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Modeling of spin decoherence in a Si hole qubit perturbed by a single charge fluctuator
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Spin qubits in semiconductor quantum dots are one of the promising devices to realize a quantum processor.
A better knowledge of the noise sources affecting the coherence of such a qubit is therefore of prime importance.
In this paper, we study the effect of telegraphic noise induced by the fluctuation of a single electric charge.
We simulate as realistically as possible a hole spin qubit in a quantum dot defined electrostatically by a set
of gates along a silicon nanowire channel. Calculations combining Poisson and time-dependent Schrödinger
equations allow us to simulate the relaxation and the dephasing of the hole spin as a function of time for a
classical random telegraph signal. We show that dephasing time T2 is well given by a two-level model in a wide
range of frequencies. Remarkably, in the most realistic configuration of a low-frequency fluctuator, the system
has a non-Gaussian behavior in which the phase coherence is lost as soon as the fluctuator has changed state.
The Gaussian description becomes valid only beyond a threshold frequency ωth, when the two-level system
reacts to the statistical distribution of the fluctuator states. We show that the dephasing time T2(ωth ) at this
threshold frequency can be considerably increased by playing on the orientation of the magnetic field and the
gate potentials, by running the qubit along “sweet” lines. However, T2(ωth ) remains bounded due to dephasing
induced by the nondiagonal terms of the stochastic perturbation Hamiltonian. On the other hand, our simulations
reveal that the spin relaxation, usually characterized by the time T1, cannot be described cleanly in the two-
level model because the coupling to higher-energy hole levels impacts very strongly the spin decoherence. This
result suggests that multilevel simulations including the coupling to phonons should be necessary to describe the
relaxation phenomenon in this type of qubit.

DOI: 10.1103/PhysRevB.107.125415

I. INTRODUCTION

Spin qubits are being actively studied for quantum com-
puting [1,2]. One path that is being particularly explored at
the moment is the use of silicon or germanium qubits [3–10],
as it promises extreme miniaturization and integration while
benefiting from the expertise and resources of microelectronic
technologies. The use of isotopically purified Si substrates
also allows one, by suppressing the hyperfine interaction be-
tween electrons and nuclear spins, to obtain very long electron
spin lifetimes on donors [11] and in quantum boxes defined
by electrostatic confinement [12]. This lifetime is particularly
long for electrons in conduction band states due to the weak
spin-orbit coupling [4], but this makes the manipulation of
electron spin via electrical signals not very efficient [13,14].

In this context, hole qubits receive growing interest be-
cause of the stronger spin-orbit coupling in the valence band
allowing efficient manipulation of the effective spin by elec-
trical means [15–20]. Recent work has demonstrated Rabi
oscillations with frequencies of several hundred megahertz
in silicon and germanium hole qubits [19–23]. Two-qubit
gates have been realized recently [6,9,10,24–26]. In addition,
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the strong interaction between spin and microwave pho-
tons makes long-distance coupling between qubits possible
[27–32]. However, the effective spin-orbit coupling depends
on the spatial profile of the hole wave function, lattice de-
formations, and electric fields, which increases the variability
between devices [33] and makes the qubits much more sen-
sitive to phonons and electric potential fluctuations [8,34,35].
It is therefore essential to better understand the influence of
these phenomena on the coherence lifetimes of spins in hole
qubits in silicon technology. Recent theoretical works have fo-
cused on the spin-phonon coupling [36,37]; we are interested
here in the influence of charge fluctuations which is usually
dominant at low temperature.

Many theoretical studies have investigated the nature and
strength of spin-orbit coupling in the heavy hole, light hole,
and split-off states of the valence band [17,38]. Proposals
have also been made to minimize the effects of electric po-
tential fluctuations [39], to find operating points (the so-called
“sweet” spots) where the Larmor frequency becomes insensi-
tive to the fluctuations [40–43]. The considerable increase in
the hole spin coherence time at such sweet spots has actually
been demonstrated recently in a silicon-on-insulator (SOI)
device [44].

Our goal in this paper is different; it is to better understand
the physics of hole spin decoherence under the effect of charge
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fluctuations in a device that is as realistic as possible compared
with what was realized experimentally. We consider the case
of a hole qubit made on an SOI and formed by electrostatic
confinement within a silicon nanowire [19,21]. This qubit is
subjected to telegraphic noise due to the fluctuation of a single
charge between a metal gate and its neighboring oxide.

The telegraphic noise can be seen as a minimal model re-
producing main features of 1/ f noise [39,45]. Here we are not
interested in the action of a large number of fluctuators leading
to a 1/ f noise, but we aim to better understand the effect of a
single one on the qubit. The evolution of the electronic states
of the qubit as a function of time is calculated by numerical
solution of the Schrödinger equation in a multiband frame-
work in which the potential is calculated taking into account
the complex environment of the qubit. Such a description is
necessary because of the strong sensitivity of the spin-orbit
coupling to the potential profile in the vicinity of the hole wave
function.

In this paper, we compare the results of numerical calcu-
lations with analytical models from the literature that have
been established for a two-level system coupled to telegraphic
noise, allowing us to understand the evolution of the relax-
ation time T1 and dephasing time T2 as a function of noise
intensity and tunneling rate ν. However, we show that the po-
tential fluctuations couple with more than two levels and that it
is necessary to take a large number of them (∼20) to simulate
the spin evolution as a function of time. This leads us to define
another decoherence time T ′

1 that represents the mean time the
system remains describable as a two-level system. Despite this
complexity, we obtain that, for experimentally relevant tunnel-
ing rates ν below a certain value ωth, T2 has a remarkable but
very simple behavior, being equal to 2/ν independently of the
intensity of the perturbing potential. We also study how the
operating conditions (gate bias, magnetic field orientation) af-
fect the dephasing time T2(ωth) at the threshold frequency ωth.
In addition, we obtain that the decoherence time T ′

1 is always
smaller than the relaxation time T1 calculated in the two-level
model. This reveals that the spin relaxation dynamics is very
strongly influenced by the coupling with hole states further
away in energy, and thus T1 cannot be described simply on the
basis of the two-level model, a conclusion that should guide
future theoretical simulation work.

II. METHODOLOGY

A. Calculation of the potential and the hole states in the device

The device presented in Fig. 1 is a metal-oxide-
semiconductor field effect Ttransistor (MOSFET) formed by
a Si nanowire oriented along [110] (hereinafter, the z axis).
The nanowire has a rectangular section with width (along
y) of 30 nm [lateral (110) facets] and thickness of 10 nm
[(001) facets] and is lying on a 25-nm-thick SiO2 buried oxide
deposited on a doped Si substrate which can be used as a
back gate. On top of the channel, there are metal gates with
length and separation along z of 30 nm that partly envelop
the channel (over 20 nm). A 4-nm thin layer of SiO2 separates
the metallic gates from the nanowire. The transistor is covered
with Si3N4. The central gate (CG) is used to fix the potential
that will induce the formation of a quantum dot (with corner

FIG. 1. Schematics of the hole qubit device consisting of a 10-
nm-thick Si nanowire channel (red) on top of a buried oxide (green).
Top gates (gray) partly cover the nanowire (over 20 nm for a total
width of the nanowire of 30 nm). The gate stack is made of SiO2

(green). CG represents the central gate that defines the hole quantum
dot. SG is the secondary gate discussed in this paper. The orientation
of the magnetic field B is characterized by the polar angle θ and
azimuthal angle ϕ defined in the figure.

states) in the nanowire [40]. Two secondary gates are arranged
along the z axis, to the right and left of the central gate. The
central gate is biased at VCG = −0.1 V, and the other gates are
grounded in order to confine the hole in the central quantum
dot. A static magnetic field B is applied along a direction
defined by polar (θ ) and azimuthal (ϕ) angles (see Fig. 1).

The potential induced by the gates or by the presence of
a charge impurity in the oxide layer is calculated by solving
the Poisson equation linking the charge density ρ and the
dielectric constant ε that both depend on the position. To
solve it, we use the finite difference method which consists
in discretizing the equation spatially on a three-dimensional
(3D) mesh.

To calculate the electronic structure in our device, we use
a six-band k · p model which gives an excellent description of
the valence band states, including the effect of spin-orbit cou-
pling. Details on the numerical methods are given in Ref. [40]
and are reproduced in Sec. I of the Supplemental Material [46]
for convenience. The wave functions of the holes are written
as

ψ (r) =
∑

α

Fα (r)uα (r), (1)

where Fα (r) is an envelope function and
uα (r) is a Bloch function in the set {| 3

2 ,+ 3
2 〉,

| 3
2 ,+ 1

2 〉, | 3
2 ,− 1

2 〉, | 3
2 ,− 3

2 〉, | 1
2 ,+ 1

2 〉, | 1
2 ,− 1

2 〉}. The envelope
functions are solutions of six coupled differential
equations obtained from the k · p Hamiltonian H6kp given in
Sec. I of the Supplemental Material [46] in which the wave
vector k has been substituted by −i∇. These equations are
discretized on a finite difference mesh. Even if the quantum
dots are effectively decoupled by the action of the lateral
gates, periodic boundary conditions are applied along z.
The surface of the wire is considered as a hard wall for the
wave function. The effect of the potential vector A on the
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FIG. 2. Isodensity surface of the ground-state hole wave function
depicted across (a) transverse (xy plane at z = 0) and (b) longitudinal
(xz plane, y = −10 nm corresponding to the center of the hole wave
function) cross sections. The potential induced by a single charge
(trap 3) at position x = 8.4 nm, y = 0, and z = 46.0 nm is also shown
in (b).

envelope functions is included through Peierls’s substitution
[47]. The effect of the magnetic field on the Bloch functions
is described by the following Hamiltonian [48]:

HBloch = −(3κ + 1)μBB · L + g0μBB · S = μBB · K, (2)

where L is the (orbital) angular momentum of the Bloch func-
tion, S is its spin, and κ = −0.42 in silicon. The expression of
the matrices K is given in Sec. I of the Supplemental Material
[46].

The hole qubit states are taken as the topmost valence band
states. The wave function of the highest hole state is presented
in Fig. 2(a) across a transverse section of the MOSFET and in
Fig. 2(b) for a longitudinal one.

FIG. 3. Model of qubit coupled to a single charge fluctuator. A
single electron tunneling between a charge lead, i.e., a gate, and a
point trap (red circle) induces a sudden change in the electrostatic po-
tential that couples to the qubit hole states. Dephasing and relaxation
of the hole spin take place under the effect of this perturbation in the
form of a telegraphic noise. Only the two hole levels of lowest energy
are depicted for simplicity. The Zeeman energy splitting between
them is h̄�, in which � is the Larmor angular frequency.

B. Fluctuator model and time-dependent Hamiltonian

We consider that the hole qubit is coupled to a charge
fluctuator (Fig. 3) which follows a random telegraphic signal
χ (t ) that describes the filling of a localized charge trap in
the oxide layer at a distance of 1 nm from a metallic gate,
either the central gate (CG) or the secondary gate (SG) shown
in Fig. 1. An example of a potential created by a localized
charge −e under the secondary gate is presented in Fig. 2(b).
The charge fluctuator is described as a random telegraphic
noise [39], i.e., χ (t ) takes two values, 0 or 1, with respective
probabilities p0 and p1. In the state 0 of χ (t ), the trap is empty,
and in the state +1, a charge −e has tunneled from the gate to
the trap with a transition rate ν0→1 = ν[1 − fFD(ε0)] where
ν is the tunneling rate, fFD is the Fermi-Dirac distribution
function, and ε0 is the position of the trap level with respect
to the Fermi level in the reservoir (gate). Here, we assume for
simplicity ε0 = 0, ν0→1 = ν/2, ν1→0 = ν − ν0→1 = ν/2, and
p0 = p1 = 1/2 [49]. In this model, the “classical” frequency
of the telegraphic signal, i.e., the average number of switches
per time unit, is given by νcl = ν/2.

The time-dependent Hamiltonian of the system reads as

H (t ) = H0 + χ (t )U, (3)

where H0 is the Hamiltonian representing the system under the
static magnetic field B but without any electrical perturbation.
U defines the perturbation when a charge is on the trap.

In order to calculate the evolution of the wave function
|ψ (t )〉 = exp ( − i/h̄

∫ t
0 H (t ′)dt ′)|ψ (0)〉 and the characteris-

tic times T1, T ′
1 , and T2 which will be discussed in the

next sections, we solve the time-dependent Schrödinger equa-
tion numerically. A Chebyshev polynomial expansion is
used to describe the time propagation of the wave function
[50]. This approach ensures high numerical stability of the
propagator.
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1. Two-level model

A qubit is generally constructed as a two-level system, the
two states corresponding here to the lowest-energy hole states,
eigenstates of H0, denoted as |ϕ↑

1 〉 and |ϕ↓
1 〉 in reference to

spin-1/2 systems. The Zeeman splitting (∝B) between the
two levels [for χ (t ) = 0] is written as h̄� where � is the
Larmor angular frequency. Rabi oscillations between the two
states can be electrically driven by a radio-frequency signal
with an angular frequency close to � on the central front gate
[37,40].

The matrices of the Hamiltonian and the perturbation in
this basis set are given by

H0 = h̄

2

(
� 0
0 −�

)
, U =

(
u↑↑ u↑↓
u∗

↑↓ u↓↓

)
. (4)

The electrostatic potential induced by the trapped charge
does not explicitly involve spin, but the matrix elements of
U depend on B through |ϕ↑

1 〉 and |ϕ↓
1 〉. The coupling terms

between these opposite-spin states result from spin-orbit cou-
pling and time-reversal symmetry breaking under the effect of
the magnetic field B. As shown in Sec. II of the Supplemental
Material [46], the matrix elements of U behave as

u↑↓ = η↑↓(b)B,

u↑↑ = u0 + η↑↑(b)B, (5)

u↓↓ = u0 + η↓↓(b)B,

in which b = B/B and therefore η↑↓, η↑↑, and η↓↓ just depend
on the orientation of B. u0 is a rigid shift of the two energy
levels under the effect of the perturbation.

The interaction of the qubit with its environment (Fig. 3)
causes a loss of information, called decoherence. It is usu-
ally separated in two processes, relaxation of characteristic
time T1 and dephasing of characteristic time T2 [39,51]. We
obtain T1 and T2 by calculating the evolution with time of
〈〈σi(t )〉〉 = 〈ψ (t )|σi|ψ (t )〉{E} with i = 1, 2, 3. σ1, σ2, and σ3

are the 2 × 2 Pauli matrices written in the basis of |ϕ↑
1 〉 and

|ϕ↓
1 〉 (they are not written σx, σy, and σz since x, y, and z

refer to the geometrical axes of the system). The subscript {E}
means that an average is taken over many (1000) realizations
of the telegraph noise, i.e., of the environment.

The relaxation is the loss of information by the process
|ϕ↑

1 〉 ↔ |ϕ↓
1 〉 due to the stochastic variations of the nondi-

agonal term χ (t )u↑↓ of the Hamiltonian. Starting with the
condition |ψ (0)〉 = |ϕ↑

1 〉, we calculate T1 by fitting with an
exponential function the decay of σ‖(t ) = 〈〈σ3(t )〉〉 over time.

The dephasing comes from the changes δφ(t ) of the phase
characterizing the spin precession due to the stochastic vari-
ations of the terms of the Hamiltonian, χ (t )U . Indeed, in the
χ (t ) = 1 state, the Larmor angular frequency changes to �′,
where h̄�′ is the Zeeman splitting obtained by diagonalization
of H0 + U . As discussed in Sec. III of the Supplemental
Material [46], it will be interesting to define the (threshold)
angular frequency

ωth = |� − �′| (6)

that characterizes the change of phase velocity (usually ωth �
�). h̄ωth represents the change in the Zeeman splitting be-
tween the two states of the fluctuator. We deduce from Eq. (5)

that ωth ∝ B in most cases (see Sec. III B of the Supplemental
Material [46]).

A measure of the phase coherence is given by the quantity
〈exp (iδφ(t ))〉{E} [39]. Equivalently, we have calculated the
quantity m(t ) = |〈〈σ1(t )〉〉 + i〈〈σ2(t )〉〉| using the initial con-
dition |ψ (0)〉 = (|ϕ↑

1 〉 + |ϕ↓
1 〉)/

√
2. The decay of m(t ) from

1 to 0 comes from the dephasing between the different real-
izations of the potential fluctuations. T2 is obtained by fitting
with an exponential function the decay of m(t ) over time. It is
important to note that for ν < ωth, m(t ) exhibits damped os-
cillations at a frequency of the order of ωth [39] (see Sec. VIII
of the Supplemental Material [46]). In this case, T2 is obtained
from the exponential decay of the envelope.

2. Multilevel model

The perturbation generated by the fluctuator induces cou-
pling terms that are not limited to the two states considered
above. We have therefore considered a model integrating 2N
hole states. With the matrices of H0 and U written in this
basis, we compute the propagation of the hole wave function
as a function of time starting from the same initial condi-
tions. We deduce the observable m(t ) from which we obtain
the characteristic time T2, assuming that σ acts only in the
subspace formed by |ϕ↑

1 〉 and |ϕ↓
1 〉. As a matter of fact, dur-

ing the evolution as a function of time, the weight of the
wave function of the hole on the two initial states, p1(t ) =
|〈ϕ↑

1 |ψ (t )〉|2 + |〈ϕ↓
1 |ψ (t )〉|2, decreases under the effect of the

couplings to the other states. From the exponential decay of
〈p1(t )〉{E}, averaged over all the realizations of the telegraphic
noise, we deduce another decoherence time, which we call T ′

1 ,
following the methodology described in Appendix A.

It is important to note that the elements composing the
perturbation U are not independent since they are matrix
elements of the same electrostatic potential. The same effect
is at the origin of all the decoherence mechanisms considered
here.

3. Time interval, frequency range, and trap position

We consider (except where otherwise stated) a magnetic
field of 0.2712 T oriented along the direction characterized
by θ = 90◦ and ϕ = 45◦ (Fig. 1) which leads to a Larmor
frequency �/(2π ) of 10 GHz. This forces us to use a time step
of 10−12 s for the numerical solution of the time-dependent
Schrödinger equation for ν � 2 × 1011 s−1, 10−13 s for ν =
2 × 1012 s−1, 10−14 s for ν = 2 × 1013 s−1, and 10−15 s for
ν = 2 × 1014 s−1. The maximum simulation time has been
limited to 10−4 s. We thus considered ν between 2 × 106 and
2 × 1014 s−1. However, the laws of variation of the charac-
teristic times as a function of ν will allow us to extrapolate
them to smaller tunneling rates ν which often characterize
telegraphic noises [39].

We have considered three positions for the trap (Table I).
Traps 1 and 2 are under the central gate, and trap 3 is under the
secondary gate. Trap 1 is the closest to the hole quantum dot.
It therefore induces the strongest perturbation potential on the
hole. In contrast, trap 3 induces the lowest perturbation.
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TABLE I. Charge traps considered in this paper. Position: The
coordinates x, y, and z are defined with respect to the axes specified in
Figs. 1 and 2. Characteristics deduced from the perturbation matrix:
angular frequency ωth [Eq. (7)] and modulus |u↑↓| of the nondiagonal
matrix element.

Coordinates (nm)
ωth |u↑↓|

Trap x y z Gate (s−1) (µeV)

Trap 1 8.4 0.0 0.0 Central 1.063 × 109 1.4594
Trap 2 8.4 4.0 14.0 Central 5.469 × 108 0.4381
Trap 3 8.4 0.0 46.0 Secondary 3.039 × 107 0.0248

III. RESULTS AND DISCUSSION

A. Quantum dot energy levels and hole state dynamics

The ten highest electronic energy levels calculated for the
qubit are shown in Fig. 4(a). The level defining the funda-
mental hole state, the highest in electron energy, is twice
degenerate in the absence of a magnetic field. This level is
relatively detached from the others, and the Zeeman splitting
is not visible at the scale of the figure. Therefore the electro-
statically induced confinement by the central gate defines a
two-state system.

Nevertheless, Fig. 5(a) shows the evolution of p1(t ), the
average total weight of the hole wave function on the ϕσ

1
qubit states as a function of time, for a charge fluctuating

between the central gate and trap 1 at average frequency
ν = 2 × 109 s−1. p1(t ) decreases as a function of time, from
which we can deduce T ′

1 as described in Appendix A. This
results from the coupling of the state ϕ

↑
1 with the other states

ϕ↑↓
n of the system, due to the presence of a charge on trap

1. Interestingly, this coupling is much larger with some states
outside the doublet (n > 1) than with ϕ

↓
1 . This is demonstrated

in Fig. 4(b), which shows the coupling strength defined as the
ratio between a matrix element of U and the energy splitting
between the corresponding two states. This coupling strength
is important between states of the same doublet (because the
denominator is small), but it remains of the same order of
magnitude with a large number of multiplets much further
away in energy.

Figures 5(b) and 5(c) show the decay of σ‖(t ) and m(t )
obtained under the same noise conditions. We deduce the
characteristic times T1 and T2 by fitting with an exponential.

Figure 4(d) shows that diagonal terms of the perturbation
u↑↑

n = 〈ϕ↑
n |U |ϕ↑

n 〉 or u↓↓
n = 〈ϕ↓

n |U |ϕ↓
n 〉 are relatively indepen-

dent of the spin orientation in each doublet n, their main effect
being a global shift in energy of the electronic levels. The
difference δn = u↑↑

n − u↓↓
n , which for n = 1 will determine the

main dephasing effect (see below), is small and is strongly
dependent on n [Fig. 4(c)]. It is shown in Sec. II of the Supple-
mental Material [46] that δn is zero for B = 0 and is given in
perturbation theory by a sum of terms scaling as |En − Em|−1

with m �= n. This explains why δ1 = u↑↑
1 − u↓↓

1 = u↑↑ − u↓↓

FIG. 4. (a) Highest electronic energy levels calculated for the hole qubit. (b) Coupling strength defined as the ratio |〈ϕ↑
1 |U |ϕ↑↓

n 〉|/|E↑
1 −

E↑↓
n |. (c) δn = 〈ϕ↑

n |U |ϕ↑
n 〉 − 〈ϕ↓

n |U |ϕ↓
n 〉 = u↑↑

n − u↓↓
n vs n. (d) Unperturbed level energies E↑↓

n (green) and perturbed level energies E↑↓
n +

〈ϕ↑↓
n |U |ϕ↑↓

n 〉 (red) presented according to the state number defined as 2n − 1 for |ϕ↑
n 〉 states and 2n for |ϕ↓

n 〉 states. In (b)–(d), all results are for
trap 1. (b) and (d) share the same horizontal axis.
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FIG. 5. Evolution of p1(t ) (a), σ‖(t ) (b), and m(t ) (c) for trap 1
and ν = 2 × 109 s−1, calculated in the multilevel model (N = 20).
The curves in pink are fits by an exponential law. For p1(t ), the fit is
made in the range 0.5 � p1 � 1 only.

is small because the fundamental level (n = 1) is strongly
detached from the others in energy.

B. Characteristic times for the two-level system

Even if our numerical simulations show the non-negligible
role of high-energy hole states, it is useful to consider the
two-level system (N = 1). Relaxation (T1) and dephasing (T2)
times calculated for trap 1 (Table I) in the two-level model are
therefore presented in Fig. 6.

1. Analytical model: Dephasing time

It is interesting to relate the variations of T2(ν) to those
of T ∗

2 (ν), the dephasing time obtained in the so-called pure
dephasing model, i.e., when the matrix U [Eq. (4)] is purely
diagonal, or more generally when |u↑↑ − u↓↓| � |u↑↓|. In
this case, the (threshold) angular frequency can be written as
(Sec. III of the Supplemental Material [46])

ωth ≈ |u↑↑ − u↓↓|/h̄, (7)

in which |u↑↑ − u↓↓| [δ1 in Fig. 4(c)] represents the varia-
tion of the energy splitting between the two states when the
fluctuator switches. In the high-frequency limit (ν � ωth),
the phase undergoes many random changes δφ(t ) over a time
interval of the order of 2π/ωth, so that δφ(t ) can be viewed
as a continuous random variable characterized by a Gaussian
probability distribution. In this Gaussian limit, the dephasing
time is given by T ∗

2 = 4ν/ω2
th [45,49,52]. The linear depen-

dence on the frequency ν reflects the fact that the two-level
system becomes more and more insensitive to the random

FIG. 6. Characteristic lifetimes T1 (green squares) and T2 (red
crosses) vs tunneling rate ν calculated in the two-level model for
trap 1. Solid lines depict the analytical expressions for T1 (black) and
T ∗

2 (blue), as given by Eqs. (10) and (8), respectively, using ωth and
|u↑↓| of Table I. The dashed turquoise line shows a time varying as
2/ν. At ν � �, T2 ≈ 2T1.

perturbation as this one varies more and more rapidly. In this
case, the splitting between the two levels is self-averaged to a
certain value, the width being ∝1/T ∗

2 [45].
In the opposite limit of low frequencies (ν � ωth), the

Gaussian approximation is no longer valid, and the dephas-
ing time is then given by T ∗

2 = 2/ν = 1/νcl [45,49,52] (see
also Sec. III of the Supplemental Material [46]). In this
regime, the coherence is simply determined by the probability
exp(−t/T ∗

2 ) that the qubit has not suffered any switch of the
fluctuator over a time t . In other words, the coherence is lost
from the moment when the fluctuator has changed state.

Extending the analysis to all frequencies, an expression for
T ∗

2 was derived in the pure dephasing regime [49,52]:

T ∗
2 =

{ 2

ν−
√

ν2−ω2
th

for ν � ωth

2/ν for ν < ωth,
(8)

which shows that the angular frequency ωth = |� − �′| is
therefore a threshold between two distinct regimes.

In the general case, beyond the pure dephasing model, the
dephasing time becomes [39]

T2 =
(

1

T ∗
2

+ 1

2T1

)−1

. (9)

2. Analytical model: Relaxation time

The spin relaxation is induced by the nondiagonal terms of
the U matrix. Using various approaches such as the Bloch-
Redfield theory [39], the relaxation rate is determined by the
noise spectrum at frequency �. In the case of telegraphic
noise, this gives the following expression for T1:

T1 = h̄2

|u↑↓|2
ν2 + �2

ν
, (10)
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which reflects a resonance effect. Relaxation is most effective
when the fluctuator frequency coincides with the Larmor an-
gular frequency. At low tunneling rate ν � ωth � �, T1 also
varies as 1/ν, like T ∗

2 but with a prefactor (h̄�/|u↑↓|)2 instead
of 2 (another derivation of this expression is presented in
Sec. V of the Supplemental Material [46]). Table I shows that
|u↑↓| � h̄� for the traps considered here; therefore T1 � T ∗

2
and T2 ≈ T ∗

2 from Eq. (9).

3. Discussion of numerical results in comparison
with analytical laws

Figure 6 shows that the calculated values of T1 follow
Eq. (10), which translates the resonance effect between the
quantum oscillator formed by the two-level system and the
classical fluctuator.

The dephasing time T2 deduced from the time simulations
is also in excellent agreement with the analytical expression
for T ∗

2 given by Eq. (8), except at high frequency where T1

becomes smaller than T ∗
2 and therefore T2 ≈ 2T1 [Eq. (9)].

C. Characteristic times for the multilevel system

The calculated characteristic times T2 and T ′
1 for the three

traps in the multilevel model are shown in Fig. 7.

1. Relaxation time for trap 1

The relaxation time T ′
1 is much smaller than T1 ob-

tained in the two-level model, in particular at high frequency
(>1010 s−1) where T ′

1 continues to decrease with ν to reach a
minimum for ν near 1013 s−1. This is due to the coupling with
higher-energy hole levels, outside the doublet. For frequencies
below ≈1012 s−1, T ′

1 varies approximately as 1/ν, as given by
Eq. (10) for T1 for ν � � but with a smaller prefactor.

The fact that T ′
1 is found to be much smaller than T1 given

by Eq. (10) means that the two-level model is not valid for
the description of the spin relaxation, the latter being strongly
influenced by the coupling to higher-energy hole levels.

2. Dephasing time for trap 1

Remarkably, the values of T2 coincide with those obtained
in the two-level model for ν less than or just above ωth given in
Table I. In this case, the two-level model is perfectly justified.
For higher tunneling rates, the values of T2 approximately
follow those of T ′

1 . This behavior indicates that the dephasing
is impacted by the other decoherence phenomena, which is ex-
pected because they are fundamentally intertwined since they
all result from the same electrical disturbance, i.e., diagonal
and nondiagonal terms are present at the same time in the
matrix of U .

3. Results for traps 2 and 3

Figure 7(b) shows the same behavior for trap 2 located at
a larger distance from the center of the qubit state. Conse-
quently, the characteristic times T1 (for the two-level model)
and T ′

1 have higher values than for trap 1, since the pertur-
bation induced by the fluctuator is less strong. For the same
reason, ωth shifts to a lower frequency. This behavior is even
more visible in the case of trap 3 located under the secondary

FIG. 7. (a) Characteristic lifetimes T ′
1 (magenta diamonds) and

T2 (red crosses) vs tunneling rate ν calculated in the multilevel model
(N = 10) for trap 1. Solid lines depict the analytical expressions for
T1 (black) and T ∗

2 (blue) of the two-level model, as given by Eqs. (10)
and (8), respectively, using ωth and |u↑↓| of Table I. (b) Same for trap
2. (c) Same for trap 3. In (a)–(c) the dashed turquoise line shows a
time varying as 2/ν.
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gate [Fig. 7(c)]. ωth is pushed to even lower frequencies
(Table I). The comparison between Figs. 7(a)–7(c) shows that
the two-level model for T1 becomes even less valid when
the trap moves away from the qubit, when T1 becomes very
long. Indeed, as the distance between the trap and the qubit
increases, the coupling terms all decrease, but those with the
higher-energy states decrease less rapidly than those within
the doublet of states (Sec. VI of the Supplemental Material
[46]). This can be explained by the larger spatial extension of
higher-energy hole states.

A remarkable result of Fig. 7 is that, for ν < ωth, T2 ≈ T ∗
2

is given by 2/ν = 1/νcl ; whatever the position of the trap,
only the value of ωth changes between the different cases. This
is the likely regime for a qubit in cryogenic conditions for
which the tunneling rates are normally low [39,45,53]. This
means that the coherence of the qubit is entirely and solely
determined by the average time between two changes of state
of the fluctuator. The qubit remains coherent as long as the
fluctuator has not changed its state.

IV. INFLUENCE OF THE BACK-GATE BIAS AND THE
MAGNETIC FIELD ORIENTATION

In a recent theoretical work including numerical simula-
tions on the same hole qubit as the one studied here [40], the
manipulation of the hole spin by a radio-frequency electrical
excitation applied on the central gate has been modeled. It has
been shown that the Rabi frequency depends in a complex way
on the orientation of the magnetic field and the back-gate po-
tential VBG. The latter allows one to control the shape and the
symmetry of the wave function of the hole, on which depends
the effective spin-orbit coupling felt and consequently the g
tensor defining the response of its spin to the magnetic field.

In fact, all these quantities depend essentially on the com-
ponent of the internal electric field along y, which is controlled
by the imbalance between front- and back-gate voltages [40].
This component is nonzero because of the asymmetry of the
structure (Fig. 1). The component of the field along x, al-
though dominant in intensity, plays a much more minor role
due to the strong vertical confinement of the hole states. The
y component of the field influences the wave function of the
ground state of the hole: not only its position along y but also
the respective weight of heavy and light hole components,
which determines the effective spin-orbit coupling applying
to the hole (Sec. IV of the Supplemental Material [46]).

Interestingly, it was found in Ref. [40] that, for VBG =
−0.15 V, the qubit is placed in a configuration where the
spin is largely insensitive to radio-frequency excitation on the
central gate, the Rabi frequency showing a sharp minimum. In
this case, the wave function of the hole is centered in the cross
section of the nanowire and presents an approximate inversion
symmetry which tends to reduce the action of the spin-orbit
coupling on the hole. At this voltage, the influence of the
Johnson-Nyquist noise is minimized, as well as the coupling
to phonons but to a lesser extent [37].

In this context, we consider the effect of VBG and the mag-
netic field orientation on the dephasing time T2. As discussed
earlier, the evolution of T2 as a function of ν is defined by
an angular frequency ωth which delineates the low- and high-

(a)

(b)

(c)

FIG. 8. Two-dimensional plots of (a) the Larmor frequency �,
(b) u↑↑ − u↓↓, and (c) |u↑↓| for trap 1 vs back-gate bias VBG and
angle ϕ of B in the xy plane (θ = 90◦). The 2D plots are made on
a discrete grid of 25 × 40 points. (b) The contours corresponding to
u↑↑ − u↓↓ = 0 are indicated by black lines.

frequency regimes of the spin response to the fluctuator. It is
therefore interesting to look for situations where u↑↑ − u↓↓ =
0 and therefore T2(ωth) = 2/ωth = 2h̄/|u↑↑ − u↓↓| should
diverge.

Figure 8 presents the variations of � and u↑↑ − u↓↓ as a
function of VBG and φ, for θ = 90◦, i.e., for a magnetic field

125415-8



MODELING OF SPIN DECOHERENCE IN A Si HOLE … PHYSICAL REVIEW B 107, 125415 (2023)

in the plane perpendicular to the axis of the nanowire, the
field strength remaining fixed at its initial value. Figure 8(b)
shows that the 2D map u↑↑ − u↓↓ = f (VBG, ϕ) is divided
into regions of positive or negative values, which means that
u↑↑ − u↓↓ = 0 at the boundaries. Consequently, this result
suggests the existence of “sweet” lines [30,44] along which
T2(ωth) should become very long (but not infinite for reasons
discussed in Sec. V A).

Zeros of u↑↑ − u↓↓ are present, in particular, along a hor-
izontal line VBG ≈ −0.15 V, in the same configuration where
the spin becomes relatively insensitive to electrical noise on
the central gate [40]. Remarkably, there are also two (almost)
straight vertical lines for which u↑↑ − u↓↓ ≈ 0, at ϕ ≈ 55◦
and ϕ ≈ 125◦. These can be explained as follows.

As demonstrated in Ref. [40] and in Sec. IV of the Sup-
plemental Material [46], the effective Zeeman Hamiltonian of
the system can be written in the g-matrix formalism. For B in
the xy plane, the Zeeman splitting is

h̄� = μBB
√

g2
x cos2 ϕ + g2

y sin2 ϕ. (11)

It is shown in Ref. [44] that the respective weight of the
hole wave function on the heavy and light hole states de-
termines the relative magnitude of the factors gx and gy. It
follows that

∂gx

∂V
≈ −∂gy

∂V
, (12)

where V can be any potential whose main effect on the g
factors comes from the variation of the electric field along y.
Our calculations show that this is the case for VBG or for the
potential induced by the fluctuating charge.

Under these conditions, it is interesting to consider situa-
tions where the Zeeman splitting [Eq. (11)] becomes relatively
independent of the potential VBG. Using Eq. (12) with V =
VBG, we deduce in Sec. IV of the Supplemental Material [46]
that (∂ h̄�)/(∂ VBG) = 0 for

ϕ ≈ π

2
± arctan

√
gx

gy
. (13)

Therefore the compensation between ∂gx/∂V and ∂gy/∂V
[Eq. (12)] leading to Eq. (13) explains the straight vertical
contour lines in the 2D plot of the Larmor frequency at ϕ ≈
90 ± 34◦ for gx/gy ≈ 2/3 [Fig. 8(a)]. The existence of these
sweet lines has been revealed experimentally in Ref. [44],
where a strong enhancement of the coherence times was mea-
sured when the Larmor frequency h̄� is least dependent on
the gate voltages.

The g-matrix model also allows us to derive analytical ex-
pressions for the diagonal matrix elements u↑↑ and u↓↓ of δH
describing the perturbation brought by the fluctuating charge
(Sec. IV of the Supplemental Material [46]). Remarkably, we
find in this simplified model that u↑↑ − u↓↓ cancels out when
Eqs. (12) and (13) are verified exactly, V representing the
potential induced by the charge.

Additional 2D plots of � and u↑↑ − u↓↓ are presented in
Sec. VII of the Supplemental Material [46], versus θ and ϕ,
for the three traps. Sweet lines are clearly visible on these
figures for ϕ approximately given by Eq. (13). We conclude

FIG. 9. Characteristic lifetimes T2 vs tunneling rate ν calcu-
lated in the two-level model (blue crosses) and multilevel (N = 10)
model (red stars) for trap 1, for VBG = 0 V, ϕ = 52.6◦, θ = 90◦, and
h̄� = 3.88 × 10−5 eV, in a situation where u↑↑ − u↓↓ ≈ 0 eV and
|u↑↓| = 1.41 × 10−6 eV. The black solid line depicts the analytical
expression for T1 of the two-level model, as given by Eq. (10). The
dashed turquoise line shows a time varying as 2/ν.

that their existence is relatively robust to the position of the
trap [44].

V. DISCUSSION OF THE RESULTS

A. Discussion of T2

The existence of “sweet” spots where the dephasing of the
spin precession is strongly reduced is now much discussed in
the literature [30,40–44,54,55]. The results presented in the
previous section could suggest the existence of sweet lines [in
the (VBG, ϕ) or (θ, ϕ) operating spaces] for the noise induced
by a single charge fluctuator, but this conclusion should be
immediately relativized, for two reasons.

First, for a “slow” fluctuator (ν smaller than ωth), T2(ν)
is given by 2/ν, independently of the field or potential con-
ditions. Second, even if we place the system in a situation
where u↑↑ − u↓↓ = 0, this does not mean that ωth → 0 and
T2 → ∞ because the nondiagonal term u↑↓ is not zero (and
is even usually maximal [30]). This is clearly visible by com-
paring, in Figs. 8(b) and 8(c), u↑↓ �= 0 along the lines where
u↑↑ − u↓↓ = 0. We show in Sec. III of the Supplemental Ma-
terial [46] that the angular frequency ωth = |� − �′| is given
in the case |u↑↑ − u↓↓| � |u↑↓| by

ωth ≈ 2|u↑↓|2
h̄2�

. (14)

It is interesting to note that ωth [and therefore T2(ωth) =
2/ωth] given in Eq. (14) is not of the same order in U as in
Eq. (7). The physics discussed here only reveals itself when
u↑↑ − u↓↓ ≈ 0.

Figure 9 shows the evolution of T2 as a function of ν

when the system is placed at a specific point on a sweet
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line of Fig. 8(b). In the chosen case, Eq. (14) gives ωth =
1.6 × 108 s−1 for the threshold angular frequency. This value
is about one order of magnitude smaller than in Table I,
showing the interest to be along a sweet line. For ν � ωth,
we again find that T2 behaves like 2/ν for reasons discussed
in Sec. III of the Supplemental Material [46]. Beyond that,
in the two-level model, T2 increases to reach values close to
2T1, and the dephasing process is limited by the spin relax-
ation. In the multilevel model, the high-frequency regime is
once again influenced by coupling to higher-energy states. We
thus find a behavior identical to the one obtained in the case
where u↑↑ − u↓↓ �= 0, but the value of ωth is here determined
by the nondiagonal element of the perturbation Hamiltonian.
However, it is interesting to note that, even if the nondiagonal
term u↑↓ is responsible for the spin relaxation phenomenon,
the value of T2 at frequency ωth [Eq. 14] is much lower than
T1 [Eq. 10] at this same frequency:

T1(ωth) = T2(ωth)
h̄2�2

2|u↑↓|2 � T2(ωth). (15)

The combined examination of Figs. 8(a) and 8(b) shows
that it would be possible to select points along the lines
u↑↑ − u↓↓ = 0 where the values of |u↑↓| and thus of ωth are
even smaller, for example, by increasing the value of |VBG|.
In this case, the wave function of the hole is compressed
against the side edges of the wire [44]. This increases con-
finement and hence splits E1 from the other energy levels,
thus reducing the diagonal and nondiagonal coupling terms
(Sec. II B of the Supplemental Material [46]). An alternative
option to increase confinement would be to reduce the chan-
nel thickness and gate length, which is a real technological
challenge given the already small dimensions of the current
devices.

B. Role of the direct Rashba effect

Several theoretical works have shown that hole bands in Si
or Ge/Si nanowires can be characterized by a strong Rashba
effect (called “direct”) under the action of an electric field
[38,56,57]. This raises the question of the importance of this
effect on spin decoherence in the qubit studied here. The
Rashba interactions couple the spin to the momentum of the
particle and can therefore bring additional dephasing while
the dot is moving at finite speed following a change of state of
the fluctuator. This process is naturally included in our time-
dependent simulations of the multilevel model that describe
the full dynamics of the wave function.

In the two-level model, the spin phase drift is induced by
the succession of “quasistatic” configurations with different
Larmor frequencies � and �′. Each configuration is charac-
terized by stationary states given by the diagonalization of the
2 × 2 matrices H0 and H0 + U , respectively. So the phase de-
coherence results from the “deformation” of the wave function
between the two configurations (as a rigid block displacement
of the wave function does not change the Larmor frequency).
We have seen previously that the two-level and multilevel
models predict the same values of T2 for frequencies ν of
fluctuators below a certain threshold, as long as T2 � T ′

1 . This

suggests that in this regime the “dynamic” effects and thus
the direct Rashba effect do not influence T2. It should also be
noted that, still in this regime, we obtain almost unchanged
values of T2 when we consider a modified telegraph signal
in which the transitions 0 → 1 and 1 → 0 are no longer in-
stantaneous but occur progressively (linearly) over a duration
�t of a few picoseconds, even though this duration is much
longer than the tunnel time of the order of femtoseconds
which is typically admitted (Appendix B). This demonstrates
that the phase decoherence in the low-frequency regime does
not depend on the dynamics of the transition between the two
states.

It cannot be ruled out that the Rashba interactions con-
tribute in the high-frequency regime for which two-level and
multilevel models do not coincide. In this situation, the wave
function is subject to very fast noise, ν being much larger than
the angular frequency ωth. However, the influence of the direct
Rashba effect may be hidden by the fact that T2 is limited by
T ′

1 , which highlights the complex dynamic effects due to the
coupling with higher-energy states.

C. Discussion of T1

Our numerical simulations have shown that the relaxation
time T1 obtained in a two-level model is not meaningful
because the decoherence induced by the coupling to the
highest-energy states, outside the doublet, is in fact faster with
a characteristic time T ′

1 . However, this does not mean that the
real T1, the one that could be measured, is equal to T ′

1 for the
following reasons.

The time T ′
1 reflects the fact that the weight of the hole

wave function ψ (t ) on the states beyond the fundamental dou-
blet tends to grow with t , until a final situation where ψ (t ) is
statistically distributed on all the states of the considered basis
(Sec. V of the Supplemental Material [46]). This evolution is
very progressive, T ′

1 being very large compared with 2/ν, the
average period of the telegraph signal. In our simulations, this
evolution towards the final state is certain (statistically speak-
ing) because the electronic system composed of the qubit and
the fluctuator is not perturbed by any dissipative phenomenon.
In fact, as the energy of the electronic system increases on
average continuously, the probability that the system relaxes
to a lower-energy state by coupling with a phonon or a photon
should increase progressively. We can therefore deduce that
multilevel simulations including electron-phonon coupling (or
other dissipative phenomena) would be necessary to estimate
T1 properly. It is highly unlikely that electron-phonon cou-
pling will contribute to increase T1 relative to T ′

1 because the
leakage of the hole state to states |ϕα

n 〉 with n > 1 is almost
as effective with up (α = ↑) and down (α = ↓) spin states.
So the question is whether this leakage will remain the domi-
nant effect (T1 ≈ T ′

1 ) or whether the electron-phonon coupling
will reduce T1, which is obviously the case when phonon
relaxation between ϕ

↑
1 and ϕ

↓
1 states becomes the dominant

effect (T ph
1 is typically in the 10−3–10−1 s range [37]). More

generally, this raises very interesting questions about the cross
influences between charge and spin relaxations in this system.
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D. Comparison with experiments

It is now important to try to compare our simulation results
with experimental data. In this section, we focus on Ref. [44],
which reports on a four-gate device (gates G1–G4) fabricated
from natural silicon. Remarkably, the authors of Ref. [44] are
able to confine a single hole under gate G2, which allows a
more direct comparison with the theoretical simulations.

Spin coherence measurements show the existence of very
low frequency noise (10−4–10−2 Hz) probably induced by
both hyperfine interactions and electrical fluctuations. Further
measurements were therefore performed following a Hahn
echo protocol that gets rid of the low-frequency noise sources.
The echo amplitude follows a decay law in the form of a
stretched exponential as a function of the waiting time (free
evolution), representative of the high-frequency noise power
spectrum (104–106 Hz). The characteristic time which is de-
duced, denoted as T E

2 , depends on the orientation of the
magnetic field and reaches the remarkable value of 88 µs at
its maximum.

The authors of Ref. [44] clearly show that this high-
frequency noise has an electrical origin. Let us assume that
it comes from a very small number of fluctuators like those
studied here. Each fluctuator n can be characterized by its
threshold angular frequency ωn

th and by its oscillation fre-
quency νn. Let us also assume that each fluctuator remains in a
non-Gaussian regime whatever the orientation of the magnetic
field (νn � ωn

th). It is then easy to show that T ∗
2 is given by

2/
∑

n νn (Sec. III A of the Supplemental Material [46]), does
not depend on the magnetic field orientation, and is not related
to the noise spectrum S(ω) for ω → 0. We can therefore
deduce that the experimental system of Ref. [44] does not
operate in this configuration.

The likely situation is that a significant part of the fluctua-
tors involved in the measured noise are characterized by νn >

ωn
th, i.e., they operate in the Gaussian regime. As the measured

time T E
2 is relatively long, this means that the threshold an-

gular frequencies ωn
th are low, smaller than ≈104 Hz. Since

ωth = |u↑↑ − u↓↓|/h̄, we conclude that the fluctuators in-
volved are characterized by weak-coupling terms (U matrix),
which corresponds to defects very far from the qubit, are
characterized by a weak charge displacement (U ∝ d , where
d is the dipole), or have a dipole potential that is strongly
screened, for example, by a hole gas [44]. This situation
seems reasonable, the existence of far fluctuators being likely
given the complex and immense environment around the
qubit.

We cannot exclude that “non-Gaussian” fluctuators con-
tribute to an isotropic noise background in Ref. [44]. It
could be also interesting in the future to characterize noisier
devices in order to see if non-Gaussian behaviors induced
by a small number of “closer” telegraphic fluctuators can
be highlighted. One could also imagine very low noise sit-
uations where the influence of the distant environment is
reduced but remains influenced by a few extremely slow
fluctuators for which νn < ωn

th. In these cases, the dephasing
time would become totally independent of the magnetic field
orientation.

VI. CONCLUSION

We have simulated the spin decoherence in a hole qubit
realized within a nanowire transistor in silicon-on-insulator
technology. We consider the effect of a single fluctuating
charge inducing telegraphic electrical noise. We show that
the phase decoherence characterized by the time T2 is well
described in a two-level model but in a non-Gaussian regime
when the fluctuator operates at a frequency lower than a
threshold value ωth. The simulations show that there are op-
erating conditions of the component, along so-called “sweet”
lines, for which ωth is shifted towards low frequencies, which
results in an increase in the minimum value of T2. However,
this increase is limited due to the influence of nondiagonal
coupling between the two states of opposite spin. For the
spin relaxation characterized by the time T1, we show on
the other hand that a multilevel model is required, due to
the coupling between the ground state of the hole and many
higher-energy states. These results highlight a rich and rela-
tively unexpected physics for a model problem with a single
fluctuator perturbing the qubit. This shows the importance of
quantum simulations including the most realistic description
of the qubit. Our study should motivate future work on the
subject, in particular using a multilevel description including
electron-phonon coupling as a dissipative phenomenon.
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APPENDIX A: CALCULATION OF THE DECOHERENCE
TIME T ′

1

The characteristic time T ′
1 is defined to describe the leakage

of the wave function of the hole out of the doublet composed
of ϕ

↑
1 and ϕ

↓
1 states under the effect of the random variations

of the perturbing potential. Our goal is to deduce T ′
1 from

the evolution of ψ (t ) obtained by solving the time-dependent
Schrödinger equation, but we have to take into account two
intrinsic limitations of this approach. First, a classical noise is
considered while quantum effects can become important when
kT is small compared with the energy gaps between levels.
Second, dissipation effects are not included, for example, by
coupling with phonons or by feedback to the fluctuator and the
electron reservoirs. As a consequence, the long-time limit of
ψ (t ) cannot be physically correct in our model. Indeed, when
the nondiagonal elements of the U matrix are zero, we show in
Sec. V of the Supplemental Material [46] that the simulations
will always converge to the situation where ψ (t ) is statisti-
cally uniformly distributed over all the states of the system,
which is to say that 〈|〈ϕ↑↓

n |ψ (t )〉|2〉{E} converges to 1/(2N )
whatever N is, whereas it should tend to the value given by a
quasi-Fermi-Dirac statistic if dissipative phenomena are taken
into account.

As a consequence, we have limited our analysis to
short times for which the quantity p1(t ) = 〈|〈ϕ↑

1 |ψ (t )〉|2 +
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|〈ϕ↓
1 |ψ (t )〉|2〉{E} has an exponential decay of the form

exp(−t/T ′
1 ), where T ′

1 quickly becomes independent of the
number of states considered in the basis. This approach is
sufficient to describe the initial evolution of the wave function
of the hole to the ϕ↑

n and ϕ↓
n states for n > 1 and not its

subsequent evolution.
In practice, we found the monoexponential character of

p1(t ) when we consider the time span for which this quantity
varies from 1 to 0.5, and we found that the value of T ′

1 is
converged for N = 20 [Fig. 5(a)]. This value can easily be
understood since the matrix elements of U between the states
ϕ

↑↓
1 and ϕ↑↓

n decrease sharply for increasing values of n > 10
(Fig. 4).

APPENDIX B: EFFECT OF NONINSTANTANEOUS
TRANSITIONS

The telegraphic noise model assumes that the transitions
between the two states of the fluctuator are instantaneous.
Here we discuss the influence of noninstantaneous transitions
and their realism.

We consider a modified telegraphic signal χ ′(t ) in which
the fluctuator is assumed to vary progressively (linearly) be-
tween states 0 and 1 over a time �t = 7 ps. Figure 10(b)
shows that the characteristic times calculated using χ ′(t ) be-
have as a function of ν in the same way as for the original
telegraph signal χ (t ). At low frequencies, T2 remains given
by 2/ν, and the dephasing time remains limited by the average
switching time of the fluctuator. On the other hand, T ′

1 reaches
higher values due to the fact that transitions to higher-energy
hole states are less likely. However, the overall behavior re-
mains the same.

The question is therefore whether a value �t of 7 ps is
realistic. This does not appear to be the case, as tunneling
times are typically in the femtosecond range [58,59], as can
be estimated with the expression τT = d

√
m/(2Ub), in which

d is the length of the tunneling barrier (≈1 nm), Ub is its
height (≈2 eV), and m is the carrier effective mass (approx-
imately equal to the free-electron mass). The characteristic
times calculated for �t in the femtosecond range are those

FIG. 10. (a) Modified telegraphic signal χ ′(t ) in which the tran-
sition between states 0 and 1 is linear over a time �t = 7 ps (magenta
dashed line), compared with the original telegraph signal χ (t ) (blue
solid line). (b) Characteristic lifetimes T1 and T2 vs tunneling rate ν

calculated in the multilevel model (N = 10) for trap 1. Green squares
and brown triangles: T ′

1 calculated using χ (t ) or χ ′(t ), respectively.
Red crosses and violet dots: T2 calculated using χ (t ) or χ ′(t ), respec-
tively. The blue solid line depicts the analytical expression for T ∗

2 , as
given by Eq. (8), using ωth and |u↑↓| of Table I.

presented in Fig. 7. Therefore the instantaneous transitions
model employed in this paper seems justified.
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