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Moiré superlattice patterns at the interface of two-dimensional (2D) van der Waals (vdW) materials, arising
from a small displacement between similar lattices, have been extensively studied over the past decade for
their dramatic ability to tune material properties. However, previous work to understand the structure of these
interfaces has largely focused on some special cases, particularly honeycomb lattices displaced by twist or
isotropic scaling. In this work, we develop practical and analytical tools for understanding the moiré structure
that can be generalized to other lattice distortions and lattice types. At large enough moiré lengths, all moiré
systems relax into commensurated 2D domains separated by networks of dislocation lines. The nodes of the 2D
dislocation line network can be considered as vortexlike topological defects. However, we find these topological
defects to exist on a punctured torus, requiring different mathematical formalism than the topological defects in
a superconductor or planar ferromagnet. In the case of twisted bilayer graphene, the defects are characterized by
the free group on two generators. We find that antivortices occur in the presence of anisotropic heterostrain, such
as a shear or anisotropic displacement, while arrays of vortices appear under a twist or isotropic displacement
between vdW materials. Utilizing the dark field imaging capability of transmission electron microscopy (TEM),
we experimentally demonstrate the existence of vortex and antivortex pair formation in a moiré system, caused
by competition between different types of heterostrains in the vdW interfaces. We also present a methodology
for mapping the underlying heterostrain of a moiré structure from experimental TEM data, which provides
a quantitative relation between the various components of heterostrain and vortex-antivortex density in moiré
systems.

DOI: 10.1103/PhysRevB.107.125413

I. INTRODUCTION

Moiré patterns are quasiperiodic in-plane projections of
two similar stacked two-dimensional (2D) periodic lattices.
Atomic scale moiré superlattices can be formed by stack-
ing atomically thin van der Waals (vdW) materials; one
such example is twisted bilayer graphene. Moiré patterns
formed by incommensurately stacking 2D materials have
been used to manipulate a system’s electronic structure, from
Hofstadter’s butterfly [1–3] to the valley Hall effect [4,5]
to magic angle strongly correlated physics [6,7]. As the
number and type of layers in experimentally relevant sys-
tems proliferates, including twisted double bilayer [8–10],
twisted monobilayer [11–13], twisted trilayer [14–16], and
twisted quadrilayer graphene [17,18], as well as hexago-
nal boron nitride [19] and transition metal dichacolgenides
(TMDs) [20–22], it is important to be able to predict the
structure in vdW stacked combinations of atomic layers.

Increasing attention has been paid to the effects of strain
disorder on the structure and properties of such systems [23].

The effect and extent of twist angle disorder in magic angle
graphene is an active area of research [24,25]. Strained moiré
patterns in excitonic systems have been proposed as a way
to create 1D quantum wires [26]. In this paper, we present
a generalizable topological interpretation of the structure of
moiré interfaces that allows for the characterization of arbi-
trary strain and the proposition of new types of moiré patterns.

A topological description of the moiré structure is appeal-
ing in part because some of the major features of the structure
seem to be fixed once certain boundary conditions, such as
total twist angle and strain, are pinned. For large enough moiré
length, moiré systems are known to relax into domains of
nearly commensurate alignment, separated by domain walls
which can be characterized as dislocation lines [27]. The
topological connectivity of the network of dislocation lines
remains fixed even as the domain lengths become distorted by
local strain fields.

The nodes of the network where dislocation lines meet in
the relaxed moiré system (sometimes known as AA points in
graphene or TMD moiré) have been referred to as topological
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defects by Alden et al. [28], and again by Turkel et al. [29],
who also emphasize their role in transport as tunable, local
concentrations of twist angle. They have also been shown to
play the role of defects in electrochemistry [30]. However,
we find that the order parameter describing the topology of
these defects is rather different from that of the conventional
vortex descriptions in the planar magnet or superfluid, where
the order parameter can be described by a complex number.

The complex order parameter space can be mapped to
a circle (S1), hence the fundamental group is π1(S1) = Z.
The fundamental group is a useful tool in the analysis of
topological defects, as defects and their collections can each
be mapped to an element of the fundamental group [31]. For
defects with an S1 order parameter, this manifests as an integer
winding number [32]. Interestingly, we find that the order
parameter space describing the relaxation structure of a moiré
superlattice is not homotopy equivalent to S1 due to the pe-
riodic boundary condition of the order parameter imposed by
the moiré superlattice. We present a mathematical framework,
similarly based on the fundamental group, by which the 2D
dislocation network nodes can be characterized as topological
defects.

Throughout the paper, we refer to the space of order param-
eters as configuration space, in keeping with the convention
adopted in earlier works [33]. For most of this work, we
focus on graphenelike moiré superlattices, where two differ-
ent domain types, AB and BA, are separated by dislocation
lines meeting at the AA site. The starting point for our new
vortex description of the AA nodes is the realization that the
configuration space for the graphenelike moiré superlattice is
the punctured torus. The fundamental group of the punctured
torus is a non-Abelian group known as F2, the free group
on two generators. The commutator [a, b] = aba−1b−1 corre-
sponds to a closed loop around a vortex centered at the AA
node of the moiré superlattice (its inverse [b, a] = [a, b]−1

corresponds to a path around an antivortex). The noncom-
mutativity of the generators is a consequence of the removed
point at the AA node, which is physically motivated by the
node’s high energy barrier in the generalized stacking fault
energy [33].

The domain walls that emerge in the moiré superlattice will
be color-coded as R, G, B, which correspond to the three dis-
tinct ways in which the AB stacking order makes a transition
to the BA stacking order as the domain wall is crossed. The
aforementioned generators a and b can be related to the RGB
color coding of the domain walls, which are experimentally
accessible quantities. Examination of the color distribution
of domain walls crossing an arbitrary closed boundary re-
veals the vortex content enclosed within, according to the
non-Abelian vortex theory developed here. The use of the
free group language to characterize the topological structure
of a moiré superlattice is likely to find application in other
kinds of superlattices formed from incommensurate stacking
of nonhexagonal crystals, with details of the group determined
by the material-dependent stacking energy profiles and lattice
symmetry.

As mentioned before, the non-Abelian vortices in a moiré
superlattice have a counterpart in non-Abelian antivortices.
We find that the relative strain tensor between two constituent
layers determines the vortex/antivortex distribution of the

sample. The mathematical tools to understand configuration
space combined with experimental information on the config-
uration distribution in real space enables us to estimate the
strain distribution underlying a moiré pattern, allowing for the
characterization or engineering of strain distributions in van
der Waals heterostructures.

The remainder of the paper is organized as follows. In
Sec. II, we go over various tools and concepts used in analyz-
ing the strain patterns and the nature of topological defects in
the moiré superlattice. The notion of theta space as the proper
configuration space of the graphenelike moiré superlattice is
introduced and justified by energetic consideration. Section III
discusses the formal theory of the vortex and antivortex in a
moiré superlattice using the language of the free group and
its generators. The mathematical discussion is followed by
Sec. IV in which the new algebraic formulation of vortices
and anti-vortices is employed to identify antivortex formation
in a real moiré superlattice, by way of a novel method of
strain mapping. Section V gives a summary and discussion.
Technical details of the theory of vortex algebra are included
in Appendixes A and B with the hope that future investi-
gations of moiré superlattices, including lattices other than
sublattice-symmetric honeycomb lattices, can make use of
the type of vorticity formulation presented here. Appendix C
includes details on the image processing to experimentally
measure the lattice displacement.

II. ORDER PARAMETER AND CONFIGURATION SPACE
FOR MOIRÉ SUPERLATTICE

The natural choice of order parameter in a bilayer system is
the local shift vector, u, determined as the in-plane vector that
points from a lattice site in one layer to the equivalent lattice
site in the other layer. Figure 1 illustrates of how we define the
shift vector in a graphenelike honeycomb lattice. Because of
the periodicity of the lattice, a shift vector larger than a unit
cell, as shown in Fig. 1(b), is equivalent to the shorter vector
folded into the first unit cell. In other words, the configuration
space in which this order parameter exists is a torus [33].

After labeling the two honeycomb lattice sites as A and
B, the standard naming convention for the bilayer honeycomb
stackings is obtained by listing the pair of vertically aligned
sites. The condition u = 0, when every atom is on top of an
equivalent atom in the other layer, is known as AA stacking.
Shifting the top layer along one of the three atomic bonds
from an A site to a B site of the other layer [Fig. 1(d)], or
along the negative of those three vectors [Fig. 1(c)] yields a
structure where only half the atoms in the top and bottom
layers coincide in the 2D projection. The latter two stack-
ing configurations are often termed AB and BA stacking,
respectively. In graphene, the AA stacking is energetically
unfavorable, while the AB and BA stackings are symmetry-
related lowest-energy layer stacking configurations, called
Bernal stacking. Note that for each of the two graphene Bernal
stacking configurations, three different shifting directions re-
sult in the same stacking configuration, represented by a single
point on the toroidal configuration space. AB and BA stacking
are connected by spatial inversion, leading to uAB = −uBA

for the corresponding shift vectors in the configuration space
[Fig. 1(e)]. The high-energy nature of the AA stacking can
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(a) (b)

(c) (d)

(e)

FIG. 1. (a)–(d) Definition of shift vector: (a) small shift, (b) shift
larger than a unit cell is mapped into the first unit cell, (c), BA shift
(d) AB shift. (e) Shifts from part (a) shown in configuration space.
Dotted lines show an alternate Wigner–Seitz-like designation of the
configuration space unit cell.

be reflected by removing u = 0 from the configuration space
altogether, rendering the topology from that of a torus to that
of a punctured torus. This will play a crucial role in the theory
of vorticity we develop in Sec. III.

Figure 1(e) shows the points in configuration space corre-
sponding to the real-space configurations in (a)–(d). The high
symmetry stackings, BA and AB, are represented by the dark
gray and light gray points in Fig. 1(e), respectively. As the unit
cell can be defined in various ways, it is equally valid to use
the parallelogram definition of the unit cell shown in Fig. 1,
where AA is the corner, or the hexagonal unit cell shown in
dotted lines, in which AB and BA are corners of the hexagon.

A. Experimental measurement of order parameter

Transmission electron microscopy (TEM) provides an ex-
perimental route to characterizing local atomic configurations
in real space, including detecting the change in u across a
domain wall, known as the Burgers vector. Changes in the
stacking order are distinguishable by a dark field imaging
technique that consists of inserting an aperture into the diffrac-
tion plane around a single Bragg position and recording the
resulting filtered real space image. Depending on the choice
of diffraction peak, contrast between domains [see Fig. 2(a)]
or the partial dislocations that form the domain walls [see
Fig. 2(b)] in the bilayer stacking are visible [28]. The Burgers

FIG. 2. Dark field TEM images. (a) {1010} (“first order”)
dark field of twisted bilayer graphene, showing domain contrast.
(b) {1120} (“second order”) dark field of the area in (a) showing
domain walls meeting at sixfold nodes. (Inset) Burgers vectors cor-
responding to domain wall colors. (c) Second order dark field of
MoS2 twisted from 3R-like stacking has a similar network topol-
ogy to graphene. (Inset) Burgers vectors corresponding to domain
wall colors. (d) {1010} dark field of MoS2 twisted from 2H-like
stacking has a threefold network topology. (Inset) Burgers vectors
corresponding to domain wall colors. (e) Diffraction pattern of the
sample in (a) with colors of second order diffraction spots circled.
Sample (c) has a similarly oriented diffraction pattern. (f) Diffraction
pattern of the sample in (d) with the colors of first order diffraction
spots circled. Scale bars are 100 nm.

vectors of the dislocations are exactly determinable, as the
vector perpendicular to the diffraction peak for which their
contrast vanishes in the dark field image [28,34]. The Burgers
vector of a dislocation in the bilayer is equal to �u, the change
in shift vector across the boundary.

We note that the dislocations form a network with distinct
topology. Twisted bilayer graphene [Fig. 2(b)] has a structure
where six dislocation lines meet at a node. Despite being a
different material with different symmetries, MoS2 slightly
twisted from a 3R-like stacking (close to 0◦ twisting) appears
to share the same dislocation network topology as graphene
[Fig. 2(c)]. In contrast, MoS2 twisted from a 2H configuration
(close to 180◦ twisting) has a structure where three lines meet
at a node rather than six [Fig. 2(d)]. As we will explore later,
the topology of the graphene and 3R-like case is defined by a
punctured torus, originating from the single energy maximum
in the stacking fault energy as a function of configuration
(and two degenerate minima). However, for twisted 2H MoS2

there are two energy maxima and one minimum, leading the
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configuration space to be described as a twice-punctured torus
and generating a different topology. While in this paper we
focus on the topology generated by the energy profile of
bilayer graphene, we are motivated by the realization that a
topological description of each system’s configuration space
should distinguish the different possible connectivities of the
network, including those arising from materials of different
lattice symmetry, such as a square lattice.

While constructing the tools to analyze the topological
defects of the moiré superlattice in configuration space, we
also attain the ability to analyze the configuration distribution
and extract the overall strain profile in the twisted bilayer.
In order to do these analyses, we need to consider several
important quantities of the moiré lattice: the displacement
gradient matrix, the moiré vectors, and the Burgers vectors.
All of these quantities give important information that allows
us to reconstruct u.

B. Displacement gradient matrix

A displacement vector field u which describes the shift
in positions of a lattice (xt ) compared to a reference lattice
(xb) such that xt = xb + u(xb), is closely related to strain.
Typically, xt is a 2D vector corresponding to the positions
in the strained lattice, and xb is a 2D vector corresponding
to the positions in the intrinsic lattice, prior to application of
forces. In the case of moiré materials, presented in Fig. 1, the
reference lattice (with coordinates xb) is the bottom layer of
the material, and the displaced lattice (xt ) is the top layer.
Thus the vector field that produces a moiré pattern is in a sense
analogous to the relative strain (heterostrain) between the two
layers.

The linear strain matrix, used in the modeling of strain
energies, is defined by taking derivatives of the u field and
symmetrizing:

ε =
(

∂xux (∂yux + ∂xuy)/2

(∂yux + ∂xuy)/2 ∂yuy

)
. (1)

Note that this symmetrized linear strain tensor does not
contain rotation contributions to first order in angle, since
rotation of a lattice is just a coordinate change and does not
contribute strain.

If we do not symmetrize, i.e., keep the rotation component,
the gradient of the u field is known as the displacement gradi-
ent matrix, d , obtained from

d = ∇u =
(

∂xux ∂yux

∂xuy ∂yuy

)
. (2)

The vector u can be recovered by integrating d over dis-
tance. If we assume that u(0) = 0 and that the strain is
spatially uniform from 0 to xb, we obtain

u(xb) = dxb. (3)

Thus xt = xb + dxb or

xt = (1 + d )xb (4)

Any arbitrary displacement of layer 2 relative to layer 1,
formed by a combination of twist and strain, can be written in

terms of a displacement gradient matrix, d , with four indepen-
dent components. It is useful to define the four components as
follows:

d =
(

α + β γ − θ

γ + θ α − β

)
, (5)

where θ is a linear approximate of the twist (measured in
radians), α is isotropic strain, and β and γ are uniaxial and
shear strain, respectively [35].

C. Moiré length

The moiré length is the distance over which the lattice xt

has been shifted by a unit vector with respect to lattice xb,
creating a local return to the starting configuration.

Consider the shift vector u, as defined in Fig. 1. If we twist
our lattices about a point where two atoms are stacked on top
of each other, the origin has u = 0. Traveling away from the
origin in a direction x, the displacement u increases until we
reach the point where the lattices have diverged by a whole
unit cell (u = ±a1 or ±a2, where a1 and a2 are two lattice
vectors of the unstrained lattice) and thus are aligned (u = 0)
again, resulting in moiré periodicity.

A general interface of 2D lattices with heterostrain, xt =
(1 + d )xb, can be characterized by a pair of moiré vectors,
mi (i = 1, 2), which describes the moiré periodicity in the 2D
space. Considering the corresponding pair of two coincident
lattice points in the upper and lower layers, xt ,i and xb,i,
respectively, the two moiré vectors can be expressed

mi = xt ,i = xb,i + si, (6)

where the constant vectors si can each be ±a1 or ±a2, de-
pending on the coincident lattice condition for the moiré
superlattice.

If s1 and s2 are collinear (without m1 and m2 being
collinear), then the matrix d has determinant zero and the
moiré pattern is 1D rather than 2D. We will ignore this case
for now, and assume that a1 and a2 are each used once.

We can relate the lattice constants ai, the matrix d and
the moiré vectors, by mi = xt ,i = (1 + d )xb,i. Thus if d is

invertible, xb,i = d
−1

si and

mi = (1 + d
−1

)si. (7)

Putting Eq. (7) together with the corresponding equa-
tion for the other moiré vector, mi, we obtain a matrix
equation that can be solved for d if we have measured m
and s:

m = (1 + d
−1

)s, (8)

where m and s are 2 × 2 matrices formed by horizontally
concatenating the mi and si column vectors, respectively. Note
that if the two mi’s are not linearly independent, that is again
the |d| = 0 case.

D. Burgers vector

The shift vector u is also related to the Burgers vector of
the dislocations that form in the relaxed moiré system. To
define the Burgers vector, first one considers a closed path
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along the lattice points of a perfect crystal, sometimes called
a Burgers circuit. When a dislocation is introduced within this
path the circuit becomes broken, and the vector connecting the
now separated start and end points of the circuit is called the
Burgers vector. In a moiré superlattice, the twisted interface
acts as a dislocation, and we can obtain Burgers vectors by
considering circuits that traverse the interface. The simplest
closed circuits in the aligned, untwisted structure take the fol-
lowing form: travel from a lattice point x0 to x1 along the top
layer, then down vertically into the bottom layer, then along
x1 to x0 in the bottom layer, and finally return to x0 in the top
layer by moving vertically upwards. To connect the Burgers
vector b to the shift vector u, it is easiest to think of obtaining
the twisted geometry by keeping the bottom layer fixed and
introducing a dislocation via rotation of the top layer. In this
case, the failure of the circuit to close after applying the twist
is equal to the relative change in positions of the lattice points
that corresponded to x0 and x1 in the top layer. However, this
is simply the change in the local shift between the two points,
e.g.,

b =
∫ x1

x0

(dx · ∇ )u(x) = u(x1) − u(x0), (9)

where the nonintegral form is only true if one does not map u
into the compact unit-cell torus.

While this expression was obtained under the assumption
of a uniformly twisted system, the result is quite general. For
the relaxed systems that occur in experimental devices, one
finds that the Burgers vector is only nonzero if a “dislocation
line” (that is, a domain wall) is enclosed in the circuit. Each
dislocation line between a pair of AA nodes can be associated
with a specific Burgers vector, as was done experimentally
using DF TEM in Fig. 2. The pair of AA nodes also provides
a moiré vector mi, which can be linked to si obtained from the
Burgers vectors. Therefore knowledge of the moiré vectors mi

and the Burgers vectors across the dislocations associated with
mi is sufficient to solve for the displacement gradient matrix
using Eq. (8). As the moiré vectors and Burgers vectors can be
measured from experimental dark field and diffraction images,
it is possible to obtain a map of d from the information
provided by DF TEM images, as we will discuss in Sec. IV B.

E. Configuration space

Although a torus is topologically nontrivial, a small loop
around the AA site (u = 0) on the torus can be contracted to
a point and thus does not inherit any nontrivial topological
properties from the torus. The topological defects associated
with winding around the holes of the torus are the disloca-
tions [32], but this description alone provides no constraint
on the manner in which the dislocations meet at the nodes. In
the case of a graphene moiré superlattice, the three dislocation
lines with different Burgers vector, colored red (R), green (G),
and blue (B), converge at the AA defect and diverge out
again. What we need is a proper mathematical description of
the topological nature of the AA nodes consistent with the
experimental findings.

We start by investigating the distribution in configuration
space of the order parameter for unrelaxed and relaxed moiré
systems. Figure 3(a) shows an unrelaxed twisted bilayer of

FIG. 3. [(a)–(c)] Schematic of real space arrangement for (a) un-
relaxed moiré structure, (b) partially relaxed moiré structure, and
(c) fully relaxed moiré structure. Colors denote region in con-
figuration space corresponding to local stacking order. [(d)–(f)]
Distribution in configuration space of local stacking order sampled
at each plaquette of the lattice for (d) unrelaxed moiré structure,
(e) partially relaxed moiré structure, and (f) fully relaxed moiré
structure.

a honeycomb lattice, and Fig. 3(d) shows the configuration
space, colored via a scheme that is used consistently through-
out this work. A Gaussian intensity distribution of a chosen
color is centered around each key point in configuration space.
The region of configuration space centered around the AA
point is colored white, and those centered around AB (BA)
are dark gray (light gray). Red, green, and blue regions are
placed on the midpoint of the three equidistant shortest paths
between AB and BA, two of which require crossing the unit
cell boundaries. The coloring in real space in Figs. 3(a)–3(c) is
determined for each point, by determining the local shift vec-
tor, finding it as a point in configuration space, and adopting
the color corresponding to that point.

Figures 3(b) and 3(c) depict real space structures that have
been modulated by a periodic lattice distortion to mimic re-
laxation, with two different amplitudes. As the amplitude of
relaxation is increased from Fig. 3(a) to 3(b) to 3(c), light
or dark gray regions, corresponding to nearly AB or BA
stacking, take up increasing areas in real space, while AA
regions shrink, and red, green, and blue regions evolve into
lines. Because the red, green, and blue color tell us which
path on the torus was used to get between BA and AB, i.e.,
�u, the color tells us the Burgers vector of that line. The
corresponding distributions in configuration space are shown
in Figs. 3(d)–3(f). As relaxation strength increases, decreasing
point density around the AA configuration reveals that fewer
points in real space correspond to AA stacking, while config-
urations on the red, green, and blue lines, and especially AB
and BA sites, become more numerous. Thus, the atomic lattice
relaxation process in real space can be viewed as emptying out
most of configuration space and populating only the AB and
BA points and dislocation lines connecting them.

A similar emptying of AA and concentration at AB, BA,
and the colored lines between AB and BA, occurs for the
three strain types: isotropic, uniaxial, and shear. Figures 4(a)–
4(c) show the configurations formed by xt = (1 + d )xb with
a spatially constant displacement gradient matrix d , corre-
sponding to only one nonzero component α, β, or γ in Eq. (5).
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FIG. 4. Schematics of real space structure for the three strain
components. Moiré from (a) isotropic scaling, (b) uniaxial strain, and
(c) shear strain. Relaxed moiré from (d) isotropic scaling, (e) uniaxial
strain, and (f) shear strain. Colors correspond to configurations, as
defined in Fig. 3.

Figs. 4(d)–4(f) show corresponding structures after applying
the modulation function to mimic atomic scale relaxation. We
note that the order and orientation of red, green, and blue lines
differs in real space for each strain component, as well as
twist. In this sense, the colors (encoding local order param-
eter) provide information about which strain components are
present.

III. THEORY OF DISLOCATION NETWORK NODES
IN MOIRÉ SUPERLATTICES

As emphasized previously, the proper order parameter
space for a moiré superlattice and the various network struc-
tures observed in it is the space of shift vectors u with the
boundary conditions of a torus and one point u = 0 removed
due to energy considerations (and the ensuing atomic relax-
ation), as shown in Fig. 5(b). But the TEM images shown in
Fig. 2 suggest an even more constrained space for the order
parameter. For moiré regions with a sufficiently large moiré
length scale, the order parameter is locked to either the AB
(uAB) or BA (uBA) point in the configuration space. There are
three equivalent ways to make a transition from BA to AB
stacking orders, designated by red, blue, and green arrows

BA

AB

BA

AB

BA

AB

AA

R-1

R

G

G-1

B

B-1

R-1

R

G

G-1

B

B-1

R-1 R

G

G-1
B

B-1

R-1R
G

G-1 B

B-1

AB

BA

AB

BA

AB

BA G

B

R

G-1

R-1

B-1

(a) (b) (c)

(d) (e) (f )

(g) (h)

FIG. 5. Energy landscape in the configuration space torus de-
termines the topology of the network, which can be equivalently
viewed (a) on the unit cell, (b) as a torus with a puncture (AA
configuration is removed from space), or (c) as theta space. (d) Using
the hexagonal unit cell, it can be seen that clockwise or counterclock-
wise paths around an AA point determine the order in which R, G,
and B elements are encountered. [(e)–(h)] Real space arrangement
of dislocations corresponding to clockwise paths in configuration
space, generating vortices [(e) and (f)] and counterclockwise paths
in configuration space, generating antivortices [(g) and (h)]. Each
domain wall is colored and labeled based on the R, G, or B move in
configuration space. The direction of the configuration space move,
equivalent to the Burgers vector, is shown by the black arrows.
Comparison with Fig. 4 identifies the structures as generated from:
(e) isotropic, (f) twist, (g) uniaxial, and (h) shear displacement.

in Fig. 5(d) with corresponding label R, G, and B. The AB
to BA transition is accomplished by their inverses, shown as
R−1, G−1, and B−1 in Fig. 5(d). Since the uAB, uBA, and the
three RGB lines connecting the two points span the entirety
of the relevant order parameters, one can “gouge out” the
unnecessary portions of the punctured torus. The result is the
theta space shown in Fig. 5(c). This is the relevant configu-
ration on which to make a proper definition of vorticity, not
the circle (S1) where the usual homotopic classification of
vorticity takes place [32].

Before developing the formal theory of vorticity in the next
section, we complete the phenomenological classification of
possible vortex patterns around the AA node. According to
the TEM data, a path around a single AA node in real space
simultaneously implies encircling the AA spot in configura-
tion space by u. Closed paths in real space that encircle a node
of the dislocation network now correspond to noncontractible
paths in configuration space. The vortex winding number w

can be intuitively defined as +1 or −1 if the configuration
space loop cycles the same or opposite direction as the real
space loop, respectively [Fig. 5(d)]. Recalling that the red,
green, and blue paths in configuration space correspond to
Burgers vectors of dislocations in real space, the possible
orderings of Burgers vectors in real space surrounding an AA
node can be determined. There are four distinct arrangements:
starting at either AB or BA in Fig. 5(d), one can circle either
clockwise [w = +1, Figs. 5(e) and 5(f), describing vortices]
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FIG. 6. (a) The RG−1 move in the hexagonal zone scheme of
the configuration space is translated into a noncontractible loop in
the parallelogram zone scheme. It is labeled by a. (b) The BR−1

move in the hexagonal zone scheme of the configuration space is
translated into a second noncontractible loop in the parallelogram
scheme. It is labeled by b. (c) The GB−1 move in the hexagonal zone
scheme is translated into a third noncontractible loop that can be
decomposed as a product of the previous two moves, a−1b−1. (d) The
aba−1b−1-loop is equivalent to a circle round the point u = 0. It is
a noncontractible loop due to the high-energy barrier for the u = 0
configuration.

or counterclockwise [w = −1, Figs. 5(g) and 5(h), describing
antivortices]. Comparing the locations of red, green, and blue
lines in Figs. 5(e)–5(h) and in Fig. 4, it can be concluded that
twist and isotropic strain produce vortex-type defects at the
nodes, and uniaxial or shear strain produce antivortex-type de-
fects at the nodes. Note that reversing the direction of twist or
exchanging layers does not convert vortices into antivortices.
The only way to produce antivortices is to have an anisotropic
heterostrain between the layers.

A. Algebraic formulation of vorticity

To understand the algebraic structure of paths in the theta
space [Fig. 5(c)], it is useful to consider the same path through
configuration space in both the unit-cells shown in Fig. 1(e).
Let us consider the full encirclement of the AA node shown
in Fig. 5(d). We begin by observing that the BA → AB →
BA transition through the R and G−1 dislocations in Fig. 5(d)
becomes, in the parallelogram scheme shown in Fig. 6(a),
a noncontractible loop about the torus’ periodic boundary
conditions. The other BA → AB → BA transition through the
B and R−1 arrows in the hexagonal scheme becomes another
noncontractible loop in the parallelogram unit cell shown in
Fig. 6(b). We label the first and the second transitions as a and
b, which will soon be identified with two generators of the free
group F2 [36,37]. The third BA → AB → BA move through
G and B−1 arrows of the hexagon can be decomposed as the
inverse of a followed by the inverse of b, or a−1b−1 [Fig. 6(c)].
A complete loop around the edges of the hexagonal unit cell is

equivalent to the algebraic operation aba−1b−1 ≡ [a, b]. Our
convention is to perform the operation appearing on the left
side of the product first.

The commutator [a, b] in the language of the free group
with two generators a, b represents a “vortex” centered about
the AA defect. The vorticity of this topological defect can
naturally defined as the commutator [a, b] (more detailed dis-
cussion in Appendix A). Similar to the conventional vortex
defined in S1, this vorticity defined for the AA node is non-
trivial in the sense that it is not contractible to an identity,
as illustrated in Fig. 6(d). After canceling out the paths that
are traversed both ways, the overall path for [a, b] becomes
equivalent to four partial loops around the four corners of
the parallelogram, equal to a full loop round u = 0. On a
torus such a loop can be contracted to zero and become
trivial, but not for a punctured torus. The antivortex has the
algebraic representation [b, a] = bab−1a−1 = [a, b]−1. Geo-
metrically, this amounts to starting from the same BA point
on the upper left corner of the hexagonal unit cell in Fig. 5(d)
and making a complete counter-clockwise loop. Appendix A
gives a more complete account of the vortex structures in the
language of free groups with two generators a, b. One can
find group-theoretic representations for vortex dipoles (vortex
+ antivortex) and vortex quadrupoles (two vortices and two
antivortices) as well.

B. RGB formulation of vorticity

As we described in Sec. II A, dark field TEM imaging can
identify the dislocation lines with given Burgers vectors and
the AB and BA domains separated by them. Each dislocation
line converging on a given AA node can then be color-coded
as R, G, B or one of their inverses R−1, G−1, B−1 considering
Burgers vector and the neighboring AB/BA domains in the
TEM measurement. The free group language of the previous
subsection gives a mathematically complete account of the
vortex and antivortex structures, but it is helpful to translate
the same statement to the more tangible and experimentally
measurable RGB scheme according to

a ↔ RG−1, b ↔ BR−1 ba ↔ BG−1. (10)

By direct substitution, we obtain the commutator

[a, b] = RG−1BR−1GB−1, (vortex) (11)

which is a product of transition vectors over the six domain
walls in succession. In the same scheme, we have the antivor-
tex commutator

[b, a] = BG−1RB−1GR−1 (antivortex). (12)

Any cyclic permutation of the six letters gives rise to the
equivalent vortex or antivortex.

While the sign of the exponent in R, G, and B operators can
be obtained considering the order of the neighboring AB and
BA domains by combining the DF TEM images with the first
and second order Bragg peaks as shown in Fig. 2, there is a
simpler scheme to assign the sign of the operators, considering
AB/BA domains are always complementary. For example, if
the six dislocation lines converging on an AA node appear,
for instance, in the order of RGBRGB while going clockwise
around it, it ought to be interpreted as RG−1BR−1GB−1 given
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in Eq. (11) and classified as a vortex. If the colors appear as
RBGRBG, it is an anti-vortex according to Eq. (12). One only
needs to keep in mind that the sequence of colors is to be
understood as one color letter followed by the inverse of an-
other color letter, and vice versa. Generalizations of the RGB
scheme to vortex-antivortex dipole and/or vortex quadrupole
structure are discussed in the Appendix B.

IV. EXPERIMENTAL OBSERVATION
OF ANTIVORTICES AND STRAIN

A. Detection of antivortices

While moiré patterns and commensurated domain systems
with vortex-type nodes have been studied extensively, those
with antivortex-type nodes have not been demonstrated. We
postulate this is due to the energy required to maintain suffi-
cient strain, whereas twist and lattice constant mismatch can
create vortex-type moiré without global strain. Nonetheless,
we observe a line of antivortex nodes along a boundary of
nonuniformly strained moiré superlattice.

Figure 7(a) shows combined DF TEM images of a twisted
bilayer graphene sample that contains a ∼1 μm sized bub-
ble formed underneath the sample. Near the boundary of
the bubble, nonuniform relative strain builds up in the moiré
superlattice, which in turn creates the various strain compo-
nents discussed in Eq. (5). The antivortices (vortices) can
be identified by the RBG (RGB) order in which the dislo-
cations occur in a clockwise loop. The antivortices, which
form along the top edge of a closed-loop dislocation, are each
capable of annihilating with a nearby vortex, keeping the net
winding number w constant within a fixed-boundary region.
In Fig. 7(b), loop A surrounds a vortex-antivortex pair, with
w = 0. Loop D, which surrounds the entire closed-loop dis-
location, also has net w = 0 as the entire feature could
annihilate if the local strain were removed, in which case
it would become similar to loop E. When circling a single
antivortex (B) or vortex (C), the winding number is nonzero.

B. Strain mapping

Existence of antivortices is a measure of the fact that
anisotropic strains (uniaxial and shear) are dominating over
the isotropic and twist components. Anisotropic strains al-
ter the band structure and can produce pseudomagnetic
fields [38]. We can quantify the various strain components
from the displacement gradient matrix. Computation of the
displacement gradient matrix from a DF TEM image is dis-
cussed in Appendix C. In brief, one component of the order
parameter is known at every colored line, and an elastic model
is used to interpolate in between, obtaining an estimate of the
order parameter in the continuum. The displacement gradient
matrix can be obtained by differentiating the order parameter.
This method can be readily applied to any DF TEM images
with prominent relaxation effect, such that the dislocation
lines and their nodes are identifiable. For twisted graphene,
this corresponds to angles approximately 1◦ and below [27].

The density of vortices or antivortices is computed in
Fig. 7(c), by taking the determinant of the displacement
gradient matrix, |d|, which by the definition in Eq. (5) is
equal to (α2 + θ2) − (β2 + γ 2) in terms of the strain and

FIG. 7. (a) Dark field image of twisted bilayer graphene con-
taining antivortices along a bubble edge. Left region shows colored
second order image, right region shows first order image. (Inset)
Burgers vector directions corresponding to dislocation colors, super-
imposed on diffraction pattern. (b) Zoom in on tracing of region of
white box in 1a. Loops are drawn and topological number of each
loop is counted. (A) Vortex-antivortex pair, w = 0. (B) Antivortex,
w = −1. (C) Vortex, w = +1. (D) Closed-loop dislocation, w = 0.
(E) Linear domains, w = 0. (c) Vortex density map computed from
interpolated displacement gradient matrix of image (a)

twist components. If |d| > 0, vortices are present and if
|d| < 0, antivortices are present (see Appendix C). Thus, if
the isotropic components (twist and isotropic scaling) out-
weigh the anisotropic components (shear and uniaxial strain),
vortices form, and if the opposite, antivortices form. If |d| =
0, 1D domains are observed [26,39].

We further use our estimated displacement gradient ma-
trix to create strain maps of the three strain components,
plus twist. Note that the moiré pattern only provides infor-
mation on the heterostrain, or difference in strain between
the two lattices. Furthermore, in this work, we are interested
in the large-scale strain pattern that leads to distorted moiré
cells, rather than the local strain concentrated in the domain
walls upon relaxation. Unlike other methods to estimate the
large-scale heterostrain from the spatial structure of a moiré
pattern [40], this DF TEM method includes knowledge of
the lattice orientation and Burgers vector information, avoid-
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FIG. 8. (a) Dark field image of WSe2/MoSe2 heterobilayer, in-
cluding domains larger than the lattice-mismatch limit. Scale bar
is 100 nm. (Inset) Diffraction pattern from a nearby region and
Burgers vectors. (b) Vortex density map. (c) Isotropic strain map
showing average mismatch lower than the 0.3% expected from the
intrinsic lattice mismatch. (d) Uniaxial strain map, showing opposite
sign strain when domains are slanted left vs right. (e) Shear strain,
showing magnitudes around 1% in the highly elongated domains.
(f) Twist map, showing twist as the largest contributor to the moiré
pattern.

ing the need to make additional assumptions. Still, the need
to interpolate within the moiré cell means that information
smaller than the moiré scale is not deterministic from the
data. This method for strain mapping could supplement other
experimental techniques that image the domain wall pattern
in conjunction with Burgers vector information [41,42], to
determine the large-scale strain distribution.

In Fig. 8, strain maps are shown for a heterostructure of
MoSe2 and WSe2. The intrinsic lattice constant mismatch of
0.3% should show up in the isotropic component. However,
isotropic mismatch smaller than 0.3% is measured, indicating
that the lattice attains a global strain to achieve closer to epi-
taxial matching. As global lattice mismatch is often assumed
to be fixed when calculating moiré lengths, this example illus-
trates how strain mapping can reveal useful information about
the phenomenology of moiré materials.

V. CONCLUSION

In conclusion, we have presented a general and rigorous
approach to describing the topology of nodes formed in moiré
materials. Vortex and antivortex are described as the com-
mutator [a, b] and its inverse [b, a] of the free group F2 on
generators a and b. The two generators have an intuitive
geometric interpretation as two distinct ways by which to
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FIG. 9. General configuration of RGB lines extending from an
arbitrary circle drawn on an experimentally TEM image. By writing
out the RGB letters along the circumference of the circle, one can
read off the total vorticity, number of dipoles, etc. contained in the
circle.

make a transition from the AB to BA stacking order, and
then back to AB. High-quality TEM measurements are then
utilized to represent the abstract generators in terms of colors
of domain walls, leading to a dictionary by which to infer the
vortex content inside a given boundary. This dictionary relies
upon the order in which the colored domain walls cross the
boundary. The idea is schematically illustrated in Fig. 9.

We discover an antivortex-type node and present a DF
TEM based method for characterizing the type of node and
strain field, which does not rely on the usual assumption that
the dominant component creating the moiré pattern is twist.
This opens the door for the design and characterization of
moiré materials based on anisotropic strain fields.
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APPENDIX A: VORTEX ALGEBRA

We have avoided explicit use of the language of group
theory in the main body of the paper. The two generators a, b
and their commutators [a, b], [b, a] were introduced through
physical motivation. Here we provide more in-depth discus-
sion and generalizations based on the theory of the free group.

The fundamental group of the punctured torus is F = F2,
the free group on two generators a, b [36,37]. The a and b
generators correspond to the two independent ways in which

125413-9



REBECCA ENGELKE et al. PHYSICAL REVIEW B 107, 125413 (2023)

one can encircle the torus. In an ordinary torus, the two opera-
tions a and b do commute (Abelian), and the only elements of
the fundamental group of the torus are ambn, which count the
number of loops in both directions. For a punctured torus such
commutativity is lost, and consequently the group structure
becomes non-Abelian.

Elements of the free group F2 consist of every conceivable
sequence of “letters” such as abaabbbaa · · · called “words.”
Keep in mind that both letters a and b have specific geometric
moves associated with them. At this point it is helpful to go
over well-established theorems in free groups to guide our
thinking.

We now use F to denote the original free group F2. Given
two elements x, y ∈ F , the commutator is denoted [x, y] ≡
xyx−1y−1. The “lower central series” of the free group can
be defined as follows. One begins with F 1 = F which is the
original free group, then F 2 = [F, F ] is the subgroup of F
consisting of all commutators [x, y] and their products, i.e.,
all elements of the form

[x1, y1][x2, y2] · · · [xn, yn], (xi, yi ∈ F ).

The subgroup F 2 is also a normal subgroup, meaning that the
quotient space F 1/F 2 is a group.

Now one can proceed inductively and define

F n = [F, F n−1],

the subgroup generated by all elements of the form [x, y],
where x ∈ F and y ∈ F n−1. It is easy to check from the defi-
nition that

F 1 ⊃ F 2 ⊃ F 3 ⊃ F 4 · · · .

Much like the study of van der Waals materials, such “filtra-
tion” gives a nice way to study a free group structure “one
layer at a time”!

Some facts that are worth noting about the lower central
series are summarized.

(1) Any element f1 of F 1 = F can be uniquely written
am1 bn1 f2 with n1, m1 ∈ Z and f2 ∈ F 2.

(2) Any element f2 of F 2 can be uniquely written
[a, b]m2 f3 where m2 ∈ Z and f3 ∈ F 3.

(3) Any element f3 of F 3 can be uniquely written
[a, [a, b]]m3 [b, [a, b]]n3 f4 with m3, n3 ∈ Z and f4 ∈ F 4.

(4) Any element f4 of F 4 can be uniquely written
([a, [a, [a, b]])m4 ([a, [b, [a, b]]])n4 ([b, [b, [a, b]]])p4 f5 with
m4, n4, p4 ∈ Z and f5 ∈ F 5.

By putting all of the above statements together, one sees
that any element f in the free group can be uniquely written
as

f = am1 bn1 [a, b]m2 [a, [a, b]]m3 [b, [a, b]]n3 ([a, [a, [a, b]])m4 ([a, [b, [a, b]]])n4 ([b, [b, [a, b]]])p4 f5 (A1)

and so on. In general, each F k is a normal subgroup, and
F k/F k+1 
 Zrk , meaning the quotient group is isomorphic
to a product of rk integer groups Z × · · · × Z. The number
of generators is rk for a given quotient group F k/F k+1. Al-
though the free group itself is non-Abelian, the quotient group
F k/F k+1 is Abelian, characterized by a set of rk integers.
These integers then go on to play the role of topological
quantum numbers in physical contexts.

Elements of the free group (A1) for which m1 = n1 = 0
refer to closed loops in real-space graphical representation.
It is clear that these are the only elements of F that we are
interested in. Elements for which f5 = e (an identity) and
m3 = n3 = m4 = n4 = p4 = 0 are f = [a, b]m2 with nonzero
m2. These are the elements of the quotient group F 2/F 3 and
represent the vortices (m2 > 0) and antivortices (m2 < 0) in
physical contexts.

To consider higher-order topological defects, consider ele-
ments for which f5 = e and all integers in Eq. (A1) equal to
zero except (m3, n3):

f = [a, [a, b]]m3 [b, [a, b]]n3 . (A2)

Pictorial representations for the double commutators
[a, [a, b]], [b, [a, b]] are easily obtained by tracing out
paths according to definitions of a and b given in Fig. 6. We
encourage readers to perform such exercises themselves and
arrive at their graphical representations shown in Fig. 10. They
are precisely the graphical representation of vortex-antivortex

pairs (vortex dipoles) lying along the two crystallographic
directions of the triangular lattice.

Next in line is the description of vortex quadrupole struc-
ture as triple commutators. According to Eq. (A1), there are
only three generators of the quotient group F 4/F 5 
 Z ×
Z × Z. How does one know there are only three generators
at this level of filtration?

There is a theorem that gives the number of generators (rk)
at each level k through the formula

gk =
∑
d|k

d · rd . (A3)

In this formula, the sum runs over all divisors d of the given
integer k. For a free group with only two generators, we have
g = 2 on the left side of the equation. To see how the formula
works with g = 2, first set k = 1 to find 2 = r1. It means that
the quotient group F 1/F 2 has two generators, namely a and
b. At k = 2 we have 22 = r1 + 2r2 = 2 + 2r2 or r2 = 1, hence
there is only one generator of F 2/F 3 which is the commutator
[a, b]. At k = 3 we have 23 = r1 + 3r3 = 2 + 3r3, and r3 = 2
is the number of generators for F 3/F 4, namely [a, [a, b]] and
[b, [a, b]]. Finally, at k = 4, we get 24 = r1 + 2r2 + 4r4 =
2 + 2 + 4r4, and r4 = 3 is the number of generators of F 4/F 5

given by [a, [a, [a, b]]], [a, [b, [a, b]]], [b, [b, [a, b]]]. It is an
arduous, but fun exercise to draw the real-space paths corre-
sponding to each of the triple commutator. The results are the
three distinct vortex quadrupole configurations in real space
shown in Fig. 11.

125413-10



TOPOLOGICAL NATURE OF DISLOCATION NETWORKS IN … PHYSICAL REVIEW B 107, 125413 (2023)

FIG. 10. Graphical representation of the double commutators
[a, [a, b]], [b, [a, b]]. They give vortex dipoles oriented along the two
directions of the triangular lattice. Filled (empty) square is a vortex
(anti-vortex).

APPENDIX B: RGB SCHEME
FOR HIGHER-ORDER VORTICES

In Sec. III, we discussed ways to characterize a vorticity
in terms of the RGB color scheme. A similar RGB scheme
to characterize various higher-order vortex structures can be
developed.

Figure 12 shows the vortex dipole and quadrupole config-
urations in terms of intersecting RGB loops. A small circle
drawn around each intersection can determine the vorticity of
that point. For instance, the filled (empty) circle round the top
(bottom) intersection in Fig. 12(a) reads the product of letters
RG−1BR−1GB−1 (BG−1RB−1GR−1) going counter-clockwise,
corresponding to a vortex (an antivortex). Vortex quadrupole
construction is done by having the three RGB loops intersect
at four different points, as shown in Fig. 12(b). In both cases,
a large circle drawn far away from the loops fails to cross any
of the RGB lines.

It is possible to construct examples of vortex dipole config-
urations with loops extending out to infinity (hence crossing
an arbitrary large circle) as in Figs. 13(a) and 13(b). The group
elements assigned to each configuration can be calculated
straightforwardly, leading to [a, [b, a]] and [ab, [b, a]] for the
left and right configurations, respectively.

This kind of scheme is applicable to experimental situa-
tions. Draw a large loop enclosing a given TEM image in
the manner shown in Fig. 9, then start counting the dislo-
cation lines according to the RGB scheme. The RGB-based
words can be converted to the ab-letter scheme with the help
of the dictionary given in Eq. (10). The ab-based word can

FIG. 11. Graphical representation of the three triple commuta-
tors [a, [a, [a, b]], [a, [b, [a, b]]], [b, [b, [a, b]]] correspond to three
different kinds of vortex quadrupoles in real space.

subsequently be converted to various commutators and
higher-order commutators until it is cast in the general form
given in Eq. (A1), from which the total vorticity, dipole num-
bers, quadrupole numbers and so on can be read off.

APPENDIX C: TEM IMAGE PROCESSING

TEM DF images were taken on a JEOL 2010F microscope,
with 80kV accelerating voltage. A 5-μm objective aperture

FIG. 12. (a) RGB graphical representation of a vortex dipole
with v(vortex, filled circle) and v(antivortex, empty circle) sites.
(b) Quadrupole configuration with alternating vvvv cores.
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FIG. 13. (a) Extended vortex dipole configuration characterized
by the letter sequence RG−1BG−1RB−1GR−1BR−1GB−1. After sim-
ple calculation, this becomes equivalent to [a, [b, a]]. (b) Another
extended vortex dipole configuration, expressible as the double com-
mutator [ab, [b, a]].

was used to form the dark field images. RGB-colored com-
posite images were formed using ADOBE PHOTOSHOP blending
modes from three distinct second order images of a given
sample region.

To create strain maps in Fig. 8, we performed image pro-
cessing using PYTHON programming codes on images of red,
blue, and green lines, such as in Fig. 7(b), to prepare to
interpolate shift vector values. Ideally an algorithm could be
created to extract the lines straight from TEM images but we
skip that step for now, and manually trace the red, green, and
blue lines to create an “ideal” (i.e., noiseless), but still raster,
image. It is then necessary to split all lines into individual line
segments and points of intersections, which we call nodes.
First, using the connected Components function in PYTHON’S

OPENCV library, nodes are found by searching for places where
red, green, and blue pixels coincide. In a similar manner,
pixels that belong to each red, green, or blue line are grouped
into lists after dilating them to ensure continuity. We include
each line in a dictionary that describes the color of the line
and what nodes are part of it. Next, a circle centered around
each node is removed from the image (set to R,G,B = 0,0,0),
effectively breaking the lines into line segments. Again, the
pixels of each segment are found and a dictionary is created
for each line segment. The parent line of each segment is
identified, as well as the nodes that are its endpoints.

Next, each node must be assigned three integer values
corresponding to the coefficients of aR, aG, and aB, where aR

is the lattice vector associated with the red line, and so on. An
origin node is picked arbitrarily and assigned the coefficients
(uR, uG, uB) = (0, 0, 0). Then, a red segment adjacent to the
starting node is chosen to reach a second node, which is

assigned (uR, uG, uB) = (0, 1,−1). Now that a second node
is assigned, the choices are not arbitrary because the direction
of increase for each vector has been determined. Note that
it is the case that uG + uG + uB = 0 at every node, because
aR + aG + aB = 0. We also know that ur is constant on red
lines, ug on green lines, etc. From each node, we move to its
neighboring nodes (those connected by a segment), and use
these properties to fill in the rest of the coefficients. A nice
property of this manner of assigning coefficients is it does
not need to be told whether a given point is a vortex or an
antivortex. Lastly, using the csap and scipy libraries, we fit
B-splines to each line segment while forcing the spline to pass
through the nodes of the segment and then use the knots of the
splines to generate a Gmsh mesh file.

The next part of the computation is done in the Julia
programming language. The vector values of aR and aG (mea-
sured from a diffraction pattern) must be input (aB can be
found from the other two). Recall that the vectors in the
image plane should appear in the order of RGB while going
clockwise to correctly distinguish vortices and antivortices.
Coefficients are then attributed to points on lines of the mesh
and interpolated via an elastic model using the Gridap li-
brary [43] and its interface with Gmsh [44]. The elastic model
applies a cost to a large derivative in the u field, as well as
a cost to deviating from the known values on the lines. The
resulting u field is differentiated to get strain components.
The values are defined on a mesh that is small compared to the
moiré length. For plotting, the mesh values are interpolated
onto a grid in the MATLAB software package.

In addition to spatially mapping each strain component,
knowledge of the displacement gradient matrix can be used
to map the density of vortices and antivortices. Antivortices
are distinguished from vortices by the chirality of the rotation
in configuration space as you make a loop in real space. To
quantify the chirality, we can compare the sign of the cross
product of a pair of real-space vectors to their corresponding
vectors in configuration space. Consider the real space carte-
sian vectors x and y where x × y is positive. They correspond
to dx and dy in configuration space, by Eq. (3). If the sign of
the cross product in configuration space is also positive, it is a
vortex. If negative, it is an antivortex.

Given that x and y are basis vectors and the matrix

d =
(

a b
c d

)
=

(
α + β γ − θ

γ + θ α − β

)
,

dx × dy = (ad − cb)xy. Thus the condition for a vortex is
det[d] > 0 and for antivortex is det[d] < 0.

Writing in terms of the strain components, the condition is

sgn[(α2 + θ2) − (β2 + γ 2)] =
{

1 vortex
−1 antivortex . (C1)
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