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Complex Landau levels and related transport properties in the strained
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The real magnetic fields (MFs) acting on graphene can induce flat real Landau levels (LLs). As an analogy,
strains in graphene can produce significant pseudo MFs, triggering the appearance of dispersive pseudo LLs.
By analyzing the low-energy effective Hamiltonian, we introduce the concept of the effective orbital MFs to
integrate the real MFs and pseudo MFs. Accordingly, we obtain the complex LLs which incorporate the real
LLs and pseudo LLs, and calculate the related transport properties. These concepts enable us to uncover the
mechanisms driving the fragility of pseudo LLs against disorders and dephasing, proving that tuning the real
MFs and Fermi energy can effectively improve the robust performances. Furthermore, the tunability of the valley-
polarized currents is also studied, opening up new possibilities for the design of valleytronics devices.
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I. INTRODUCTION

Unique in two dimensions, graphene possesses two
nonequivalent Dirac points, K and K ′, which leads to the
valley degree of freedom [1,2]. The two main edge types
of graphene nanoribbons (GNRs), which are basically one-
dimensional structures cut from graphene, are zigzag edges
and armchair edges. The contrast between the K and K ′
valleys in the k spaces is one of the primary differences
between the zigzag GNRs (ZGNRs) and armchair GNRs (AG-
NRs). Without intervalley scattering, the K and K ′ valleys
are separated and decoupled specifically for the ZGNRs in
the low-energy limit, making the study of valley transport
pertinent. However, the K and K ′ valleys for the AZNRs are
both projected to the k space � point, indicating that they are
not suitable for creating valleytronic devices [3–5]. As a re-
sult, we concentrated mostly on the ZGNRs in this work. The
ability of ZGNRs to generate pseudomagnetic fields (PMFs)
through strains, which in turn leads to the appearance of
pseudo-Landau levels (PLLs), is another remarkable property
of the material [5–11]. This phenomenon has been identified
in several noteworthy investigations [12–15]. Moreover, sev-
eral experimental studies have shown that graphene can resist
nondestructively reversible deformations up to high values
of 25%–27% [16–19], implying that it could be a promising
material for building novel straintronic devices with the ex-
ceptional features associated with PMFs.

A two-terminal ZGNR with the uniaxial strain is shown in
Fig. 1(a). The uniaxial strain of the ZGNR is extended along
the y direction. Accordingly, the hopping coefficients along
the y direction ty(n) are assumed to be a linear function of
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n (n = 1, 2, ..., Ny − 1). Meanwhile, the hopping coefficients
along the x direction are considered to be constant [5,20–22].
As a result, this strain pattern is referred to as the monotonic
increasing strain (MIS) [23], which leads to the emergence of
a uniform perpendicular PMF. Valley-polarized currents for
the K and K ′ valleys are theoretically predicted in the ZGNRs
under the influence of the PMFs [20]. Figure 1(b) shows the
K and K ′ valleys of the strained GNRs in the real magnetic
fields (RMFs). As discussed in Sec. IV A, the joint effects of
the PMFs and RMFs cause the K ′ (K) valley to sink (raise)
and get narrower (wider). Both the RMFs and PMFs can
produce LLs, however, the former results in flat LLs while the
latter results in dispersive ones. Additionally, it is shown by
the transport characteristics research that the states associated
with PLLs and RLLs have distinct robust responses to An-
derson disorders and dephasing effects. We offer the idea of
the effective orbital magnetic fields (EOMFs), which result in
the creation of complex LLs (CLLs), to combine the impacts
of RMFs and PMFs to explain the transport characteristics
of the strained ZGNRs. We propose several mechanisms of
the intervalley and intravalley to explain the distinct robust
performances for the RLLs and PLLs, and point out that the
valley polarization governed by the EOMFs |B±

eff| results in
the distinct conductance features that are related to the K and
K ′ valleys, respectively.

The paper is organized as follows. We introduce the model
and numerical methods employed in this work in Sec. II.
In Sec. III, we talk about the low energy effective theory
and introduce the concept of the EOMFs and CLLs. Sec-
tion IV presents the key findings of our calculations and the
corresponding remarks. More specifically, in Sec. IV A, we
study the effect of the Anderson disorders and reveal the
mechanisms driving the fragility of PLLs against disorders.
Dephasing effect, which is covered in Sec. IV B, is another
barrier to the robustness of the CLLs. Section IV C discussed
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FIG. 1. (a) Schematic diagram of a two-terminal ZGNR with
MIS. The gray (blue) colors represent the central region (leads).
The size of the central region is set as Ny and Nx . The blue dotted
rectangle represents a primitive cell, which contains 2Ny atoms. Nx is
the number of primitive cells in the x direction. The green (orange)
arrows depict the current for K (K ′) valley. (b) illustrates the K and
K ′ valleys of the strained graphene with RMFs.

the tunability of the valley-polarized currents in the strained
ZGNRs. Section V is the conclusion.

II. MODEL AND NUMERICAL METHODS

A two-terminal ZGNR with the MIS is illustrated in
Fig. 1(a). The central region is sandwiched between the left
(L) and right (R) leads. In realistic samples, Anderson disor-
ders and dephasing effects are always present. In the following
calculations, we suppose that the disorders and dephasing ef-
fects only exist in the central region. The dephasing effects are
easily produced via electron-electron interactions, electron-
phonon interactions, etc., and can be tuned by changing the
temperature experimentally. Here, we simulate the dephasing
effects by applying the Büttiker’s virtual probe assumption
[24]. The tight-binding Hamiltonian of the ZGNR with MIS
in the central region can be written as

H =
∑

i

εia
†
i ai −

∑
〈i j〉

teiφi j a†
i a j, (1)

where εi represents the on-site energy, a†
i and ai represent

the creation and annihilation operators, and 〈i j〉 sums over
the nearest neighbors. In the L(R) leads, εi equals the Fermi
energy EF . In the central region, εi = EF + W , where W
denotes the disorder strength. Anderson disorders are simu-
lated by the on-site energies that are uniformly distributed in
[−W/2,W/2]. If RMFs exist, the hopping coefficient t should
have a phase φi j = ∫ j

i A · dl/φ0 with the vector potential A
and the flux quantum φ0 = h̄/e.

As shown in Fig. 1(a), we assume that the ZGNRs are only
stretched along the y axis, with the hopping coefficient ty(n)
being a linear function of n. For simplicity, ty(n) is defined as

t0 on the bottom edge and t0(1 − η) on the top edge, respec-
tively. t0 = −2.75 eV is the well-known hopping coefficient
for the normal graphene and η is an adjustable variable that
reflects the strain strength. At any n, ty(n) can be expressed
as ty(n) = t0(1 − γ n), where γ = η(n−1)

(Ny−2)n . Meanwhile, t2 and
t3 are set as t0. Specifically speaking, previous work stated
that ty(n) = t0 exp[−β(�y(n)/a0 − 1)] [19], where �y(n) is the
corresponding bond length along the y direction, a0 = 0.142
nm is the equilibrium bond length of the pristine graphene,
and β ≈ 3.37 is the decay rate. Consequently, η = 0.5 is
corresponding to the maximum deformation strength 20% and
it falls in the regime that is not destructive and reversible
[16–19].

The conductance is calculated by combining the Landauer-
Büttiker formula with the nonequilibrium Green func-
tion method at zero temperature [25–28]. The current
in the real or virtual lead can be obtained by Ip =
(2e2/h)

∑
q �=pTpq(EF )(Vp − Vq), where p = L, R, 1, 2, . . . , N ,

Vp is the bias in the lead p, and N is the number
of lattice sites in the central region. Here, Tpq(EF ) =
Tr[�p(EF )Gr (EF )�q(EF )Ga(EF )] is the transmission function
at the Fermi energy EF from lead q to lead p, and the line
width function is given by �p(EF ) = i(	r

p(EF ) − 	r†
p (EF )).

The retarded Green function is calculated by Gr (EF ) =
[Ga]† = [EF I − H − ∑

p 	r
p(EF )]−1, where 	r

p(EF ) denotes
the retarded self-energy associated with lead p. For the real
lead, 	r

L/R(EF ) can be calculated numerically [29]; for the
virtual lead p, 	r

p(EF ) = −id p/2, where d p describes the
dephasing strength [30,31]. To drive a current flowing along
the x direction, a small bias V = VL − VR is added between
the L and R leads. Once the current IL has been obtained, the
conductance can be calculated directly by G = (VL − VR)/IL.
The average value of 500 random configurations is used to
calculate the conductance.

III. LOW-ENERGY EFFECTIVE THEORY

For the strained ZGNR, the effective Hamiltonian is
H±(k) = d± · σ [20], where

d±
x = h̄vF

(
±kx + r∓

eBpy

h̄

)
,

d±
y = h̄vF ky

(
r± − s±

eBpy

h̄

)
. (2)

Here vF is the Fermi velocity of the pristine graphene, ±
represent K and K ′ valleys. Bp = h̄β

2ey εyy is the PMF in-
duced by the strain, εyy = ∂yuy is the strain tensor, and uy

is the in-plane displacement of carbon atoms along the y
direction [20,21]. r± = 1 ± kx

2 , s± = ( 3
2 ± kx

4 ), and we have
set a0 = 1. It should be pointed out that the Fermi veloci-
ties are modulated by the strain and should be anisotropic
and momentum-dependent. By using the same method in
Ref. [22], we can obtain the Fermi velocities of the carri-

ers in the strained graphene vs
Fx = 3t0

2

√
1 + 2γ y

3 − γ 2y2

3 and
vs

Fy = 3t0
2 (1 − γ y).

In the presence of the RMFs, the canonical momentum
should be replaced by the gauge invariant kinetic momentum,
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thus the d vector changes to

d±
x = vF (±�x + r∓eBpy),

d±
y = vF �y

(
r± − s±

eBpy

h̄

)
, (3)

where �i = pi + eAri (i = x, y). Note that r± and s± contain
kx, thus px = h̄kx in r± and s± should also be replaced by �x.
However, the resulting additional terms in r± and s± can be
neglected because they are smaller than other relevant terms.
Thus, we obtain Eq. (3). For a perpendicular RMF, we choose
the gauge Arx = Bry and Ary = 0, then the Hamiltonian be-
comes

H± = vF

[
σx(±px ± eB±

effy) + σy py

(
r± − s±

eBpy

h̄

)]
, (4)

where B±
eff = Br ± r∓Bp is the EOMF which incorporates the

effects of both the PMFs and RMFs. Note that B±
eff is not

the direct addition of Br and Bp, and r∓, the coefficient of
Bp, is dependent on kx. This reflects the essential differences
between the RMFs and PMFs, i.e., RMFs induce flat LLs, but
PMFs induce dispersive ones.

By solving the eigenvalue equation

H±
(

ψA(y)
ψB(y)

)
= ε±

(
ψA(y)
ψB(y)

)
, (5)

where ψA and ψB are components for the A and B sublattices,
we can obtain the bulk LLs ε±. Using the similar method
adopted in Ref. [20], we get

ε2
± = 2neh̄v2

F |B±
eff|

(
r± + kxs±

Bp

B±
eff

)
. (6)

Because the orientations of the RMF and PMF are opposite
for the K ′ valley, B−

eff = Br − r+Bp might be zero. Thus, our
solutions for the CLLs are invalid when B−

eff = 0. Actually,
B−

eff = 0 is a critical point that the CLLs, as well as the edge
currents for the K ′ valley vanish, which also can be illustrated
in Fig. 2(c) and Fig. 7(b). Furthermore, the result of ε2

− in
the K ′ valley is invalid in the vicinity of the singular point
B−

eff = 0. For more information, see the derivations and dis-
cussions in Appendix A.

IV. NUMERICAL RESULTS AND DISCUSSIONS

A. Anderson disorders

Next, we examine whether the valley currents in the
strained ZGNRs are robust against static disorders. Fig-
ures 2(a)–2(e) illustrate the band structures with the strain
strength η = 0.5. As discussed in Sec. III, the electrons in
both valleys encounter the EOMFs B±

eff. When Br = 0, B±
eff

devolves to ±r∓Bp, producing the dispersive and symmet-
ric PLLs in Fig. 2(a). If Br is present, the directions of the
RMF and PMF in the K (K ′) valley are the same (different).
Therefore, |B−

eff| keeps decreasing as Br increases before |B−
eff|

reaches zero, and the CLLs become lower and narrower in the
K ′ valley as shown in Fig. 2(b). The CLLs disappear when
|B−

eff| = 0 in Fig. 2(c). If Br keeps rising, |B−
eff| gradually

increases and the CLLs reappear in Fig. 2(d). Contrary to the
K ′ valley, the CLLs in the K valley always become higher and
wider because |B+

eff| continues to grow as Br increases.

FIG. 2. (a)–(e) are dispersions for the ZGNR with MIS for η =
0.5. The RMF is Br = 0 in (a), Br = 15 T in (b), Br = 35 T in (c),
and Br = 50 T in (d). Br = 15 T and Ey = 0.02t0 are adopted in
(e). η = 0.35 and Br = 50 T are adopted in (f), in which the green
dashed lines labeling several Fermi energies are used to analyze the
conductance in Fig. 3. The color scale represents the expectation
value of the y for each eigenstate. In all cases, we take Ny=200.
Specifically, the colors in (a)–(d) and (f) predict the degenerate states
at EF = 0 are localized on both sizes of the sample. The blue dashed
lines label the Fermi energy EF in (b)–(d), which are used to illustrate
the valley currents in Sec. IV C.

Figure 3(a) shows that only the first plateau is robust
against Anderson disorders when Br = 0. The similar results
have been obtained in previous work [32], where the authors
attributed the robustness of the first plateau to the polarization
of the sublattice. Figures 3(b)–3(d) illustrate the conduc-
tance with Br = 15 T (B−

eff < 0), Br = 35 T (B−
eff ≈ 0), and

Br = 50 T (B−
eff > 0), indicating that Br can improve the ro-

bust performances because the higher plateaus become more
robust. Why are the edges states related to the PLLs not
robust as that related to RLLs? There are two main reasons
for this. First, the counter-propagating modes with spatial
overlap and close energies are easily hybridized leading to
the enhancement of intervalley scattering. For the quantum
Hall effect(QHE) as seen from Fig. 4(a), the bulk states are

FIG. 3. (a)–(f) The conductance for the ZGNRs with MIS which
are one-to-one correspondence with Figs. 2(a)–2(f). The green
dashed lines in (f) correspond to those in the energy bands of
Fig. 2(f). In all cases, we take Nx = 30 and Ny = 200.
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FIG. 4. The schematic bulk and edge states of (a) the QHE with
the RMF Br , (b) the QVHE with the PMF Bp, (c) the QVHE with
both Br = 15 T and Bp, and (d) the QVHE with both Br = 50 T and
Bp. The lengths of arrows represent the magnitudes of the group
velocities, which are the slopes of the energy bands.

localized because the group velocities are zero. The counter-
propagating states are entirely separated by the bulk states on
the two sides of the sample. Thus, the conductance plateaus
in QHE are robust. According to Fig. 4(b), the degenerate
counter-propagating states of PLLs overlap in space leading
to the enhancement of the intervalley scattering, since the
PMFs are opposite between the K and K ′ valleys due to the
time-reversal symmetry. As a result, the conductance plateaus
may not be robust due to hybridizations between the edge-
edge states, the bulk-bulk states, and the edge-bulk states with
spatial overlap. Additionally, since the counter-propagating
modes cannot be spatially separated by the transverse electric
field Ey, the robustness in Fig. 3(e) cannot be considerably
improved. It should be noted that the second plateau becomes
more robust than it is in Fig. 3(a) due to the shift of the valley
degeneracy.

Figures 4(c) and 4(d) illustrate the edge and bulk states of
the quantum valley Hall effect(QVHE) when Br and Bp both
exist. In Fig. 4(c), Br = 15 T and B−

eff < 0, so |B−
eff| (|B+

eff|)
decreases (increases) and the cyclotron radius of the electrons
in the K ′ and K valleys gets larger (smaller). Furthermore,
The degeneracy of energies between the K and K ′ valleys has
also been lifted, as shown in Fig. 2(b). There is only K ′ valley
contributing to the transport, leading to the suppression of the
intervalley scattering, especially for the low-energy regime.
Even for higher energies, the states at the Fermi level are
separated in real space when the Fermi energy crosses both
valleys due to the asymmetry between the K and K ′ valleys.
As a result, the conductance plateaus become more robust.
Figure 4(d) show the case for a large Br = 50 T and B−

eff > 0.
In this regime, B−

eff makes the electrons in the K ′ valley coun-
terrotating. As a result, the directions of valley current for
the two valleys coincide, further reducing hybridization and
making the conductance plateaus more robust.

Second, the intravalley hybridization also has three ori-
gins: the bulk-bulk and edge-edge hybridizations are weak
because they both flow in the same direction; the bulk-edge

FIG. 5. (a)–(d) are plotted according to Eq. (6). The CLLs are
shown in the vicinity of the K (red lines) and K ′ (blue lines) valleys
with Br = 15 T and Br = 50 T in (a) and (b), respectively. (c) shows
the energy spacing �E between several adjacent lowest CLLs versus
Br at the Dirac point. The small orange circle represents that Br =
35 T is a singular point. (d) The slopes of the CLLs at the Dirac point.

hybridization becomes important because the directions of the
bulk and edge currents are opposite at least near one edge [see
Figs. 4(b)–4(d)]. The bulk-edge hybridization can be affected
by (i) the degeneracy of CLLs. The results of Figs. 5(a) and
5(b) demonstrate the valley polarization in the presence of
Br and are consistent with the bands in Figs. 2(b) and 2(d)
derived from the tight-binding approach. Moreover, we plot
the energy spacing of the CLLs at the Dirac points (kx = 0)
in Fig. 5(c). It can be seen that, in the K ′ valley, |B−

eff| and
the energy spacing �E monotonically drops and grows as
Br increases when Br < 35 T and Br > 35 T, respectively. In
the K valley, |B+

eff| always grows as Br increases. Hence, �E
between neighboring CLLs keeps increasing. If |B+

eff| is larger,
the cyclotron radius in the K valley is smaller, resulting in
more bulk states that can be hybridized with the edge states.
(ii) The slopes of the dispersive CLLs, shown in Fig. 5(d),
characterize the nonzero group velocities that can take part
in electronic transport. The counter-propagating modes with
larger group velocities may lead to stronger scattering. It
should be noted that only the Br > 40 T regime is depicted in
Fig. 5(d) because Br = 35 T (B−

eff = 0) is a singular point and
we address the situation in the B−

eff > 0 regime at this time.
For the intravalley scattering, the bulk and edge states related
to the dispersive PLLs will inevitably hybridize because it is
easier for the Fermi energy to cross both the bulk and edge
states at once.

Quite interestingly, the seventh plateau is more robust than
the sixth plateau in Fig. 3(d). In order to explore this phe-
nomenon, we choose another set of parameters η = 0.35 and
Br = 50 T in Fig. 3(f) and obtain similar results that the fifth
plateau is more robust than the fourth plateau. The green
dashed lines plotted in Fig. 2(f) are one-to-one correspon-
dence with those in Fig. 3(f). The corresponding relations
indicate that the fourth plateau is fragile because EF crosses
the first CLL (bulk states) in the K valley; however, the
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higher fifth plateau is still robust because only edge states are
crossed by EF in the K valley. The hybridization between the
counter-propagating modes around P [see Fig. 2(f)] with close
distance in space features the fragility of the fourth plateau.
The behaviors exhibit the polarization of the K and K ′ valleys,
which are determined by the EOMFs |B±

eff|. In our work, the
valley polarization has three major aspects: the shift of valley
degeneracy, the degeneracy of CLLs, and the slopes of CLLs
(group velocities) in the K and K ′ valleys. The mechanisms
of the intervalley and intravalley scattering revealed by the
preceding paragraphs make the different transport behaviors
of PLLs and RLLs clear. On this basis, valley polarization
determined by the EOMFs |B±

eff| uncovers the different per-
formances of conductance which are related to the K and K ′
valleys, respectively.

Furthermore, it should be pointed out that despite the pres-
ence of RMFs in Figs. 3(b)–3(f), the higher plateaus are still
not as robust as the ones in the QHE. On one hand, the CLLs
are broadened when the disorder is present. On the other
hand, the direct energy spacing �E between two adjacent
higher CLLs becomes smaller. Thus, the direct gap between
two adjacent CLLs can be smeared out due to the broadening
of these states by the disorder. In this regime, bulk-bulk hy-
bridization also plays a role in transport properties. Note that
the Rashba spin-orbit coupling (RSOC) and Zeeman energy
are not included throughout the work because it has no impact
on our understanding of physics (See Appendix B for more
information).

B. Dephasing effects

Aside from the static impurities, dephasing is another sig-
nificant impediment to robust performance. Then we look at
the dephasing effects in the ZGNRs with MIS. The coherent
length Lφ is a measure of coherence in experiments. Electrons
can go from the left lead to the right lead directly or via the
virtual leads in the presence of dephasing effects, resulting
in coherent and incoherent currents, respectively. At a certain
d p, the incoherent current grows as the length Nx does as
well. When the coherent and incoherent parts of the current
are equal, Nx is the coherent length Lφ [31]. Note that Lφ is
an average value of the ZGNRs with MIS. The carbon-carbon
distance in our model is not uniform along the y axis. The real
Lφ along the edge may be less than our numerical value. Lφ

changes with d p for three distinct cases of EOMFs: PLLs,
CLLs, and RLLs are shown in Fig. 6(a). At a specific d p,
the value of Lφ is the lowest for PLLs. That means dephas-
ing effects are more sensitive to PMFs. The reason is that
strain modifies the bond length between carbon atoms in the
ZGNRs, and the dephasing effects caused by electron-phonon
and electron-electron interactions are amplified [33,34]. How-
ever, the cases of EOMFs (Br �= 0) improve the value of Lφ

in an obvious way. Because of the weakening of the hy-
bridization demonstrated in Sec. IV A, it can be concluded
that the addition of RMFs considerably increases the sample’s
robustness against dephasing effects.

In Fig. 6(b), we examine the conductance of the CLLs
(Br = 50 T) under various d p. In the weak and moderate
dephasing regime (d p < 0.2 eV), the conductance related to
the lowest two CLLs are very robust due to the suppression of

FIG. 6. (a) The coherent length Lφ vs the dephasing strength
d p for various EOMFs with EF = 0.2 eV. The conductance G vs
(b) the Fermi energy EF , (c) the strain strength η, and (d) the disorder
strength W for various d p, respectively. We set η = 0.5 in (b) and (d),
EF = 0.15 eV in (c) and (d), and Br = 50 T in (b)–(d). Ny = 200 in
all case. We take Nx = 30 in (c) and Nx = 12 in other cases.

hybridization. However, the ones with higher CLLs are not
robust. This is due to the broadening of the higher CLLs
brought on by the dephasing effects. In the higher CLLs,
the spacing between adjacent energy levels gets smaller.
Thus, the hybridization is again intensified. In the strong
dephasing regime (d p � 1 eV), the conductance exhibits a
quasi-quantization with G � 1 eV. This outcome is in line
with earlier research [35,36]. According to Fig. 6(c), the
plateau of conductance gradually dissipates as the strain
strength η increases. The result is consistent with the perfor-
mance of Lφ in Fig. 6(a). Finally, we consider the combination
of Anderson disorder and dephasing effects in Fig. 6(d). The
findings demonstrate that when disorder strength W grows,
conductance value marginally reduces under various dp.

The results above show that tunable valley currents of the
low CLLs are robust against dephasing effects when Br �= 0.
The edge states related to higher CLLs are not robust, though.
Examining Hall conductance or developing novel solutions
may be required as a next step to improve the performance
of tuning valley currents against dephasing effects.

C. Tunability of the valley-polarized currents

The tunability of the valley-polarized currents in our
system allows for the construction of new types of useful
valleytronic devices. The band structures in Figs. 2(b)–2(f)
clearly demonstrate that the different EOMFs between the
K and K ′ valleys induce the valley polarization. The valley
currents depicted in Figs. 7(a)–7(c) correspond to the states
at Fermi energies E1–E3 in Figs. 2(b)–2(d). The edge states
are significantly out of balance between the K and K ′ val-
leys, which differ greatly from that of the well-known QHE,
quantum spin Hall effects (QSHE), and QVHE. Therefore,
our sample is a good platform for manufacturing valleytronic
devices by tuning EF , RMFs, or PMFs.
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FIG. 7. The edge valley currents for (a) B−
eff < 0, (b) B−

eff = 0,

and (c) B−
eff > 0. The orange lines and green lines represent the

currents in the K ′ and K valleys, respectively.

We may generalize our tunability of the valley-polarized
currents to the ZGNRs with symmetric strain (SS) [23]. As
shown in Fig. 8(a), the ZGNRs with SS can be viewed as
two reverse copies of the ZGNR with MIS, and snake states
exist in the middle of the sample. Figure 8(b) depicts the
band structure of the ZGNR with SS, and previous work has
demonstrated that without the RMFs, only the first plateau
is robust against the Anderson disorders. If we apply a RMF
Br = 50 T, the CLLs are shown in Fig. 8(c), and as illustrated
in Fig. 8(d), the higher plateaus related to the snake states
are extremely robust against the Anderson disorders. In the
presence of the dephasing effects, the plateaus of snake states
are very robust for the first CLL and survive for the higher
CLLs. Therefore, the results of the ZGNRs with SS are similar
to that of the ZGNRs with MIS in Sec. IV A and Sec. IV B. To
sum up, snake states can survive for both Anderson disorders
and dephasing effects which show excellent design potential
for new quantum devices.

V. CONCLUSIONS

In this work, we investigate the strained ZGNRs in the
presence of the RMFs. The essential distinction between
the RLLs and PLLs which are produced by the RMFs and
PMFs, respectively, is that the former are flat while the latter
are dispersive. Because of their dispersive nature, the PLLs
are susceptible to disorders because of the hybridization of
their bulk and edge states. In order to incorporate the ef-
fects of the RMFs and PMFs, the concept of the EOMFs is

FIG. 8. (a) The schematic diagram of the ZGNRs with SS.
(b) and (c) illustrate the band structures with Br = 0 and Br = 50 T,
respectively. (d) The conductance G vs the Fermi energy EF for
various W and d p with Br = 50 T. In all cases, we set Nx = 30,
Ny = 400, and η = 0.5.

introduced. Accordingly, we obtain the CLLs which combine
the RLLs and PLLs. Then we examine the robust behaviors of
the valley-polarized currents by calculating the conductance
and discover that the RMF can improve the robust perfor-
mances. Our transport calculations of the K and K ′ valleys
demonstrate distinctive robust behaviors against the Anderson
disorders and dephasing effect. The several mechanisms of
the intervalley and intravalley scattering make it clear how
PLLs and RLLs behave differently on transport properties.
Moreover, the valley polarization induced by the EOMFs
|B±

eff| reveals the distinct conductance performances that are
related to the K and K ′ valleys, respectively. The behaviors
of the conductance G show that the RMF Br is a valid tool
for tuning the valley currents. Furthermore, we investigate the
tunability of the valley-polarized currents in the ZGNRs with
MIS and SS, respectively. We discover that our polarized edge
states differ greatly from the well-known QHE, QSHE, and
QVHE. Because of their efficient tunability, they are ideal for
designing new sorts of valleytronics devices.
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APPENDIX A: THE SOLUTIONS OF THE CLLs

In this section, we use the similar method adopted in
Ref. [20] to derive the expressions of CLLs. The Hamiltonian
for the K valley is shown in Eq. (4) in the main text:

d+ · σ = vF (px + eB+
effy)σx

− ih̄vF

(
r+ − s+

eBpy

h̄

)
∂yσy. (A1)

We can shift y to y + h̄r+
eBps+

and hermitize −iy∂y to −i(y∂y +
1
2 ), then Eq. (A1) becomes

d+ · σ = h̄vF

(
0 h+

+
h+

− 0

)
, (A2)

where

h+
± =

[
kx + eB+

eff

h̄

(
y + h̄r+

eBps+

)]
± s+

eBp

h̄

(
y∂y + 1

2

)
.

(A3)

Thus the eigenvalue equations for the K valley [Eq. (5) in the
main text] become[

kx + eB+
eff

h̄

(
y + h̄r+

eBps+

)
+ s+

eBp

h̄

(
y∂y + 1

2

)]
ψB

= εψA,[
kx + eB+

eff

h̄

(
y + h̄r+

eBps+

)
− s+

eBp

h̄

(
y∂y + 1

2

)]
ψA

= εψB. (A4)
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Eliminating ψA, we can obtain[(
eB+

eff

h̄
y

)2

+ eB+
eff

h̄s+

(
2kxs+ + 2r+

B+
eff

Bp
− eBp

h̄
s2
+

)
y

+ �

s2+
− e2B2

ps2
+

4h̄2

]
ψB − e2B2

p

h̄2 s2
+(2yψ ′

B + y2ψ ′′
B ) = 0,

(A5)

where

� =
(

kxs+ + r+B+
eff

Bp

)2

− s2
+ε2. (A6)

Two singularities of Eq. (A5) are 0 and ∞. Toward 0, Eq. (A5)
can be asymptotically expressed as(

�

s2+
− e2B2

ps2
+

4h̄2

)
ψB − e2B2

p

h̄2 s2
+(2yψ ′

B + y2ψ ′′
B ) = 0. (A7)

Equation (A7) has two independent solutions y
− 1

2 ∓ h̄
√

�

e|Bp|s2+ ,
however, because we consider the asymptotic solution toward

0, only y
− 1

2 + h̄
√

�

e|Bp|s2+ is acceptable. Toward ∞, Eq. (A5) is
asymptotically expressed as(

eB+
eff

h̄
y

)2

ψB −
(

eB+
p

h̄
s+y

)2

ψ ′′
B = 0, (A8)

and the asymptotic solution can be written as e− z
2 , where

z = −sgn(Bp)
2

s+

∣∣∣∣B+
eff

Bp

∣∣∣∣y. (A9)

Note that Eq. (A9) differs from the asymptotic solution in
Ref. [20] which solely contains PMFs. In conclusion, the
general solution of Eq. (A5) can be written as

ψB(y) = e− z
2 y

− 1
2 + h̄

√
�

e|Bp|s2+ u(y). (A10)

Substituting Eq. (A10) into Eq. (A5), and changing the vari-
able from y to z, we can obtain the equation

zu′′(z) + (ξ − z)u′(z) − αu(z) = 0, (A11)

where

ξ = 1 + 2h̄
√

�

e|Bp|s2+
,

α =
√

� − kxs+sgn(BpB+
eff ) − r+

∣∣B+
eff

Bp

∣∣
e|Bp|s2+/h̄

+ (B+
eff + |B+

eff|)s2
+

2|B+
eff|s2+

. (A12)

Equation (A11) is a confluent hypergeometric equation, and α

must be a nonpositive integer to guarantee that the solution is
convergent. Thus, α = −n leads to the CLLs

ε2
+ = neh̄v2

F |B+
eff|

(
2kxs+

Bp

B+
eff

+ 2r+ − n
eB2

p

h̄|B+
eff|

s2
+

)
. (A13)

FIG. 9. (a) and (b) show the band structures with the RSOC
strength VR = 0.02t and VR = 0.05t , respectively. (c) and (d) are
the conductance corresponding to (a) and (b). In all cases, we set
Br = 50 T and η = 0.5. In all cases, Nx = 30 and Ny = 200.

Because the third term is small, we can neglect it and obtain

ε2
+ = 2neh̄v2

F |B+
eff|

(
r+ + kxs+

Bp

B+
eff

)
. (A14)

Similarly, the CLLs for the K ′ valley are

ε2
− = 2neh̄v2

F |B−
eff|

(
r− + kxs−

Bp

B−
eff

)
. (A15)

It should be pointed out that B−
eff = Br − r+Bp can be zero

because the directions of the RMF and PMF are opposite for
the K ′ valley. Actually, α for the K ′ valley has the singular
point B−

eff = 0; as a result, our solutions for the CLLs are in-
valid when the EOMF B−

eff = 0. Furthermore, ε2
− in Eq. (A15)

may be negative if the absolute value of B−
eff is a small value.

Therefore, our result for ε− is invalid in the vicinity of the
singular point B−

eff = 0.

APPENDIX B: RASHBA SPIN-ORBIT COUPLING

We investigate the ZGNRs with MIS for various RSOC
strengths VR. It should be pointed out that since the RSOC
breaks the spin degeneracy, we take into account the spin
degree of freedom in this part. The band structures and con-
ductance for VR = 0.02t and VR = 0.05t are shown in Fig. 9,
demonstrating that the conductance are still quantized even
if the RSOC causes the extended states. Additionally, odd
plateaus appear as a result of the RSOC lifting the spin de-
generation. Due to the existence of the RMFs, both the odd
and even plateaus are robust against Anderson disorder. As a
result, the RSOC does not invalidate the primary findings in
the main paper. Additionally, we ignore the Zeeman energy in
our calculations because it is negligibly small and only splits
the energy band, having no impact on the physics discussed in
this paper.
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