞
dx |ψe|2. (10)

In particular, the result for the states at the Fermi level reads:

f +
h = 1 − c2

0H2
0

(
1 + 1

4q′′
0

(
G2

0 + (g0 + q′′
0G0)2

|q0|2
))

×
[

g2
0 + c2

0H2
0

(
1 + 1

2q′′
0

(
G2

0 + g2
0

c2
0

))]−1

, (11)

where g0 = G′
0 + d0G0 and q′′

0 = Im q0. Furthermore, the
subscript 0 indicates that the previously introduced quanti-
ties have to be taken at E = 0 and ky = −k0. Particle-hole
symmetry implies f −

h = 1 − f +
h . In the limit Z → ∞, we

recover pure electron and hole states, f +
h = 0 and f −

h = 1.
By contrast, at Z = 0 and in the limit � → 0, one finds
an equal repartition between electron and hole components,
f +
h = f −

h = 1/2. As an illustrative example, we represent the
content f +

h of the quasielectron CAES as a function of the
barrier strength Z for various values of the filling factor ν in
Fig. 4.

B. Tight-binding simulation and scattering probabilities

We now turn to the scattering probabilities at the corners
where the QH-vacuum interface and the QH-SC interface
meet. In addition to the system parameters, this corner can be
characterized by two angles as shown in Fig. 1: the angle θQH,i

that the QH-vacuum interface forms with the continuation of
the QH-SC interface and the angle θSC,i that the SC-vacuum
interface forms with the continuation of the QH-SC interface.
To ensure that there is no overlap, the angles must satisfy
θQH,i + θSC,i > 0. To compute the scattering probabilities τi as
a function of these angles and system parameters, we perform
tight-binding simulations with a discretized version of the
Hamiltonian (3) on a square lattice using the Kwant software
[24]. Introducing the Nambu spinor 	i = (ci, c†

i )T , where c†
i

(ci) is the operator that creates (annihilates) an electron at
the position ri = (xi, yi ), the second-quantized tight-binding
Hamiltonian reads:

HT B =
∑

i

ψ
†
i [(4t − μi + Vi )σz + �iσx]ψi

+
∑
〈i, j〉

ψ
†
i [teiφi jσzσz]ψ j, (12)

where σx/z are Pauli matrices in Nambu space, and 〈i, j〉
denotes pairs of nearest neighbor sites. The barrier potential is
given as Vi = V0δxi,0�( L

2 − |yi|), where δi, j is the Kronecker
delta. In the QH region, μi = μQH and �i = 0, whereas in
the SC region, μi = μSC and �i = �. Using a Peierls substi-
tution, the hopping matrix element t = 1/(2ma2), where a is
the lattice spacing, acquires a field-dependent phase [25]

φi j = −πB

φ0
(xi + x j )(y j − yi )θ

(
− xi + x j

2

)
(13)

with φ0 the flux quantum. This lattice model matches the
continuum model as long as the hopping energy is the largest
energy scale, �,μQH, μSC � t . We further make realistic as-
sumptions � � μQH � μSC.

As the conversion probability from electron to quasihole
at the first corner is equal to the conversion probability from
quasielectron to hole at the second corner when parame-
ters are chosen the same [8], τ1(θQH, θSC) = τ2(θQH, θSC) ≡
τ (θQH, θSC), it is sufficient to simulate the first QH-SC cor-
ner. The python code is available on Zenodo [26]. When not
specified, we set t = 1 and μSC = t/20.

Figure 5 shows the dependence of τ on angles for μQH =
μSC = 10�. In Fig. 5(a), θQH = 90◦ is fixed while θSC varies.
We see a weak dependence of τ on θSC for angles up to 90◦.
This is not surprising as the propagation of the chiral edge
states does not involve the SC-vacuum interface. The residual
effect of θSC on the scattering probability is due to the modi-
fied decay of the edge state wave function into the bulk in the
vicinity of the corner. As shown in Appendix B, in this regime
τ also shows a more pronounced dependence on the value
of � that controls the decay length in the superconductor.
We illustrate this in Fig. 6 by plotting the probability density
|ψe(r)|2 − |ψh(r)|2 of an incoming electron state; it can be
seen that it is vanishingly small at angles <90◦ within the SC
region. By contrast, τ decreases as θQH is increased. This is
shown in Fig. 5(b), where θSC = 90◦ is fixed while θQH varies.
The stronger sensitivity of τ on θQH can be understood as
stemming from the fact that this angle directly determines the
propagation direction of the edge state and thus the projection
of the momentum of the incoming state onto the direction of
the interface.

A more realistic interface is obtained when allowing for
different values of μQH and μSC, as well as for an interface
barrier Z �= 0. As an example, in Fig. 7 we show the evolution
of τ as a function of θQH with μSC = 2μQH and Z = 0.7. The
behavior is qualitatively similar though the variation with the
angle is less pronounced. The stronger variation with ν reflects
the stronger variation of f +

h at intermediate values of Z, shown
in Fig. 4.
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FIG. 5. Conversion probability τ for various values of the filling
factor ν as a function of (a) the SC angle θSC with θQH = 90◦ and
(b) the QH angle θQH with θSC = 90◦. The parameters are μQH =
μSC = 10� and Z = 0. To minimize lattice effects, we only show
commensurate angles. The solid lines are a guide to the eye.

IV. ONE-DIMENSIONAL MODEL

Effective one-dimensional models are very useful to obtain
a qualitative understanding of the edge state physics. They
have been extensively used in recent works [14,15,17,19,20]
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y
/a

−0.2

0.0
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|ψ
e(
r)
|2 −

|ψ
h
(r

)|2upstream

QH SC

hybrid reservoir

FIG. 6. Probability density |ψe(r)|2 − |ψh(r)|2 of an incoming
electron state for θSC = 45◦ and θQH = 90◦. The interference of
CAES along the QH-SC interface (black line) can be clearly seen.
Note that the wave function does not have any weight in the vicin-
ity of the SC-vacuum boundary. The parameters are ν = 2, μQH =
μSC = 10�, and Z = 0.
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FIG. 7. Conversion probability τ versus the angle θQH for a non-
ideal interface at various values of ν. Here θSC = 90◦, μSC = 2μQH =
20�, and Z = 0.7. As in Fig. 5, we only show commensurate angles,
and the solid lines are a guide to the eye.

to describe the CAES. In this section, we address the ques-
tion of how to incorporate the effects discussed in previous
sections into such an effective model.

The starting point is the one-dimensional Bogoliubov-de
Gennes Hamiltonian,

H̃ =
(

− i
2 {v(y), ∂y} − μ(y) �̃(y)

�̃∗(y) − i
2 {v(y), ∂y} + μ(y)

)
, (14)

where y denotes the coordinate along the QH edge, �̃(y) are
the induced superconducting correlations, v(y) is the edge
state velocity in the absence of superconducting correlations,
and μ(y) is an effective chemical potential. Furthermore, {., .}
is the anticommutator.

Choosing all the parameters to be independent of y allows
one to extract the zero-energy momentum k0, the velocity
vCAES, as well as the hole content f ±

h of the CAES as in-
troduced in Sec. III A. Diagonalizing H̃ , one finds E±(ky) =
vky ±

√
μ2 + �̃2 and f ±

h = (1 ± μ/
√

μ2 + �̃2)/2. To match
the results of Sec. III A, we thus set v = vCAES,

μ = −vCAESk0(1 − 2 f +
h ), (15)

�̃ = vCAESk0

√
f +
h (1 − f +

h ). (16)

The simplest model often used to describe scattering at the
corner consists of choosing a step function for the induced
correlations, �̃(y) = �̃�(y). Matching of the wave functions
at the position of the step, y = 0, directly yields the conversion
probability of an electron into a quasihole:

τ0 = f +
h . (17)

This clearly is not sufficient to correctly describe the
scattering—if only because it doesn’t depend on the geom-
etry of the contact point. Furthermore, it can be shown that
choosing a different velocity vvac �= v and/or effective chem-
ical potential μ̃vac �= μ̃ for the QH-vacuum interface at y < 0
does not modify this result. To obtain a conversion probability
τ �= τ0, one needs to include a spatial variation of the induced
correlations �̃(y) in the vicinity of y = 0.
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FIG. 8. Conductance oscillations as a function of length L of
an asymmetric junction, θQH,1 = 0 and θQH,2 = 90◦ whereas θSC,1 =
θSC,2 = 90◦. We compare a full tight-binding simulation (TB) with
the results of an effective one-dimensional model where the pa-
rameters have been chosen as discussed in Sec. IV. Here, ν = 2.8,
μSC = 2μQH = 20� and Z = 0.7. The scattering phase φ12 in Eq. (1)
is adjusted to match the results of the tight-binding simulation at
large L.

We thus consider a more general model with a barrier
region, −Lb/2 < y < Lb/2, characterized by the parameters
v(y) = vb, μ(y) = μb and �̃(y) = �beiφb . Note that the rela-
tive superconducting phase between the barrier and the bulk
is allowed as time-reversal symmetry is broken by the applied
field. Solving the Schrödinger equation in the three regions
(QH-vacuum interface at y < −Lb/2, barrier, and QH-SC in-
terface at y > Lb/2), matching the solutions at y = ±Lb/2,
and solving the resulting system, we obtain:

τ = (
√

τ0 cos βb +
√

1 − τ0 sin βb)2

− 4
√

τ0(1 − τ0) sin βb cos βb cos2 φb − δb

2
(18)

with αb =
√

μ2
b + �2

bLb/vb, sin βb = sin αb �b/

√
μ2

b + �2
b,

and tan δb = cot αb

√
μ2

b + �2
b/μb. If �b �= 0, τ �= τ0 is pos-

sible, and the model has sufficient parameters to obtain an
arbitrary value of τ for a given τ0. Thus, in principal, this
effective one-dimensional model can be used to describe
an arbitrary geometry. However, there is no straightforward
way to estimate parameters. As a consequence, a full two-
dimensional model is necessary to determine the downstream
conductance even in simple geometries.

For illustration, in Fig. 8 we show the downstream con-
ductance as a function of the length of the QH-SC interface
obtained from a full tight-binding simulation of the structure
shown in Fig. 1. Here the same parameters were used as in
Fig. 7 with ν = 2.8. It is compared with the result of an effec-
tive 1D model where we set Lb = ξ/10 with ξ = vSC

F /� the
BCS coherence length, vb = vCAES and μb = μSC. We use a
numerical minimization procedure to find the values of �b and
φb that give the scattering probabilities τ1, τ2 obtained from
the tight-binding model. Fitting parameters for Fig. 8 were
�b1 = 10.08�, φb1 = 3.382 and �b2 = 0.32�, φb2 = 3.002.
(Note that the choice is not unique.) In addition, we adjust the
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E
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FIG. 9. Spectrum with additional nonchiral zero-energy edge
states. Here we set ν = 2.8, μQH = μSC = 20� and Z = 0. These
additional states appear for ν � 3 and close to ideal interfaces.

scattering phase φ12 appearing in Eq. (1) so that the effective
model matches the simulation at large L. A small mismatch
between the values of k0 can be attributed to lattice effects.
Furthermore, deviations are visible at small lengths when the
two corners cannot be treated independently, as assumed in
Eq. (1).

V. FURTHER CONSIDERATIONS

In addition to the difficulty of determining parameters,
effective 1D models have other obvious limitations.

The effective 1D model only describes the topologically-
protected chiral edge states. As can be seen in Fig. 2, in
a full 2D calculation, additional subgap states may appear.
While for the parameters chosen in Fig. 2, these states are
close to the gap edge, they may cross the Fermi level in
other parameter regimes. An example is shown in Fig. 9. We
studied their parameter dependence and found zero-energy
crossings only happen for ν � 3 and close to ideal interfaces.
In experimentally relevant regimes, they are not expected to
play a role as discussed in Appendix A. Note that additional
in-gap states may appear as well when the interface is smooth.
This question has been addressed in Ref. [18].

The downstream conductance at finite temperature is more
likely affected by these nonchiral states. Furthermore, at finite
T , the linear approximation for the dispersion of the CAES
may not be sufficient. Namely, as long as kBT � � and
continuum contributions may be neglected, the downstream
conductance Gd (T ) takes the form:

Gd (T ) ≈ G0

∫ �

−�

dE
1 − 2Ph(E )

4kBT cosh2
(

E
2kBT

) , (19)

where Ph(E ) is given by Eq. (1) by replacing 2k0 with
δk(E ) = kqe(E ) − kqh(E ), where kqe/qh(E ) = E/v ± k0, and
using the transmission probabilities τi at energy E . If δk varies
significantly with energy on the scale kBT , this leads to an
averaging of the oscillations of the downstream conductance.
Numerically we find that the effect is small in experimentally
relevant parameter regimes, see Appendix C.
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FIG. 10. Plots of νc, indicating the appearance of additional
nonchiral edge states at the Fermi level, as a function of different
parameters. (a) Dependence of νc on μQH/� for an ideal inter-
face, μSC = μQH and Z = 0. In the limit μQH/� → ∞, the critical
value tends to νc ≈ 2.63. (b) Dependence of νc on the mismatch
μSC/μQH at � = μQH × 10−6 and Z = 0. As νc reaches three, the
additional nonchiral subgap states disappear at moderate values of
the mismatch. (c) Dependence of νc on the barrier strength Z at
� = μQH × 10−6 and μSC = μQH. As νc reaches three, the additional
nonchiral subgap states disappear at moderate values of the barrier
strength.

VI. CONCLUSION

In this paper, we have studied the downstream conduc-
tance mediated by CAES in QH-SC junctions. In particular,
we found that the geometry plays an important role. This
limits the applicability of simple effective 1D models that
are often used to describe such systems. We showed that
the most general effective 1D model containing a complex
pairing potential localized in the region where the QH-vacuum
edge meets the QH-SC edge allows one to model an arbitrary
electron-hole conversion probability—however, there is no
clear prescription as to how parameters have to be chosen.
We note that the geometry dependence may be exploited to
device asymmetric junctions, where the overall electron-hole
conversion probability is enhanced and the average down-
stream conductance can become negative. This may be a way
to obtain clearer signatures of the Andreev conversion at the
QH-SC interface. Our work concentrated on the clean case. It
will be interesting to explore how these features are modified
by disorder. Disorder as well as vortices modify the prop-
agation phase along the interface and therefore change the
interference pattern. However, this effect alone does not mod-
ify the minimal and maximal values, nor the average value of
the downstream conductance determined by the electron-hole
conversion at the corners. Thus, the geometrical effects are ex-
pected to be robust as long as the disorder does not introduce
significant electron-hole scattering along the interface. On the
other hand, vortices may lead to the loss of quasiparticles, thus
decreasing the overall value of the downstream conductance.
It is less clear how this affects the repartition between quasi-
electrons and quasiholes. Further studies are also needed to
better characterize geometries with a narrow superconducting
finger such that crossed Andreev reflections and cotunneling
across the finger come into play.

ACKNOWLEDGMENTS

We thank X. Waintal for help with Kwant. A.D. gratefully
acknowledges interesting discussions with A. Bondarev. Fur-
thermore, we acknowledge support from the French Agence
Nationale de la Recherche (ANR) through Grants No. ANR-
17-PIRE-0001 and No. ANR-21-CE30-0035.

5 10 15 20
μQH/Δ

0.00

0.25

0.50

0.75

1.00
(a) (b)

τ

ν = 1.2

ν = 1.6

ν = 2.0

ν = 2.4

ν = 2.75

5 10 15 20
μQH/Δ

0.00

0.25

0.50

0.75

1.00

τ

ν = 1.2

ν = 1.6

ν = 2.0

ν = 2.4

ν = 2.75

FIG. 11. Dependence of the electron-hole conversion probabil-
ity τ on the superconducting gap �. The parameters are μQH =
μSC, Z = 0, and θQH = 90◦. (a) At θSC = 45◦, the electron-hole
conversion probability very weakly depends on � in the regime
� � μQH. (b) At θSC = 135◦, a stronger dependence is seen. This
can be attributed to the observation that, for angles θSC > 90◦, the
superconductor-vacuum interface comes into play and may modify
the decay as illustrated in Fig. 12.

APPENDIX A: ADDITIONAL NONCHIRAL EDGE STATES

As discussed in the main text, see Fig. 9, additional nonchi-
ral edge states may cross the Fermi level in certain parameter
regimes as ν approaches three. Using the continuous model
of Sec. III A, we may determine the value νc above which
such states are present as a function of system parameters.
To do so we need to solve the secular equation, Eq. (9), at
E = 0 and determine the value νc at which a second solu-
tion with ky > k0 appears. The results are shown in Fig. 10
as a function of μQH/� for an ideal interface as well as
a function of the interface barrier strength Z and mismatch
μSC/μQH at � = μQH × 10−6. We see that at �/μQH � 1,

additional zero-energy states appear for ν > νc ≈ 2.63 in the
case of an ideal interface. An interface barrier, as well as
potential mismatch, push that critical value up. It reaches three
at μSC/μQH � 3.73 or Z � 0.65. Beyond these values, one
never finds additional zero-energy states, which is likely the
case in experiments.

APPENDIX B: DEPENDENCE OF THE ELECTRON-HOLE
CONVERSION PROBABILITY ON THE

SUPERCONDUCTING GAP

In the main text, we show the dependence of the
electron-hole conversion probability at the corners on various
parameters. Here we complement our study with results on the
dependence on the superconducting gap �. In particular, we

(a) (b)

FIG. 12. Probability density |ψe(r)|2 − |ψh(r)|2 of an incoming
electron state for θSC = 135◦ and θQH = 90◦. Other parameters are
ν = 2.75, μSC = μQH, and Z = 0.(a) μQH/� = 10. (b) μQH/� =
20. The modified decay in the superconductor and the effect of the
superconductor-vaccum interface can be clearly seen.
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FIG. 13. Energy dependence of various parameters necessary to
determine the downstream conductance at finite temperature. Param-
eters are the same as in Fig. 8. (a) Energy spectrum. (b) Variation
of the relative momentum difference |δk(E ) − 2k0|/2k0 of the pair
of CAES. (c) Conversion probability τ1 = τ (θQH = 0, θSC = 90◦)
and (d) τ2 = τ (θQH = 90◦, θSC = 90◦). Variations in Figs. (b)–(d) are
seen to be small as long as |E | � �.

compare two different geometries, namely θQH = 90◦, θSC =
45◦ in Fig. 11(a) and θQH = 90◦, θSC = 135◦ in Fig. 11(b).
As shown in Appendix A, nonchiral edge states may appear
upon decreasing �. Here we restrict ourselves to values of
ν such that these states are absent in the range of values of
� plotted. (In particular, we show results for ν = 2.75 rather
than ν = 2.8 as in the main text.) For θSC = 45◦ [Fig. 11(a)],
the electron-hole conversion probability depends on � only
very weakly. This is consistent with the analytic results of
Sec. III A, which show that the properties of the edge states are
almost independent of � in the considered parameter regime.
For θSC = 135◦ [Fig. 11(b)], a stronger dependence is seen, in
particular for ν close to one and three. For angles θSC > 90◦,
the decay length of the edge state in the superconductor plays
a more important role. Namely as the decay may reach the
superconductor-vacuum interface, a stronger dependence of τ

on �, which controls the decay length in the superconductor,
is expected. The modified decay is illustrated in Fig. 12.

APPENDIX C: DOWNSTREAM CONDUCTANCE AT
FINITE TEMPERATURE

As the downstream conductance at finite temperature in-
volves integral over the hole conversion probabilities at
different energies, it is important to know the depen-
dence of the parameters determining the hole conversion

0 5 10 15 20 25 30
L/lB
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−0.5

0.0

0.5

1.0

G
d
/G

0

kBT = 0

kBT = Δ/10

kBT = Δ/2

FIG. 14. Downstream conductance at different temperatures.
The zero-temperature result is shown by blue dots. At kBT = �/10
(orange line), there is almost no change. By contrast, a clear reduc-
tion of the amplitude of the oscillations is observed at kBT = �/2
(green line). Parameters are the same as in Fig. 8.

probability on energy. In particular, if the momentum mis-
match δk or the phase φ12 strongly varies with energy, the
oscillations of the conductance should be averaged out upon
increasing temperature.

The momentum mismatch δk(E ) can be obtained from the
continuum model. We find that, even beyond the regime where
the edge state spectrum is linear, the variation of δk remains
small. We illustrate our findings in Fig. 13. Here the same
parameters as in Fig. 8 were used. The spectrum is shown
in Fig. 13(a). Additional nonchiral edge states are visible at
energies |E | � �/2. The relative deviations of δk(E ) from
δk(0) = 2k0 are shown in Fig. 13(b). For small enough en-
ergies, the deviations are small, implying a nearly constant
period of the oscillations. Figures 13(c) and 13(d) show the
energy dependence of the conversion probabilities, τ1 and τ2.
Again, the variation is weak up to the energy where additional
subgap states appear. Note that this is consistent with what one
would obtain from our effective 1D model, where there is no
energy dependence. The scattering phase φ12 (not shown) re-
mains approximatively constant in this regime as well. These
findings suggest that the zero-temperature results obtained for
the downstream conductance are robust as long as kBT � �.
This is confirmed by a full tight-binding simulation, shown
in Fig. 14. For kBT/� = 0.1, the result is almost unaffected.
By contrast, at the larger temperature kBT/� = 0.5, a clear
suppression of the amplitude of the oscillations is observed
while the mean value increases as energies close to � start to
contribute, where variations of δk become nonnegligible and
τi → 0.
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