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Chiral zero-energy modes in the disordered α-T3 lattice
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The α-T3 lattice is an interpolate between the graphene (α = 0) and the Dice lattices (α = 1) and has
a nondispersive flat band across the Dirac bands at the band center (E = 0). In this paper, we study the
delocalization effect of the additional chiral zero-energy modes (CZEM) from the vacancy disorder in the α-T3

lattice and address the influence of the flat band on the CZEM. It is shown that the mere broadening of the
flat band without the CZEM could produce a supermetallic phase around the band center E ∼ 0 as well as an
adjoined narrow localization regime. When the CZEM from the vacancy disorder is turned on, the transport
property resembles the graphene case (α = 0) that electrons in the low-energy regime are fully localized except
the Dirac point of E = 0, which is a critical delocalization point because the zero-energy conductivity (ZEC)
is independent of the inelastic-scattering strength η. But the ZEC itself is shown to weakly rely on both the
model parameter α and the vacancy density nc due to the broadening effect of the flat band. The extreme vacancy
imbalance among each ABC site of a primitive cell is also studied, and the electron transport around E ∼ 0 is
changed to be either the pure inelastic disorder case without vacancy or the fully localized phase without the
critical delocalization point of E = 0, which depends on the central site B atom replaced by vacancy or not.
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I. INTRODUCTION

The flat band system [1–6] has received much attention
for the past decade, especially, since the discovery of the
superconductivity in the twisted bilayer graphene [7,8] where
a nearly flat band was identified around the magic angle.
Due to the destructive quantum interferences, the electron
group velocity is exactly zero for the flat band so that the
kinetic energy is quenched, and the electron density of states
are divergent, which together with the Coulomb interaction
may give rise to some peculiar quantum phases, such as
ferromagnetism [9–12], high-temperature superconductivity
[13,14], zero-field fractional quantum Hall effect [15,16],
Bose-Einstein condensation [17], Wigner crystallization [18],
etc.

The formation of the flat band generally originates from
the lattice with a chiral sublattice symmetry and an imbalance
among the number of sublattice sites [1], i.e., the flat band due
to the extra hub atom is usually accompanied by the linear
Dirac bands due to the chiral symmetry. The study of the flat
band has a long history, some materials with a perfect flat band
and absolute zero-energy dispersion have been proposed in the
literature, such as the Dice [19] or Lieb lattice [20], and they
have been demonstrated in the optical lattice systems [21–26]
until recent years. A more robust flat band was also identified
in the 1T -TaS2 [27,28] material that can survive from the
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spin-orbit interaction. In bis(iminothiolato)nickel monolayer
lattice [29,30], the flat band was shown crossing the single
Dirac band at the band center.

The flat band is supposed not to directly contribute to
the electron transport because the electrons are fully local-
ized with a zero group velocity, however, the electrons in
the neighboring (crossed) bands can exhibit some remarkable
properties. For example, the α-T3 lattice model [31–36], an
interpolate between the graphene lattice (α = 0) and the Dice
(α = 1) lattice, has shown the super-Klein tunneling [37,38]
and supercollimation phenomena [39]. In addition, the con-
ductivity of the α-T3 lattice was extensively investigated, and
there exists some controversy about the zero energy conduc-
tivity (ZEC), Louvet et al. [40] reported that there is a zero
ZEC by the scattering wave-function method due to the exis-
tence of the flat band, but oppositely, Vigh et al. [41] showed a
divergent ZEC in the Dice lattice by using the Kubo formula.
The similar nonzero ZEC was also found in the Lieb lattice
[42] and the line-centered honeycomb lattice system with a
flat band [43].

In monolayer graphene, a universal ZEC σ0 = 4e2/hπ was
found in both the pristine and the vacancy-disorder cases
[44–47]. The vacancy disorder is believed to induce chiral
zero energy modes (CZEM) whereas the chiral symmetry
of the system is untouched [48,49]. Since the time-reversal
symmetry, and spin-rotation symmetries are also invariant,
the vacancy-disordered graphene belongs to the chiral orthog-
onal (BDI) class. Ferreira and Mucciolo [47], by means of
accurate large-scale numerical calculations, showed that zero
energy is a critical delocalization point because the ZEC is
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FIG. 1. (a) A schematic α-T3 lattice with a primitive cell con-
taining ABC atoms. The AB atoms constitute the basic honeycomb
lattice with the C atom residing in the center of each hexagon. (b) The
band structure of the α-T3 lattice. The only one pz orbit of each atom
is considered, such as the graphene lattice, and there is an additional
flat band across the Dirac points of K and K ′.

independent of the inelastic-scattering strength η as well as
the vacancy density. The similar phenomenon was also found
in the chiral-unitary-class (AIII) and chiral-symplectic class
(CII) two-dimensional (2D) semimetals of a square bipartite
lattice system [50]. This motivates us to study the CZEM fate
in the α-T3 lattice as well as its interplay with the original
zero-energy flat band.

In this paper, we numerically compute the low-energy
conductivity of the α-T3 lattice by using the Chebyshev
polynomials Green’s function (CPGF) method [47,51] and
the Kubo-Greenwood conductivity formula. We show that
a supermetallic phase occurs around the band center E ∼ 0
together with an adjacent localized transport regime when
the flat band is broadened merely by the inelastic scatter-
ing without the vacancy disorder or CZEM. Oppositely, the
vacancy-disorder-induced CZEM can make the low-energy
regime localized fully except the E = 0 point, which is re-
ferred to as the critical delocalization point the same as the
graphene case. The ZEC magnitude is now independent of
η but instead, dependent on the system parameter α as well
as the vacancy density nc due to the interplay of the CZEM
and the broadened flat band. The extremity of the vacancy
imbalance among different atom sites is also studied and
the low-energy transport properties of the system would be
drastically affected.

This paper is organized as follows. In Sec. II, we introduce
the lattice model and the formula for calculating the conduc-
tivity. In Sec. III, numerical calculations of the density of
states are presented. The conductivity without and with the va-
cancy disorder are calculated in Secs. IV and V, respectively.
A brief conclusion is drawn in the last section.

II. MODEL AND FORMULA

We start from the α-T3 lattice structure as schematically
shown in Fig. 1(a), where the A and B sites comprise a honey-
comb lattice whereas site C is introduced at the center of each
hexagon to form the Dice lattice structure. The parameter α

is reflected in the hopping energy of electrons between sites
B and C, t ′ = αt with t , the hopping energy between A and
B sites of the graphene lattice, whereas the hopping between
A and Csites is prohibited. The prominent characteristic of
the α-T3 model is the zero-dispersion flat band crossing the

two Dirac points of K and K ′ as shown in Fig. 1(b). The
Hamiltonian of the α-T3 model in the lattice representation
reads

H =
∑

〈i j〉
tc†

i c j +
∑

〈 jk〉
t ′c†

j ck, (1)

where c†
i, j,k (ci, j,k) is the creation (annihilation) operator of

electrons on the corresponding–C sites denoted by γ = i, j, k
indices, respectively. The first term is the electron hopping
between A and B sites whereas the second one, t ′ = αt , is
that between B and C sites. The summation of 〈i j〉 (〈 jk〉) runs
over the nearest-neighbor sites of AB (BC). The spin degree
of freedom is degenerate by default and, thus, neglected here.

The conductivity σ of a finite-size sample is given by the
Kubo-Greenwood formula [52,53]

σ (E ) = 2h̄e2

π�
Tr[ImGη(E )v̂xImGη(E )v̂x], (2)

where v̂x = 1
ih̄ [x̂,H] is the velocity operator, � is the sam-

ple area, Gη(E ) = [E + iη − H]−1 is the retarded Green’s
function, η is the level broadening factor representing an
energy-independent inelastic-scattering strength.

The CPGF method [47,51] is employed to calculate the
conductivity since it has already proven to be a powerful
tool to study numerically the material conductivity [47], i.e.,
first-kind Chebyshev polynomials {Tn(x)} (n, an integer) as
a basis are employed to expand the Green’s function, which
reads

Gη(E + iη) = 1

W

∞∑

n=0

gn(ε, η)Tn(ĥ), (3)

where Tn(ĥ) is defined though the Chebyshev recursion
sequences: T0(ĥ) = I , T1(ĥ) = ĥ, and Tn+1(ĥ) = 2ĥTn(ĥ) −
Tn−1(ĥ), gn(ε, η) is the expanding coefficient, ε = E/W , ĥ =
H/W with W being the half bandwidth.

The system size in calculations is set as Ns = 9000 × 9000,
whereas the number of random vector NR in selecting the orig-
inal eigenvalue of H is generally set as NR = 50. In fact, when
the Fermi energy is far away from the Dirac point E = 0 or
the η factor is not too small, NR can be much smaller and even
can be set as NR = 1. The same situation occurs for the site
random vacancy chosen in the lattice sample, and the sample
average is taken as r = 30 in maximum, which sufficiently
makes the results stable. The moment number of Chebyshev
polynomial is taken as N = 8000, and it is related to the η

factor N ∼ W/η to ensure the numerics convergence, where
W is the half bandwidth W = 3t

√
1 + α2. In numerics, t = 1

is set as the energy unit, and the temperature is taken zero. In
addition, one cannot take a too small η in this CPGF method,
which costs a very larger moment number and renders the time
consumption of numerics impossible.

III. DENSITY OF STATES

Before we present the conductivity result, we first calculate
the density of states (DOS) of electrons, which are given by

v(E ) = −1

Nsπ
Tr[ImGη(E + iη)], (4)
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FIG. 2. Density of states v(E ) of the α-T3 lattice for zero vacancy disorder cases in (a) and (b) and for nonzero vacancy cases in (c) and (d).
Parameters are α = 1 in (a) and (c) and η = 0.01t in (b) and (d), the nonzero vacancy density nc = 0.4%. The inset in (a) is the DOS profile
for the whole energy regime whereas the inset in (d) is the graphene DOS with α = 0 with and without vacancy.

with Ns, the system size. The CPGF is efficient to calculate
the DOS even for a much larger size sample. In Figs. 2(a) and
2(b), we present the DOS in the low-energy regime without
any vacancy disorder. It is shown that the DOS exhibit an
outstanding peak at the band center E = 0, this clearly stems
from the broadened flat band due to the nonzero η, which
mimics the inelastic scattering. The larger the η is, the much
lower the DOS peak at E = 0 is. Although the parameter α

can further enhance the DOS height at E = 0 since the flat
band originates from the unbalanced atom Cand α represents
to some extent the weight of the flat band in the DOS of the
α-T3 lattice. In the inset of Fig. 2(a), the profile of the DOS
in the whole band is shown for comparison. In addition, the
sharp decrease in DOS with energy around E = 0 is a little
similar to that induced by the Van Hove singularity in some
special matrials [54].

In Figs. 2(c) and 2(d), the site vacancy is calculated with
the density set as nc = 0.4%. Here, the vacancy disorder
is uniformly distributed among the ABC sites of Fig. 1(a),
and there is no bias for the site replacement. It is shown
that the DOS do not exhibit much difference between the
zero and the nonzero nc cases by comparing Fig. 2(a) with
Fig. 2(c). The vacancy is expected to induce the CZEM, which
contributes to DOS about 0.1 states/eV at the band center as
shown in the inset of Fig. 2(d) for the graphene case (α = 0).
Therefore, the difference of DOS with and without nc is neg-
ligible. In other words, the broadened flat band suppresses
totally the CZEM extension due to either η or nc. The DOS in
Fig. 2 seemingly indicate that the conductivity around E = 0

for nonzero α should be much larger than the graphene (α =
0) conductivity and the vacancy-disorder-induced CZEM may
play a minor role in the affecting transport property because
σ (E ) is generally proportional to the DOS.

IV. BROADENING OF THE FLAT BAND

We first focus on the broadened flat band effect by η,
and no vacancy disorder is considered here. The conductivity,
σ (E ) is plotted in Fig. 3(a) within the different parameter
α. For the small α case, such as α = 0.1, the band center
conductivity σ (0) has a little enhancement compared with
the graphene case (α = 0) although the DOS in Fig. 2(a)
manifests a significant broadening effect of the flat band. σ0 =
4e2/hπ is the universal ZEC value of the graphene. Although
for a larger α case, α = 0.5 or α = 1.0, the conductivity
around E = 0 significantly increases with a clear conductivity
peak in the band center. The larger ZEC undoubtedly comes
from the broken flat band, i.e., the original localized electrons
in the flat band now contribute to the transport. The same
result of the ZEC growth with α was found by considering
the evanescent modes contributing to the ZEC [55].

In Figs. 3(b)–3(d), σ (E ) evolution with the inelastic-
scattering strength η is plotted for a fixed α. When α = 0.1,
σ (E ) exhibits the Drude conductivity behavior, such as that
of graphene, and the ZEC slightly deviates from the minimum
σ0. However, it is not a constant but weakly dependent on
η. For the larger α case, σ (E ) around the band center is
significantly increased as shown in Figs. 3(c) and 3(d) for
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FIG. 3. Low-energy conductivity profiles σ for the nonvacancy disorder case. Parameters are noted in each panel.

α = 0.5 and 1.0. Meanwhile, σ (0) increases with a decrease
in η, and this ZEC peak should be attributed to the broadening
effect of the flat band. Slightly away from E = 0, there is
a narrow energy window in which the system enters into a
localized phase because σ (E ) decreases a lot with a reduction
of η. This means η → 0 and σ (E ) → 0 in the clean limit, so
the system should be entirely insulating. When E is enhanced
further, the system should return to the ballisticlike transport
regime, σ (E ) increases significantly when η decreases.

In Fig. 4, σ as a function of η is plotted in three different
typical transport regimes for a fixed α = 1. For E = 0, the
square line indicates that σ (0) decreases slightly with η unlike
the constant ZEC in graphene. This is, however, consistent
with the result in Ref. [41] where the ZEC of the Dice lat-
tice was estimated by self-consistent Born approximation to
be σ (0) ∼ − ln η2, divergent logarithmically as η → 0. This
metallic property directly originates from the broadening of
the flat band because in comparison, graphene exhibits a con-
stant ZEC independent of η without the flat band. The metallic
state around E = 0 can be dubbed as the supermetallic phase
because as η → 0, σ (0) → ∞, which is very contrasted to
the general situation that a 2D system can easily enter into a
localized phase [47] when an extremely weak scattering η is
introduced.

For the star line in Fig. 4, σ shows a weak increase with
η when E = 0.01t , which is a typical localization behav-
ior reflecting the electron characteristic of the original flat
band. Certainly, the localized energy regime is quite narrow
as shown in Figs. 3(c) and 3(d). When the Fermi energy
grows further, the system will reenter the ballisticlike trans-

port regime as the triangle line shown in Fig. 4, i.e., the
conductivity swiftly decreases with η for E = 0.04t and σ has
a Drude trend of σ ∼1/η.

From Figs. 3 and 4, it is shown that with an increase in
α, the flat band would play an increasingly important role in
the conductivity behavior for the low-energy transport regime.
For instance, the system will transit into the supermetallic
phase at E ∼ 0 from the normal metallic phase at a large α

FIG. 4. Conductivity σ versus the inelastic-scattering strength η

for the non-vacancy case. nc = 0 and α = 1.
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FIG. 5. (a) Conductivity σ as a function of the Fermi energy E for different α’s under the vacancy disorder. Evolution of conductivity with
η for different α in (b), (c), and (d). The inset of (a) is for the low-energy graphene conductivity α = 0. The vacancy density is nc = 0.4%, and
other parameters are marked in each panel.

case, whereas slightly away from E = 0, the phase transition
from the metallic phase to the localized phase may occur when
α increases.

V. DELOCALIZATION OF THE CZEM

In the last section, the broadening of the flat band is shown
to enable a supermetallic phase at the band center as well as a
nearby localized phase purely due to the inelastic scattering. It
is, therefore, quite intriguing to study the delocalization of the
CZEM from the vacancy disorder. For one thing, the broaden-
ing effect of CZEM on the DOS is totally suppressed by that
of the flat band as shown in Fig. 2, and for the other thing, the
CZEM was demonstrated to significantly affect the transport
properties of the graphenelike Dirac semimetals [42,47,50],
e.g., the critical delocalization point of E = 0 was identified
in those systems.

In Fig. 5, σ (E ) is calculated with the vacancy density set as
nc = 0.4%. The vacancy is homogeneously distributed among
the lattice sites, i.e., the A, B, or C atom in a primitive cell
is ticked out and replaced by a vacancy on the same foot. In
comparison with Fig. 3(a), the σ magnitude is reduced a little
in the case of nonzero nc. The surprising results are the σ (0)
peaks appearing even in the small α case, such as α = 0.1,
which is absent in Fig. 3(a) for the nonvacancy case. For α =
0, the graphene case was also shown in the inset of Fig. 5(a),
where the ZEC is equal to σ0.

In Figs. 5(b)–5(d), we present σ versus the Fermi energy
E for different η’s and α’s. It is seen that the conductivity
profiles are almost the same: the whole low-energy regime is
in the localization phase except the E = 0 point where the
conductivity remains nearly unchanged for different η’s. This
indicates that the CZEM dominates the transport property
and suppresses the delocalization effect of the flat band. In
some sense, the E = 0 point is still the critical delocaliza-
tion point in the vacancy-disordered α-T3 model. This is the
same as other Dirac semimetal systems [47,50] within the
vacancy disorder. In addition, the localization regime induced
by the CZEM is much wider than that from the flat band in
Figs. 3(b)–3(d), e.g. the turning point between the ballistic
and localization regime is about E = 0.075t for the α = 1
case in Fig. 5(d). For the small α, such as α = 0.1, there is a
region in which the electrons reenter into the localized regime
around E ∼ 0.1t , this is similar to the self-similar graphene
Sierpinski carpet [56] in which fractal structures show the
same conductivity behavior including the unified ZEC at the
band center.

The conductivity σ (E ) is plotted as a function of η for
α = 0.1 and α = 1.0 in Fig. 6. It is clearly shown that the
ZEC, σ (0) keeps little variation with η in both cases, mani-
festing it as a critical delocalization point. For E = 0.01t in
Figs. 6(a) and 6(b), σ increases a little with η reflecting the
localized behavior. In the ballistic regime, both E = 0.05t and
E = 0.1t curves show that σ is reduced with an increase in
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FIG. 6. Conductivity σ versus the inelastic-scattering strength η for α = 0.1 in (a) and α = 1 in (b). Parameters are marked in each panel.

η. The two cases of α = 0.1 and α = 1.0 have the similar
conductivity behavior in the low-energy regime even though
the σ magnitudes have a big difference. This implies that the
CZEM is decisive for the vacancy disordered system because
no conductivity peak at E = 0 for α = 0.1 is seen in Fig. 3(a)
where the vacancy disorder is absent, and no CZEM exists.

We proceed to study the conductivity dependence on the
vacancy density nc. Generally speaking, the disorder undoubt-
edly suppresses the conductivity, but the zero-energy critical
delocalization point is hardly affected for the BDI-class
graphene [47] or chiral-symplectic-class 2D square-bipartite-
lattice Dirac semimetals [50]. In Fig. 7, it is shown that the
critical point of σ (0) has a visible reduction with the vacancy
density nc, whereas the ballistic conductivity (E = 0.1t) de-
creases with nc a lot. For the localized state, E = 0.01t and
E = 0.02t , σ shows a clear decrease for a small nc due to
the onset of the induced localization effect of CZEM and
then varies smoothly with nc as seen from the circle-red and
triangle-blue lines in Fig. 7(a).

Unlike the mentioned graphene [47] or square-bipartite-
lattice semimetals [50], the slight reduction dependence of
σ (0) on nc in the studied α-T3 model should be related to
the broadening of the flat band, which is shown to lead to
a supermetallic phase at E ∼ 0 in Fig. 3. The increasing
vacancy disorder nc will further broaden the flat band simul-

taneously so that it can suppress conductivity at E = 0 as
the square-black line in Fig. 7(a). In other words, the critical
delocalization point in the α-T3 system is not robust as a result
of the existence of the flat band. It is also manifested by the
fact that σ (0) increases with parameter α as shown in Fig. 7(b)
when nc is fixed since α denotes the weight of the flat band
contributing to the electron properties in the system, such as
the DOS studied in Fig. 2.

We simply conclude the localization effect dependence on
α of electrons in the α-T3 model in the following. When there
is no vacancy in Figs. 3(b)–3(d), the localized region purely
due to the broken flat band is enlarged with α, and even no
localization effect exists for a smaller α, such as the α = 0.1
case in Fig. 3(b). Similarly, the localization regime increases
with α in Figs. 5(b)–5(d) when the CZEM is considered, e.g.,
the turning point for α = 1 between the localization and the
ballistic regimes is about E = 0.075t whereas it is around
E = 0.04t for α = 0.1. The larger α is, the more easily the
system enters into a localization phase, which agrees with
the physics intuitive: the Berry phase is γ = π for Dirac
electrons in graphene unfavorable for localization whereas
electrons with γ = 2π in the Dice lattice (α = 1) does not
resist localization.

The asymmetric distribution of the vacancy disorder
has proven to make a huge difference on the low-energy

FIG. 7. (a) Conductivity σ as a function of the vacancy density nc for different Fermi energies and (b) the ZEC as a function of the model
parameter α. Parameters are η = 0.01t , α = 1, and nc = 0.4%.
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FIG. 8. Low-energy conductivity σ as a function of the Fermi energy E for the vacancy solely residing in the A atom site (a), or the c atom
site (b), or the B atom site (c). Parameters are nc = 0.4%, α = 1, and others are marked in panels.

conductivity in other Dirac semimetal systems [50,57], so we
also consider this asymmetric vacancy replacement on three
A,–C atoms in a primitive cell in Fig. 1(a). The extreme
cases are calculated here, and only one of three different ABC
atom sites in a primitive cell is replaced by vacancy. When
the vacancy is considered only residing at the A atom or
the C atom site, the system exhibits a metallic phase in the
band center E ∼ 0 whereas in the adjacent region, σ exhibits
a localized behavior as shown in Figs. 8(a) and 8(b). This
performance resembles exactly the transport property merely
from the broken flat band in Figs. 3(c) and 3(d) without
vacancy. In other words, the CZEM effect is removed entirely,
and only the broadening effect of the flat band remains. In
other Dirac semimetals, such as the 2D square-bipartite lattice
[50,57], the extreme imbalance of vacancy generally breaks
the inversion symmetry, so an energy gap can occur so as to
the generation of a mobility gap. In the studied α-T3 lattice,
either the A site or the C site was replaced the vacancy, the
honeycomb lattice structure remains not destroyed severely,
so the vacancy can only broaden the flat band, and the CZEM
might be suppressed entirely.

When the cental atom B site is replaced by vacancy in
Fig. 8(c), the low-energy region is fully localized and even
the critical delocalization point E = 0 is removed, too. This is
a little similar to usual graphene-based [57] or square lattice
Dirac semimetal [50] systems where the asymmetric vacancy
can remove the critical delocalization point and even generate
the mobility gap. Nevertheless, the presence of the broken flat
band in the studied α-T3 lattice prevents the generation of the
mobility gap, but instead, the whole low-energy regime is in

the localized phase, the conductivity decreases a lot as η is
reduced.

VI. CONCLUSION

To summarize, we have investigated the delocalization ef-
fect of the CZEM induced by the vacancy disorder and its
interplay with the flat band in the α-T3 lattice model. It is
demonstrated that the pure broadening of the flat band will
lead to a supermetallic phase at the band center since the ZEC
increases weakly with a decrease in the inelastic-scattering
strength, whereas a narrow localization regime is identified
nearby the band center. When the CZEM due to the vacancy
disorder is taken into account, the localized regime is enlarged
to the whole low-energy regime except the Dirac point of
E = 0, which becomes the critical delocalization point be-
cause the ZEC is independent of the inelastic-scattering
strength. It is also found that the ZEC itself is not a universal
value but depends on the model parameter α as well as the
vacancy density nc due to the broadening effect of the flat
band. The extreme vacancy imbalance can severely change
the critical delocalization scenario from the CZEM that the
low-energy regime can be either in the supermetallic phase
or the pure localization phase, which depends on whether the
central B atom site of a primitive cell is replaced by vacancy
or not.
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