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Topological phonon polaritons (TPhPs) are promising optical modes relevant in long-range radiative heat
transfer, information processing, and infrared sensing, whose topological protection is expected to enable
their robust existence and transport. In this work we show that TPhPs can be supported in one-dimensional
bichromatic silicon carbide nanoparticle (NP) chains, and demonstrate that they can considerably enhance
radiative heat transfer for an array much longer than the wavelength of radiation. By introducing incommensurate
or commensurate modulations on the interparticle distances, the NP chain can be regarded as an extension of the
off-diagonal Aubry-André-Harper model. By calculating the eigenstate spectra with respect to the modulation
phase that creates a synthetic dimension, we demonstrate that under this type of modulation the chain supports
nontrivial topological modes localized over the boundaries since the present system inherits the topological
property of two-dimensional integer quantum Hall systems. In this circumstance the gap-labeling theorem and
corresponding Chern number can be used to characterize the features of band gaps and topological edge modes.
Based on many-body radiative heat transfer theory for a set of dipoles, we theoretically show the presence of
topological gaps and midgap TPhPs can substantially enhance radiative heat transfer for an array much longer
than the wavelength of radiation. We show how the modulation phase that acts as the synthetic dimension can
tailor the radiative heat transfer rate by inducing or annihilating topological modes. We also discuss the role
of dissipation in the enhancement of radiative heat transfer. We further present a theoretical analysis based
on eigenvalue decomposition to quantitatively reveal the role of TPhPs. These findings therefore provide a
fascinating route for tailoring near-field radiative heat transfer based on the concept of topological physics.
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I. INTRODUCTION

The discovery of topological phases of matter has led
to plenty of research interests in novel topological quantum
materials [1] and inspired fascinating analogies in photonic
[2], atomic [3], acoustic [4], and mechanical [5] systems. The
most unique feature of these topological systems is that they
can support strongly localized and unidirectionally propagat-
ing edge or interface states which are largely immune against
the presence of disorder and impurities, thanks to the topologi-
cal protection. Topological protection means that the existence
of these states is a global property regarding the topology of
the entire band structure, which disappears only if the gap
closes [6]. As one of the most promising analogies, topolog-
ical photonic systems [7–9] not only provide a playground
for observing topological modes directly and exploring novel
physics that is not easily accessible in electronic systems
like long-range interactions [10] and non-Hermitian topology
[11], but also have promising applications in unidirectional
waveguides [12], optical isolators [13,14], topological lasers
[15–17] and topological sensors [18], and so on.

A seemingly separate research field is thermal radiation
heat transfer. Recently, Biehs and coworkers [19–21] and
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the authors [22,23] proposed the possibility that topological
optical modes may play an important role in the control of
thermal radiation, especially in tailoring near-field radiative
heat transfer. In fact, topological photonic systems generally
rely on the specific arrangements of different microscale and
nanoscale elements, which naturally bear an intrinsic con-
nection with typical systems regarding many-body radiative
heat transfer [24–29], if a temperature gradient exists within
them. The most typical case is nanoparticle (NP) arrays. For
instance, Biehs and coworkers [19–21] recently investigated
plasmonic InSb NP arrays that are specifically arranged to
mimic the one-dimensional (1D) and two-dimensional (2D)
Su-Schrieffer-Heeger (SSH) models as well as the quantum
spin Hall (QSH) system in honeycomb lattices. They showed
that in the topologically nontrivial phases, thermal near-field
energy density is significantly enhanced at the edges and
corners (if there are topological corner states), and the edge
modes opened additional heat flux channels, which dominate
the radiative heat transport.

In this work, we attempt to study the topological edge
states and radiative heat transfer in a similar system with
richer underlying physics, that is a bichromatic NP array mim-
icking the well-known Aubry-André-Harper (AAH) model
[30–34]. This model is a 1D tight-binding lattice model with
onsite or/and hopping terms being cosine modulated. When
this cosine modulation is incommensurate (commensurate)
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with the lattice, this system becomes quasiperiodic (periodic).
In this manner, this type of lattice model is sometimes dubbed
“bichromatic” [35]. The presence of cosine modulation gives
rise to nontrivial topological properties that can be mapped
to the 2D integer quantum Hall (IQH) system (namely, the
well-known Harper-Hofstadter model in a square lattice with
a perpendicular magnetic field), in the absence of a realistic
magnetic field [2,30]. In this situation, the modulation phase
φ appearing in the cosine function describing the modulation
[cf. Eq. (1) below] plays the role of momentum (wave num-
ber) in a perpendicular synthetic dimension, which thus leads
to an imaginary dimensional extension to 2D [30,31,36]. As a
consequence, this model provides a playground for studying
profound topological phase transitions and topological states
in 1D.

Different from previous works regarding radiative heat
transfer in topological many-particle systems regarding plas-
monic NPs [19–21], our interest here is focused on the
topological phonon polaritons (TPhPs) since they not only
inherit the properties of deep-subwavelength confinement and
low loss of phonon polaritons that are prominent for me-
diating significant near-field radiative heat transfer [37–44],
but also exhibit topological protection and strong local-
ization over the edges [22]. These features render TPhPs
promising in long-range radiative heat transfer, informa-
tion processing, and infrared sensing, in which topological
protection is expected to enable their robust existence and
transport.

In this work, we show that TPhPs can be supported in
1D bichromatic silicon carbide nanoparticle chains by intro-
ducing incommensurate or commensurate modulations on the
interparticle distances, as an extension of the off-diagonal
AAH model. We calculate the band structures (eigenstate
spectra) with respect to the modulation phase φ, which plays
the role of a synthetic dimension. We find the evidence
showing the present system inherits the topological properties
of 2D IQH systems, and the spectral position and number
of these topologically protected edge modes are governed
by the gap-labeling theorem, which dictates the topological
invariant, i.e., the Chern number, indicating the validity of
bulk-boundary correspondence. Based on many-body radia-
tive heat transfer theory for a set of dipoles, we theoretically
show the presence of topological gaps and midgap phonon
polariton edge modes can considerably enhance radiative heat
transfer, for an array much longer than the wavelength of
thermal radiation. We show how the modulation phase that
acts as the synthetic dimension can tailor the radiative heat
transfer rate by inducing or annihilating topological modes.
We also discuss the role of dissipation of the SiC material. A
theoretical analysis based on eigenvalue decomposition then
follows to quantitatively examine the role of TPhPs. These
findings therefore provide a fascinating route for tailoring
near-field radiative heat transfer based on the concept of topo-
logical physics.

II. MODEL

Consider a 1D array composed of spherical α-SiC (hexag-
onal) NPs aligned along the x axis. To mimic the AAH model,
we introduce artificial modulations over the spacings between

adjacent NPs, given by [34,45]

xn+1 − xn = d[1 + η cos(2πβn + φ)], (1)

where xn denotes the position of the nth NP, d introduces
the on-average interparticle distance (or the periodic lattice
constant before modulation), η determines the amplitude of
the distance modulation, β is the periodicity of the modulation
that controls the bichromaticity of the lattice. If it is irrational,
we say the modulation is incommensurate while if it is rational
the modulation is then commensurate. By cosine modulating
the interparticle distance, the “hopping amplitudes” of pho-
tons between adjacent NPs are also cosine modulated due
to the distance-dependent dipole-dipole interactions between
NPs [cf. Eqs. (5) and (6) below], thus mimicking the con-
ventional off-diagonal AAH model (i.e., modulations over
the intersite hopping amplitudes for electrons). Moreover, the
modulation phase φ is introduced to further modulate the
positions of the NPs, and it can be regarded as the momentum
(wave number) in a synthetic orthogonal dimension [30–34],
as aforementioned. A detailed mapping from 1D off-diagonal
AAH model to the 2D Harper-Hofstadter model can be found
in the work by Kraus et al. [30]. As a result, the 1D chain can
inherit the rich topological property of 2D IQH systems.

For clarity, in Fig. 1, we plot the interparticle distance
�xn = xn+1 − xn as a function of particle number n, for in-
commensurate and commensurate lattices. System parameters
are chosen as d = 0.6 µm and η = 0.3. In Fig. 1(a) for β =
(
√

5 − 1)/2, it is seen that the distribution of particle posi-
tions is clearly aperiodic or, more specifically, quasiperiodic.
Quasiperiodic system is the intermediate phase with long-
range order between periodic and fully disordered (random)
systems, thus harboring a qualitatively different spectrum
[46], as will be seen below. We can also realize the vital role
of φ in modulating the positions of the NPs. In Fig. 1(b) for
β = 1

4 , it can be observed that the chain becomes periodic,
with a periodicity of four NPs in a unit cell, and the modula-
tion functionality of φ is also evident.

A. Electric dipole approximation and coupled-dipole model

Since SiC NPs support strongly localized phonon polariton
resonances in the infrared region around 11 µm due to excita-
tion of transverse optical phonons, the permittivity of SiC can
be described by a Lorentz model as [47]

εp(ω) = ε∞

(
1 + ω2

L − ω2
T

ω2
T − ω2 − iωγ

)
, (2)

in which ω is the angular frequency of the driving field in the
unit of cm−1 (wave number), ε∞ = 6.7 is the high-frequency
limit of permittivity, ωT = 790 cm−1 is the angular frequency
of transverse optical phonons, ωL = 966 cm−1 is the angular
frequency of longitudinal optical phonons, and γ = 5 cm−1

is the nonradiative damping coefficient [47]. Without loss
of generality, the radius of the spherical SiC NP is fixed as
a = 0.1 µm. Such a small NP (much smaller than the res-
onance wavelength of localized phonon polaritons) can be
approximated as an electric dipole [22] (see Appendix E). In
this situation the electromagnetic response of an individual
SiC NP can be described by the dipole polarizability within
the so-called radiative correction to balance scattering and
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FIG. 1. The distribution of NP positions under different β and
φ according to the generation rule of Eq. (1), described by the
interparticle distance �xn = xn+1 − xn. Only first 20 NPs are shown
for clarity. (a) The incommensurate case β = (

√
5 − 1)/2. (b) The

commensurate case β = 1
4 . Other parameters are d = 0.6 µm and

η = 0.3.

extinction [48–50]:

α(ω) = 4πa3α0(ω)

1 − 2iα0(ω)(k0a)3/3
(3)

with k0 = ω/c being the free-space wave number and

α0(ω) = εp(ω) − 1

εp(ω) + 2
. (4)

When the distance between the centers of adjacent spheri-
cal NPs is larger than 3a [by Eq. (1), the smallest interparticle
distance is d (1 − η) = 0.7d > 3a for η = 0.3], the electro-
magnetic (EM) response of the entire array is described by
the well-known set of coupled-dipole equations [48–50]:

p j (ω) = α(ω)

⎡
⎣Einc(ω, r j ) + ω2

c2

N∑
i=1,i �= j

G0(ω, r j, ri )pi(ω)

⎤
⎦

(5)

for j = 1, 2, . . . , N , where c is the speed of light in vacuum.
Einc(r) is the external incident field (if any) and p j (ω) is the
excited electric dipole moment of the jth NP. G0(ω, r j, ri ) is

the free-space dyadic Green’s function describing the propa-
gation of field emitting from the ith NP to jth NP, which is
given by [49]

G0(ω, ri, r j ) = exp (ik0r)

4πr

[(
i

k0r
− 1

k2
0r2

+ 1

)
I

+
(

− 3i

k0r
+ 3

k2
0r2

− 1

)
r̂r̂

]
, (6)

with r = |r| = |ri − r j | > 0 the distance between two NPs,
and r̂ being the unit vector with respect to r. Note the present
model takes all types of near-field and far-field dipole-dipole
interactions into account and is thus beyond the traditional
nearest-neighbor approximation implemented in the conven-
tional AAH model for electrons.

For 1D arrays, there are two types of electromagnetic
modes, including the transverse and longitudinal ones [51].
For the longitudinal modes, the dipole moments of the NPs
are aligned to the x axis, and therefore only the xx component
of the Green’s function (GF) needs to be used in calculations:

G0,xx(x) = −2

[
i

k0|x| − 1

(k0|x|)2

]
exp (ik0|x|)

4π |x| . (7)

On the other hand, for transverse eigenstates whose dipole
moments are perpendicular to the array axis, the transverse
(yy or zz) component of the GF is then used:

G0,yy(x) =
[

i

k0|x| − 1

(k0|x|)2
+ 1

]
exp (ik0|x|)

4π |x| . (8)

To determine the band structure (eigenstate distribution) of
a finite NP array, we can set the incident field in Eq. (5) to be
zero [51,52]. Then an eigenvalue equation can be obtained:

M|p〉 = α−1(ω)|p〉. (9)

Here M stands for the interaction matrix whose elements are
derived from the GF [Eqs. (7) and (8) according to the polar-
ization of eigenmodes], for instance, for longitudinal modes,
Mi j = (ω2/c2)G0,xx(xi − x j ) for i �= j and Mj j = 0. The right
eigenvector of this equation |p〉 = [p1 p2 . . . p j . . . pN ], in the
braket notation, stands for the dipole moment distribution
of an eigenstate, where p j is the dipole moment of the jth
NP. This equation can be solved to get a series of complex
eigenfrequencies in the lower complex plane in the form of
ω̃ = ω − i�/2, where the real part ω amounts to the angu-
lar frequency of the eigenstate while the imaginary part �

corresponds to its linewidth (or decay rate of the eigenstate)
[52,53].

Since the topologically protected eigenstates are highly lo-
calized over the boundary of the finite chain [3], to recognize
these eigenstates clearly, we use the inverse participation ratio
(IPR) to quantitatively measure for the localization degree of
an eigenstate [54–57]:

IPR =
∑N

j=1 |p j |4( ∑N
j=1 |p j |2

)2 . (10)

An eigenstate with IPR = 1 is completely localized while an
IPR = 1/n, where n is an integer, indicates the eigenstate can
be regarded as evenly distributed over n NPs [54]. Therefore,
for a highly localized topological edge state, its IPR should
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be much larger compared to those of the bulk eigenstates
[54]. But we should note not all eigenstates with high IPRs
are topologically protected. For instance, Anderson localized
states in the bulk are topologically trivial.

B. Calculation of radiative heat flux

Within the dipole approximation, the radiative heat trans-
fer can be calculated semianalytically by employing the
fluctuation-dissipation theorem (FDT). Radiative heat transfer
in such a system is the simplest case of many-body radia-
tive heat transfer, which has been discussed extensively in
recent works [24–29]. Let us start from the coupled dipole
model with fluctuating dipoles due to thermal excitation,
which is [24]

Ei j = μ0ω
2Gi j

0 pfluc
j �=i + ω2

c2

N∑
k �=i

Gik
0 αkEk j, (11)

in which Gi j
0 ≡ G0(ω, ri, r j ) for brevity, Ei j is the exciting

electric field impinging at particle i generated by the thermally
induced fluctuating dipole moment of particle j, and αk is the
dipole polarizability of the kth particle, which is equal to α for
identical NPs investigated in this work. The first term in the
right-hand side is the direct propagation of a dipole field from
the source pfluc

j �=i, while the second summation term indicates
the scattering processes from other particles k to particle i due
to the exciting electric fields Ek j impinging on them. If we
consider the total GF Gi j for the propagation of electromag-
netic waves from the fluctuating dipole j with inclusion of the
many-body scattering processes, which satisfies

Ei j = μ0ω
2Gi jpfluc

j �=i. (12)

It can be directly solved from Eq. (11). Such total GF can be
obtained for all particles with fluctuating dipoles. In a matrix
notation, the total GF is given as [24]

⎛
⎜⎝

G1k

...

GNk

⎞
⎟⎠ = [I − A0]−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G1k
0
...

G(k−1)k
0
0

G(k+1)k
0
...

GNk
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)

for k = 1, . . . , N with

A0 = α(ω)ω2

c2

⎛
⎜⎜⎜⎝

0 G12
0 · · · G1N

0

G21
0

. . .
. . .

...
...

. . .
. . . G(N−1)N

0
GN1

0 · · · GN (N−1)
0 0

⎞
⎟⎟⎟⎠. (14)

Then by invoking FDT, the heat transfer rate from particle
j to i is given by

P j→i = 3
∫ ∞

0

dω

2π
�(ω, Tj )Ti, j (ω) (15)

in which �(ω, T ) = h̄ω/{exp [h̄ω/(kbT )] − 1} is the Planck
oscillator with h̄ and kb being the reduced Planck and Boltz-
mann constants respectively, and the transmission coefficient

(TC) is defined as

Ti, j (ω) = 4

3

ω4

c4
χiχ jTr[Gi jGi j†], (16)

where χi = Im(αi ) − k3
0 |α|2/(6π ). A detailed derivation and

description of above formulas is given in Refs. [24,28].

III. INCOMMENSURATE LATTICE

As mentioned, if β is irrational, we say the modulation
is incommensurate and the NP array becomes quasiperiodic.
Here, we consider the case of β = (

√
5 − 1)/2, which is most

commonly investigated incommensurate AAH lattice in pre-
vious works. We can plot the calculated eigenstate spectrum
(band structure) as a function of φ, which varies in the range
from 0 to 2π . We emphasize that the so-called band structure
is nothing but a sweeping collection of eigenstate distributions
of individual 1D chains generated by different φ’s. Note it
is not a band structure of 2D arrays of NPs and no mutual
interactions take place between different chains, as φ only
represents an imaginary dimension [31,58]. In Fig. 2(a), the
longitudinal band structure of a chain with N = 100 NPs
and d = 0.6 µm is shown, in which the color of eigenstates
stands for their IPRs. The modulation amplitude is chosen
to be a moderate value of η = 0.3, which does not affect
the generality of this work [58] (a discussion on the effect
of a larger η is given in Appendix D). It can be observed
that the band structures break into a set of bands, in which
large main gaps can be clearly seen with several discernible
minigaps as well as many indiscernible gaps, that can be
only seen in an enlarged figure (not shown here) [58]. This
is due to the irrational nature of the interparticle distance
modulation that leads to a fractal spectrum. In fact, for an
infinitely long chain, its spectrum constitutes a Cantor set with
Lebesgue measure zero [59–62]. This is a typical feature of
quasiperiodic systems. Moreover, all the bands are actually
flat and the eigenfrequencies are almost unchanged with the
variation of φ with a few states crossing the gaps since the
irrational modulation makes the system insensitive to lattice
translation [31].

In the two main gaps, namely, the gaps cover-
ing 927.7 cm−1 � ω � 928.5 cm−1 and 928.6 cm−1 � ω �
929.3 cm−1 in Fig. 2(a), midgap states with high IPRs can
be clearly recognized. These states are topologically protected
edge states dictated by a nonzero Chern number, similar to the
behavior of the conventional AAH model, as will be discussed
below. These midgap states only exist for a specific range of
modulation phase φ’s. To see this more clearly, let us consider
the eigenstate spectra of two cases, φ = 0.2π [Fig. 2(b)] and
φ = π [Fig. 2(c)]. The state number is assigned according
to its frequency. In the former case, no midgap states can
be found, where the high-IPR eigenstates are actually bulk
states that are Anderson localized [58] (not shown here).
Note Anderson localization is due to the constructive inter-
ference between multiple scattering trajectories, which can
emerge in disordered systems, and also can appear in certain
quasiperiodic systems like the current system mimicking the
AAH model, when the quasiperiodic modulation amplitude
exceeds a certain value [63]. In the case of φ = π [Fig. 2(c)],
in each of the two main gaps, a pair of midgap states are
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FIG. 2. Longitudinal band structures of incommensurate lattices with β = (
√

5 − 1)/2, d = 0.6 µm, η = 0.3, and N = 100. (a) Band
structure with respect to the modulation phase φ. (b) Eigenstate spectrum for φ = 0.2π . (c) Eigenstate spectrum for φ = π . (d) Dipole moment
distributions of several typical midgap states. (e) Band structure for an array with an odd number of NPs (N = 99) as a function of modulation
phase φ. (f) Dipole moment distributions for the midgap states for φ = 0.5π .

FIG. 3. Radiative heat transfer in the incommensurate lattice of
β = (

√
5 − 1)/2. (a) Spectral net heat transfer rate for φ = 0.2π , π ,

and 1.2π for the even chain (N = 100). (b) Total net radiative heat
rate as a function of modulation phase φ for both even and odd cases.

observed. The state numbers are denoted by 38, 39, 62, and
63, respectively. The dipole moment distributions over the
chain for these states are given in Fig. 2(d), showing they
are strongly localized over the boundaries, as a manifestation
of topological edge states. In each of the main gaps, the pair
of midgap states are localized over the left and right edges,
respectively. We further find that in each of the two main gaps,
by varying the modulation phase φ, the midgap edge states
keep localized over the same edge as long as they remain
in the gap. Therefore, these midgap states localized over the
same edge in the same band gap can be regarded as belonging
to the same “mode” as φ plays the role of momentum in an
extended dimension. For each of the two main gaps, there are
two edge modes traversing the spectral gap, one localized over
the left edge and the other localized over the right edge. This
property is a manifestation of the topological nature of the
band gaps [31].

The topological property of the conventional AAH model
can be characterized by the gap Chern number ν, which satis-
fies the following Diophantine-type equation [64–67]:

N = μ + νβ, (17)

in which μ is an integer and N is the normalized integrated
density of states (IDOS) in the gap. This equation is a general
result derived from the magnetic translational symmetry in an
IQH system with 2D Bloch electrons subjected to rational
(hence described by a rational β = p/q with p, q denoting
two coprime integers) magnetic fields. By taking the irrational
limit for β, it can also be applied to incommensurate systems
[66,68,69]. This is the reason why the above equation can
be still thought of as a Diophantine equation [30,69,70].
More details on the origin of this equation are introduced
in Appendix A as well as in Refs. [46,58,69,71–73]. This
equation has only one set of solutions (μ, ν) for an irrational
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FIG. 4. Longitudinal band structures and midgap modes in the case of β = 1
2 , N = 100, d = 0.6 µm, and η = 0.3. (a) Band structure as a

function of modulation phase φ. (b) Eigenstate distribution for φ = 0.2π . (c) Eigenstate distribution for φ = π . (d) Dipole moment distribution
for the midgap states at φ = π . (e) Band structure for an array with an odd number of NPs (N = 99) as a function of modulation phase φ. (f)
Dipole moment distributions for the midgap states at φ = 0.2π and π in the odd case.

β and a fixed N , and therefore any band gaps with the same
N and irrational β can be labeled by the same set of inte-
gers (μ, ν), independent of system details. As a consequence,
this equation is called the gap-labeling theorem [46,58,69,71–
73]. This universality of these topological integers under an
irrational β is robustly protected by the magnetic translational
symmetry [70]. On the other hand, the situation is quite dif-
ferent for rational β’s, where there are infinite solutions for
the equation and therefore the topological property is system
dependent [64,65,67,74].

To use the gap-labeling theorem, the normalized IDOS N
of a band gap can be calculated, which is the number of eigen-
states below the gap divided by the total number of eigenstates
in the spectrum for a specific φ. In Fig. 2(a), the lower main
gap (927.7 cm−1 � ω � 928.5 cm−1) has an IDOS of N ≈
38/100 = 0.38, which leads to a solution for the gap-labeling
theorem of μ = 1, ν = −1. It should be noted in a rigorous
sense, for our case, the values of μ and ν are approximate
because N is a rational number for our finite chain while β

is an irrational number. When the length of the chain goes to
infinite, the results of μ and ν become exact [54,71,72,75–
85]. The upper main gap 928.6 cm−1 � ω � 929.3 cm−1 ex-
hibits an IDOS N ≈ 62/100 = 0.62, resulting in an integer
solution of μ = 0, ν = 1. Therefore, the Chern number of
the lower (upper) main gap, as a global property from the
bulk band structure, is ν = −1 (ν = +1). According to the
bulk-boundary correspondence in 2D IQHE, for a gap Chern
number of ν, there must be |ν| edge mode(s) on each edge,
whose energy (frequency) traverses the gap when φ varies
from 0 to 2π [30,31,34]. The sign of gap Chern number de-
termines the chirality (group velocity) of the left edge modes
[34]. According to the observed topological edge modes in
Figs. 2(b)–2(d), we can confirm that the bulk-boundary cor-
respondence is valid in our system, and therefore the midgap

edge states are indeed topologically protected. In other words,
they can be regarded as topological phonon polaritons.

We can further validate the bulk-boundary correspondence
by investigating the minigaps with more midgap states, for
instance, the minigap covering ω, which has an IDOS of
0.24 and a Chern number of ν = 2, leading to two edge
modes on both left and right edges (i.e., four edge modes
in total), respectively. Since these midgap edge states in the
minigaps will not contribute significantly to radiative heat
transfer, we will not study them in detail [58]. Moreover,
for the transverse eigenstates, the band gaps are substantially
narrower as a consequence of weaker dipole-dipole interac-
tions. This is because transverse eigenstates involve a far-field
interaction term that decays very slowly with the distance
r as 1/r [Eq. (8)]. Such far-field interactions can result in
very long-range hoppings of excited states and effectively
reduce the strength of near-field interactions, leading to a
reduction in the band-gap width. In spite of these differences,
the qualitative behavior is still quite similar to the conven-
tional AAH model. Therefore, they will not be discussed
in detail in this work. One can find related discussions in
Refs. [19,55,58].

It is worth mentioning that the dipole moment distribution
of the topological edge state shows a fast decay near the edge
and then a slower one in the bulk [Fig. 2(d)]. More pre-
cisely, the topological edge states decay exponentially from
the boundary with a relatively short localization length while
decaying in power law in the long range, deep in the bulk.
This feature is a consequence of algebraically (or power-law)
decaying (1/rα , α > 0) dipole-dipole interactions that give
rise to long-range hopping of photons, which is also observed
in many similar systems with power-law interactions, for in-
stance, the 1D Kitaev model with power-law pairing [86] and
1D Kitaev model with both power-law hopping and pairing
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[87,88]. A more evident demonstration has also been given in
our previous work for a long chain with 2000 NPs [55].

For the AAH chain, there is a well-known even-odd effect
with respect to the number of lattice sites. In Fig. 2(e), the
band structure for an N = 99 lattice is given, where we can
see one of the topological edge modes in the main gap does
not change compared to the even case while the other is
largely shifted in φ [89]. We can confirm it still fulfills the
gap-labeling theorem and the dipole moment distributions of
topological edge states are presented in Fig. 2(f).

Now let us consider how TPhPs affect radiative heat trans-
fer in such a system. We assume the first NP has a temperature
of T1 = 310 K while all of the other NPs’ temperatures are
kept as Tj = 300 K, j = 2, 3, . . . , N . This choice of tempera-
ture distribution is to partially match the resonance frequency
of phonon polaritons in SiC. The net spectral heat rate from
the first NP to the last NP, PN1

net (ω) = P1→N,ω − PN→1,ω for
φ = 0.2π, π , and 1.2π , is plotted in Fig. 3(a). Note the re-
sults take the contributions of both longitudinal and transverse
polarizations into account, although we only investigate the
longitudinal eigenstate spectra. It is found that there are con-
siderable differences between the maximum spectral radiative
heat rate PN1

net,max in these three cases. For φ = 0.2π , since
there is not any TPhP [Figs. 2(a) and 2(b)], PN1

net,max is the
smallest. In both cases of φ = π and 1.2π , TPhPs are present
in the main gaps [Figs. 2(a), 2(c), and 2(d)], which enhance the
radiative heat transfer process. Moreover, PN1

net,max(φ = 1.2π )
is slightly larger than PN1

net,max(φ = π ), because in the case of
φ = 1.2π , there are two nearly degenerate edge states below
the central bands (also near the phonon polariton resonance
frequency ω ∼ 928.5 cm−1 of a single NP) that can further
enhance the long-range heat transfer (consider the length of
the chain is around ∼100d = 60 µm and refer to theoretical
analysis in Sec. V).

In the odd case, one of the topological edge modes in the
main gap does not change compared to the even case while
the other is largely shifted in φ [Fig. 2(e)]. We also found that
this shift of topological edge mode has a significant effect
on radiative heat transfer. Figure 3(d) shows the total net
radiative heat transfer rate (integrated over all frequencies)
PN1

net = P1→N − PN→1 for the even and odd cases as a func-
tion of modulation phase φ, in which it is clearly seen that
this variation closely resembles the evolution of topological
edge modes with φ in both even and odd cases [Figs. 2(a)
and 2(e)]. That is, the existence of TPhPs can significantly
enhance PN1

net , and if there are more topological edge states
approaching the central band (ω ∼ 928.5 cm−1, namely, near
the phonon polariton resonance frequency of a single NP), the
larger PN1

net is. Since the shift of topological mode in the odd
case leads to a major change of the φ dependence compared
to the even case, we can further confirm that TPhPs play
an important role in this long-range radiative heat transfer
process.

IV. COMMENSURATE LATTICE

In this section we further discuss the cases of rational β’s,
namely, commensurate lattice. We will mainly focus on two
cases: β = 1

2 and 1
4 .

FIG. 5. Radiative heat transfer in the case of β = 1
2 . (a) Spectral

net heat transfer rate for φ = 0.2π and π in the even case. (b) Total
net radiative heat rate as a function of modulation phase φ for both
even and odd cases.

A. The case of β = 1
2

In Fig. 4(a), the eigenstate spectrum for β = 1
2 is presented

with N = 100, d = 0.6 µm, and η = 0.3. There is no band
gap in the spectrum, with two degenerate points which can be
regarded as Dirac points [32,90]. A quasi-zero-energy mode
(that is near the resonance frequency of phonon polaritons)
exists and connects the two Dirac points. All bulk eigen-
states have low IPR values and are extended states. Unlike
the situation of the conventional AAH model under nearest-
neighbor (NN) approximations without long-range hoppings,
the frequency of this quasi-zero-energy mode is not kept con-
stant with φ but slightly changes [32,91,92]. We also note
in the commensurate system, the band is no longer flat and
varies substantially with φ since the translational invariance
only exists for discrete values of φ (φ = π for β = 1

2 ) [31].
Although the entire system as a family of 1D lattices does
not have a full band gap, when a specific configuration with
a fixed φ �= 0.5π or π is considered, there is still a band
gap, as shown in Fig. 4(b) for φ = 0.2π and Fig. 4(c) for
φ = π . As expected, there is no midgap state in the case
of φ = 0.2π while two degenerate midgap states emerge in
the band gap for the case of φ = π , whose dipole moment
distributions are given in Fig. 4(d). These midgap modes are
indeed localized over the boundaries. As discussed in previous
works for the off-diagonal AAH model with NN hoppings
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FIG. 6. Longitudinal band structures and midgap modes in the case of β = 1
4 , N = 100, d = 0.6 µm, and η = 0.3. (a) Band structure

as a function of modulation phase φ. (b) Eigenstate distribution for φ = 0.2π . (c) Eigenstate distribution for φ = 0.8π . (d) Dipole moment
distributions for the midgap states in the cases of φ = 0.8π and π . (e) Band structure for an array with an odd number of NPs (N = 99) as a
function of modulation phase φ. (f) Dipole moment distributions for the midgap states for φ = 0.2π and π in the odd case.

under β = 1
2 [32], the topology property for such a system,

as a family of 1D systems, can be more conveniently under-
stood in a Majorana basis, which can be described by a Z2

topological index. This index is 0 for cos φ > 0 while it is
1 for cos φ < 0 in our system, consistent to the emergence
of quasi-zero-energy modes. Note although there are long-
range dipole-dipole interactions in the present system, they
can be regarded as small perturbations which do not affect the
robustness of topological edge modes as implied in Ref. [32]
since the interparticle distance is deep subwavelength and the
nearest-neighbor coupling dominates. On the other hand, for
a specific φ, the band topology can be described by the Zak
phase for 1D systems like the conventional SSH model with
trivial chiral symmetry breaking due to next-nearest-neighbor
(NNN) and high-order hoppings, which is well understood
in previous works of the authors and others [22,52,93]. In
the meanwhile, there is also an even-odd effect for β = 1

2
as expected. Figure 4(e) shows the eigenstate spectrum for
N = 99. It is found in this odd case, quasi-zero-energy mode
exists for all φ’s. However, we note these edge states only
localize over one of the boundaries [Fig. 4(e)], different from
the even case in which the edge states are localized over both
boundaries (therefore with lower IPRs ∼0.5) [Fig. 4(c)]. As
discussed in Ref. [32], in the Majorana basis, there always
exists a single Majorana localized on one of the edge sites.

Let us proceed to the calculation of radiative heat transfer.
The net spectral heat rate from the first NP to the last NP,
PN1

net (ω) for φ = 0.2π and π , is plotted in Fig. 5(a). A signifi-
cant difference between the spectrum of the topological phase
(φ = π ) and that of the topologically trivial case (φ = 0.2π )
is observed, in which the former shows a considerably larger
maximum spectral radiative heat rate PN1

net,max, indicating the
enhancement of radiative heat transfer due to TPhPs. More-
over, the spectral position of this maximal value is different
between topologically nontrivial and trivial cases. This is be-

cause for the former case, PN1
net,max comes from the excitation

of TPhPs in the gap while in the latter case it is due to the
transport enhancement originated from the band edges of bulk
spectrum [18].

We compare the total net radiative heat transfer rate PN1
net

for the even and odd cases as a function of modulation phase
φ in Fig. 5(b). In the even case, the variation is closely related
to the evolution of topological edge modes with φ [Fig. 4(a)],
where the maximum value is resided at φ = π with topolog-
ical edge states with highest localization degree (i.e., IPR)
while the topologically trivial regime shows the smallest heat
rate. On the other hand, for the odd case, since topological
edge states are present for all φ’s [Fig. 4(e)], the amplitude
of variation of PN1

net with φ is small, and the maximum heat
transfer rate emerges at the Dirac points. The on-average PN1

net
in the odd case is still large, comparable with the heat transfer
rate in the topological phase in the even configuration, while it
is considerably lower than the maximum PN1

net in the even case.
Note the length of the array in the odd case is shorter than that
of the even case. This important difference derives from the
fact that two-sided edge states can show a stronger augmen-
tation of long-range energy transfer than one-side edge states,
consistent with previous findings in Ref. [19], as would be
also explained by our theoretical analysis in Sec. V below.
Therefore, we can further confirm that the presence of TPhPs
can indeed enhance long-range heat transfer significantly.

B. The case of β = 1
4

We further investigate the case of β = 1
4 , whose eigenstate

spectrum as a function of φ for a lattice with N = 100 NPs
is shown in Fig. 6(a). Due to this periodic modulation, the
band structure breaks into four bands, with two clearly visible
main band gaps and one very small gap in the middle of the
spectrum. For the conventional AAH model with only NN
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coupling, there is no such a gap and the two middle bands
are connected by four Dirac points [90]. The difference here
is due to the NNN and high-order hoppings as discussed in
detail in Ref. [32]. We also note in each of the main gaps,
there are two midgap modes with high IPRs. These modes are
also topologically protected edge modes. Like previous cases,
these modes only exist for a specific range of φ. For instance,
for the case of φ = 0.2π [Fig. 6(b)], there are three band gaps
recognized, without any midgap states, while for φ = 0.8π

[Fig. 6(c)], two midgap states in the lower main gap and one
midgap state in the upper main gap are clearly observable.
The dipole moment distributions of the two midgap states in
the lower main gap (state numbers are 25 and 26) are shown in
Fig. 6(d): They are localized over the left and right boundaries,
respectively. Moreover, for φ = π , the two midgap modes
cross with each other and the two midgap states become
nearly degenerate, and thus they are localized over both of the
boundaries of the chain and almost overlap with each other.

In this case, the topological properties of the gaps
are determined by the Chern number. As aforementioned,
the gap-labeling theorem is still valid in the commensurate
case but the solution is no longer unique like the incommensu-
rate case. Therefore, Chern number for a band n here can only
be directly computed by formally carrying out Berry curvature
integration through the “ancestor” 2D quantum Hall model
[34,91]:

νn = 1

2π

∫ 2π

0

∫ 2π/(2d )

0
dk dφ

(
∂Ak

∂φ
− ∂Aφ

∂k

)
(18)

in a 2D parameter space with φ being the wave number in
the extended dimension in addition to the wave number k in
the real 1D space (since the 1D chain is periodic). Here Ak =
i〈ψn(k)|∂k|ψn(k)〉 and Aφ = i〈ψn(k, φ)|∂φ|ψn(k, φ)〉 with ψn

being the wave function in the band n, which can be solved
by applying the Bloch theorem under periodic boundary con-
dition and consists of the dipole moments of four NPs in a
unit cell in our system. The gap Chern number is the sum of
the band Chern numbers below the gap. It is found for the
lower gap ν = −1, while for the upper gap, ν = +1. These
Chern numbers guarantee the existence of |ν| = 1 topological
edge mode at both of the edges in both gaps. Hence, the edge
modes emerging at the two main gaps are indeed topologically
protected.

The even-odd effect is still persistent, demonstrated by the
eigenstate spectrum for N = 99 shown in Fig. 6(e). It is seen
that one of the topological edge modes significantly shifts
along the φ coordinate. The dipole moment distributions of
two eigenstates at φ = π and 1.5π are further presented in
Fig. 6(f) to confirm they are topological edge states.

Figure 7(a) shows the net spectral heat rate from the first
NP to the last NP, PN1

net (ω) for φ = 0.2π, 0.8π , and π in the
even case. Like previous scenarios, considerable differences
between the maximum spectral radiative heat rate PN1

net,max in
these three cases are observed. PN1

net,max at φ = 0.2π is the
smallest due to the absence of TPhPs [Figs. 6(a) and 6(b)],
while in both situations of φ = 0.8π and π , the presence of
TPhPs [Figs. 6(a) and 6(c)] can substantially enhance the heat
transfer rate present in the main gaps. Like previous cases,
PN1

net,max(φ = π ) is slightly larger than PN1
net,max(φ = 0.8π ),

FIG. 7. Radiative heat transfer in the case of β = 1
4 . (a) Spectral

net heat rate for φ = 0.2π , 0.8π , and π in the even case. (b) Total
net radiative heat rate as a function of modulation phase φ for both
even and odd cases.

thanks to the existence of two nearly degenerate topological
edge states near central band [Fig. 6(a)] that can further en-
hance the long-range heat transfer.

The shift of topological modes in the odd case, as ex-
pected, has a significant influence on the φ dependence of
total heat transfer rate PN1

net [Fig. 7(b)]. The general trend in
both even and odd cases follows the evolution of topological
edge modes like previous cases. As a result of two degenerate
TPhPs approaching closely the central band, in the odd case
(at φ ∼ 1.2π ), it exhibits the largest total heat transfer rate.

We would like to discuss the role of dissipation of the SiC
material in this study of TPhP enhanced radiative heat transfer.
We assume a low-loss circumstance of γ = 1 cm−1 for the
permittivity in Eq. (2) with other parameters unchanged. In
this case, the eigenstate spectrum shows almost no differ-
ence with the case of γ = 5 cm−1 (not shown here). The net
spectral heat transfer rate from the first NP to the last NP
PN1

net (ω) for φ = 0.2π, 0.8π , and π is shown in Fig. 8(a).
More significant differences between these spectra than previ-
ous high-loss cases are observed. On one hand, the topological
phases (φ = 0.8π and π ) show several times larger maximum
spectral radiative heat rates PN1

net,max than the topologically
trivial case (φ = 0.2π ), clearly confirming the enhance-
ment of radiative heat transfer due to TPhPs. Moreover, the
spectral position of this maximal value is different for the
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FIG. 8. Radiative heat rate in the case of β = 1
4 with an artificial

decay rate γ = 1 cm−1. (a) Spectral heat rate for φ = 0.2π , 0.8π ,
and π for the even case. (b) Total radiative heat rate as a function
of modulation phase φ for even (N = 100) and odd (N = 99) cases.
Other parameters are d = 0.6 µm and η = 0.3.

topologically nontrivial and trivial cases, similar to the reason
of the difference in Fig. 5(a). That is, for the topologically
nontrivial cases, PN1

net,max is dominated by the excitation of
TPhPs in the gap while in the topologically trivial case it
is due to the transport mediated by the eigenstates in bulk
bands [18]. More specifically, for the topologically trivial case
(φ = 0.2π ), two moderate peaks appear at around ω = 928.3
and 928.8 cm−1, which essentially correspond to the eigen-
states lying at the edges of central two bands. This is expected
since eigenstates at band edges show large group velocities
and then a large density of states (DOS). [Note, for periodic
nanoparticle chains, state number is proportional to Bloch
wave number of the state [51,52,55]. In particular, for kth
eigenstate, the real part of elements in the eigenvector varies
from positive to negative alternately along the chain, and the
number of times the sign changes is (k − 1), from which the
wave number can hence be determined.]

In Fig. 8(b), total radiative heat rate PN1
net as a function of

modulation phase φ for the even and odd lattices is provided,
which unequivocally shows the giant enhancement brought by
the existence of TPhPs. Notably in the odd case, the presence
of TPhPs demonstrates nearly three times larger total radiative
heat transfer rate PN1

net than that of the topologically trivial

lattice. Therefore, the considerable damping coefficient in the
SiC material is the critical factor that affects the enhancement
brought by TPhPs [21]. We envision that future works to
explore phonon polaritonic materials with lower losses will be
critical to achieving a significant enhancement of the radiative
heat transfer mediated by topological edge modes. These low-
loss materials will also facilitate the experimental observation
of TPhP-enhanced radiative heat transfer.

V. DISCUSSION

In this section, we aim to theoretically reveal why topolog-
ical edge states can enhance radiative heat transfer. Without
loss of generality, we consider only longitudinal modes as an
illustration. In this manner, the matrix elements in Eq. (13),
Gi j

0 and Gi j , become scalar. In this scenario, the N × N matrix
A0 in Eq. (13) is related to the interaction matrix M in Eq. (9)
as A0 = αM. We denote the eigenvalues of the matrix M as
λk with corresponding eigenvectors Vk , and then the matrix
M can be diagonalized as

M = VDV−1, (19)

with D = diag(λ1, λ2, . . . , λk, . . . , λN ) and V =
[V1, V2, . . . , Vk, . . . , VN ]. Note here each column vector
Vk is the same as the dipole moment distribution
|p〉 = [p1 p2 . . . p j . . . pN ] in Eq. (9). Thus, we get

⎛
⎜⎝

G1k

...

GNk

⎞
⎟⎠ = V−1[I − αD]−1V

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G1k
0
...

G(k−1)k
0
0

G(k+1)k
0
...

GNk
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20)

Since the matrix M is symmetric, we have V−1 = VT. After
some matrix manipulations, we obtain the elements of total
GF as

Gi j =
N∑

k=1

N∑
m=1

Vk,i
1

1 − α(ω)λk
Vm,kGm j

0,xx, m �= j (21)

in which Vk,i is the ith element of the kth eigenvector Vk , pro-
portional to the dipole moment of the ith NP in this eigenstate,
and Gm j

0,xx = G0,xx(x j − xm).
From Eq. (16), for the scalar case regarding longitudinal

eigenstates we obtain the transmission coefficient as

Ti, j (ω) = 4

3

ω4

c4
χiχ j

∣∣∣∣∣∣
N∑

k=1

N∑
m=1,m �= j

Vk,iVm,k

1 − α(ω)λk
Gm j

0,xx

∣∣∣∣∣∣
2

. (22)

For the TC between the NPs at the opposite ends, we get

TN,1(ω) = 4

3

ω4

c4
χN (ω)χ1(ω)

×
N∑

k=1

∣∣∣∣ 1

1 − α(ω)λk

∣∣∣∣
2

|Vk,N |2
∣∣∣∣∣

N∑
m=2

Vk,mGm1
0,xx

∣∣∣∣∣
2

.

(23)
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Therefore, the TC can be decomposed into the contribu-
tions of all eigenstates. As a matter of fact, for a specific ω,
those eigenstates with eigenfrequency ωk lying in the range of
[ω − γ /2, ω + γ /2] would contribute most to the TC, while
the contribution of other eigenstates is usually negligible. This
is actually determined by the |1/[1 − α(ω)λk]|2 prefactor in
each term in the summation [19,49,55,94], as would be dis-
cussed later. This prefactor, to some extent, can be regarded as
an indicator for density of states, as it determines how many
eigenstates determine the response of the system at a specific
frequency.

The significant contribution from topological edge states
can be understood from Eq. (23). First, it is evident that the
term |Vk,N |2 in Eq. (23) would be much larger when kth eigen-
state is a topological edge state localized over the N th NP than
when it is a bulk state. This was also implied by Ref. [19].
Second, we note the summation |∑m Vk,mGm1

0,xx|2, at the right-
most of Eq. (23), shows quite different behaviors for edge
and bulk states. If the kth eigenstate is a bulk state, the real
part of elements in the eigenvector Vk varies from positive to
negative alternately along the chain, and the number of times
the sign of Vk,m changes is (k − 1) [51,52]. In this sense, the
term | ∑m Vk,mGm1

0,xx|2 in the rightmost of Eq. (23) is expected
to be small due to the cancellation of positive and negative ele-
ments. On the other hand, if the kth eigenstate is a topological
edge state which decays exponentially near the boundaries,
the product Vk,mGm1

0,xx would be large near the boundaries and
nearly zero in the bulk, resulting in relatively large values of
| ∑m Vk,mGm1

0,xx|2. Since the arrangement of NPs in our system
is not simple, the eigenvectors of the interaction matrix cannot
always be obtained analytically, especially for topological
edge states. To verify above arguments, we thus numerically
calculate the results of |∑m Vk,mGm1

0,xx|2 for bulk and topolog-
ical edge states.

The results are shown in Fig. 9(a) for the incommensurate
case β = (

√
5 − 1)/2, and in Fig. 9(b) for the commensurate

case β = 1
4 , respectively, in logarithmic scale. In the former

case, three highest values are identified, with state numbers
24, 39, and 62, which correspond to topological edge states as
aforementioned, while there are also two large values (�0.1)
that are lower than previous ones, for state numbers 15 and
72, respectively. These two eigenstates are not topological
edge states, while they are actually bulk states with large
dipole moments for NPs near the boundary. These kinds of
eigenstates are formed due to the aperiodicity of the lattice
(for periodic chains, there are no such bulk states since all
bulk states are extended Bloch states). Except for these large
values, the results of other bulk eigenstates are negligibly
small. In Fig. 9(b), it can be clearly observed that in the com-
mensurate lattice of β = 1

4 , topological edge states, with state
numbers 25, 26, 75, and 76, can result in very large results,
while the contributions of all bulk eigenstates are vanishingly
small. Therefore, we can claim that topological edge states
can indeed lead to much larger values of |∑m Vk,mGm1

0,xx|2
than bulk states in both incommensurate and commensurate
lattices, as expected.

In the meanwhile, from Eq. (23), we can also explain the
role of the damping coefficient γ . The most evident fact is
TN,1(ω) ∝ χN (ω)χ1(ω), meaning a smaller γ would enhance
χ j (ω) near the single-particle resonance frequency ωres =

FIG. 9. Calculated results of |∑m Vk,mGm1
0,xx|2 for different eigen-

states k in logarithmic scale for (a) the incommensurate case β =
(
√

5 − 1)/2 and (b) the commensurate case β = 1
4 . In both cases,

the modulation phase is chosen to be φ = π in order to observe
topological edge states. Other parameters are N = 100, d = 0.6 µm,
and η = 0.3.

√
(ε∞ω2

L + 2ω2
T )/(ε∞ + 2) = 928.5 cm−1 (see Appendix E)

while reducing their off-resonance values. In particular, on
resonance, χ j (ωres) ∝ γ −1 [cf. Eqs. (3) and (E2) by neglecting
the radiative correction]. This means if other factors fixed,
the peak TC would be enhanced to be 25 times when γ is
reduced from 5 to 1 cm−1, while the observed enhancement
of peak spectral heat rate is around 10. As aforementioned, it
should also be noted that as γ decreases, the number of con-
tributing eigenstates to the TC at a specific frequency would
also decrease. To get more insights, let us investigate the
prefactor |1/[1 − α(ω)λk]|2 at the single-particle resonance
frequency (ω = ωres) in Eq. (23) for each eigenstate k of the
commensurate lattice β = 1

4 at different damping coefficients
as shown in Fig. 10.

In Fig. 10(a) for the φ = π case, we can see when γ =
5 cm−1, not only those eigenstates very close to ωres have rel-
atively large prefactors [state numbers ranging from 27 to 74,
residing in the middle two bands as given in Figs. 6(a)–6(c)]
and thus main contributions to the TC, but also the eigenstates
in the lowest and highest bands [state numbers ranging from 1
to 24 and from 77 to 100, cf. Figs. 6(a)–6(c)] show substantial
prefactors due to the relatively large γ . The four points corre-
sponding to topological edge states [state numbers are 25, 26,
75, and 76] can be clearly identified, which are isolated with
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FIG. 10. Calculated results of the prefactor |1/[1 − α(ωres )λk]|2
for different eigenstates k for the commensurate lattice β = 1

4 when
(a) φ = π and (b) φ = 0.2π . Other parameters are N = 100, d =
0.6 µm, and η = 0.3.

those of other bulk states, with intermediate prefactors. On
the other hand, when γ is reduced to 1 cm−1, the prefactors
for eigenstates in the lowest and highest bands significantly
decrease to about 0.1 while the prefactors of eigenstates close
to ωres remain relatively large (yet they are also reduced in
some degree). For the topological edge states, their prefactors
are also reduced but are still larger than 0.5. As a compar-
ison, Fig. 10(b) shows the case of φ = 0.2π , in which no
topological edge states are seen. It is thus evident that by
reducing γ , the proportion contributed by the topological edge
states to the TC increases [cf. Eq. (23)], and thus the contrast
between topologically nontrivial and trivial cases becomes
more substantial (cf. Figs. 7 and 8).

For completeness, more detailed discussions are presented
in the Appendixes. In Appendix B, temperature profile and
total radiative heat transfer rate under the thermal equilibrium
scenario are investigated. In Appendix C, a comparison of
our results with those of a regular periodic chain, that is, the
monoatomic chain, is presented to further reveal the import
role played by TPhPs. In Appendix D, we study the effect of
a larger modulation amplitude η.

VI. CONCLUSIONS

To summarize, we show TPhPs can be realized in 1D
bichromatic SiC nanoparticle chains and they can consid-

erably enhance radiative heat transfer for an array much
longer than the wavelength of radiation. The introduction of
incommensurate or commensurate modulations on the inter-
particle distances of 1D periodic chains leads to a mimicry
of the off-diagonal AAH model. The eigenstate spectrum
with respect to the modulation phase is calculated, which
clearly demonstrates that under this type of modulation the
chain supports nontrivial topological modes localized over
the boundaries. This is because the present system inherits
the topological property of two-dimensional IQH systems de-
spite the presence of long-range dipole-dipole interactions. In
this circumstance the gap-labeling theorem and corresponding
Chern number can still be used to characterize the features of
band gaps and topological edge modes. An exception is for the
β = 1

2 case whose topological property can be characterized
by a Z2 topological index in the Majorana basis. Moreover,
based on many-body radiative heat transfer theory for a set of
dipoles, we show the presence of topological gaps and midgap
TPhPs can considerably enhance radiative heat transfer for an
array much longer than the wavelength of radiation. We show
how the modulation phase that acts as the synthetic dimen-
sion can tailor the radiative heat transfer rate by inducing or
annihilating topological modes. We also find if the damping
rate of the SiC material can be reduced, the enhancement of
radiative heat transfer due to TPhPs can be significantly larger.
Our theoretical analysis based on eigenvalue decomposition
reveals the role of TPhPs quantitatively, whose localization
behavior over the chain boundaries is shown to be crucial to
the enhancement. These findings therefore provide a fascinat-
ing route for tailoring near-field radiative heat transfer based
on the concept of topological physics.

We note in Refs. [95,96] a tight bound for radiative
heat transfer between two bodies was derived, based on
the so-called radiative efficacies obtained from the singular
value decomposition (SVD) of off-diagonal vacuum Maxwell
Green’s function. These works, although developed for two-
body problem, laid the foundation for estimating the radiative
heat transfer limit for many-body system. In particular, when
the radiative heat transfer between two specific bodies in an
N-body system is considered, this method can be applied via
replacing the vacuum GF in the two-body problem by the ef-
fective GF of the environment [note it would be different from
Gi j in Eq. (13)] which accounts for the multiple scattering and
many-body effects of the other N − 2 bodies. This method
provides another route to establish the connection between
topological edge states and radiative heat transfer and, more
importantly, may be helpful for evaluating the fundamental
limit of enhancement that topological edge states can bring.

As the concept of synthetic dimension due to the interpar-
ticle distance modulation can be further extended to create
high-order topological systems such as four-dimensional (4D)
high-order topological insulator and 4D Chern insulator [97],
we expect more physical insights can be obtained if this
concept is introduced to the many-particle system. More-
over, although the present system does not exhibit significant
non-Hermiticity for the topological band that may alter the
topological properties qualitatively, we envision that the pres-
ence of strong non-Hermiticity would have qualitative effects
on the topological optical modes mediated radiative heat
transfer [98–100]. Additional artificial non-Hermiticity can
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be introduced, for instance, by adding appropriate gains
into the system [101]. In this scenario, one may mimic the
non-Hermitian PT -symmetric AAH model [99,102,103], in
which more interesting topological phenomena and radiative
heat transfer properties may be observed. Magnetic field can
also be introduced into the system to induce nonreciprocal
hoppings, which can also result in a non-Hermitian Hamil-
tonian [104,105].
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APPENDIX A: GAP-LABELING THEOREM

In this Appendix, we give a basic introduction to the
gap-labeling theorem [Eq. (17)], which is well established
and extensively discussed in many previous works. In 1982,
Thouless, Kohmoto, Nightingale, and den Nijs (TKNN) [64]
considered particular models of Bloch electrons in “rational”
magnetic fields with flux ϕ = ϕ0 p/q per unit cell, where ϕ0 is
the quantum of magnetic flux and p, q are coprime integers.
It was shown that a magnetic band b, which derives from
the magnetic translational symmetry, can be characterized by
an integer denoted by νb. This integer then determines the
contribution of the band to the quantized Hall conductance
of the system as νbe2/h in linear-response theory, where e is
the elementary charge and h = 2π h̄ is the Planck’s constant,
respectively. This integer is a Chern topological invariant for
the band [106,107] and satisfies the following Diophantine
equation [64–66,69]:

pνb + qμb = 1. (A1)

This equation thus constitutes the topological description of
the integer quantum Hall effect (IQHE) in a 2D periodic
potential. Then, by summing this equation over n magnetic
bands, we have

β̄ν + μ = N̄ (A2)

with β̄ = p/q and N̄ = n/q for the gap between nth and
(n + 1)th magnetic bands [66]. In this sense, Eq. (17) in the
main text can be regarded as the limiting case of the above
equation by taking p → ∞ and q → ∞, to make β̄ → β

become an irrational number, and the N̄ approaches N as the
IDOS, since in this irrational case a magnetic band reduces to
an infinitely degenerate level as a result of Cantor set feature
of the spectrum [69]. In other words, the spectrum is a Cantor
set with Lebesgue measure zero [59–61]. In such a 2D IQH
system, νe2/h is the quantum Hall conductance of the system
[66,108,109] and μe is the charge per unit cell that is trans-
ported when the periodic potential is dragged adiabatically by
one lattice constant [108,109].

As a matter of fact, the gap-labeling theorem enables
the topological classification of these gaps and plays for

quasiperiodic systems a similar role to that of Bloch the-
orem for periodic ones [73,75,85]. More precisely, Bloch
theorem labels the eigenstates of a periodic system with a
quasimomentum and identifies topological invariants (Chern
numbers) expressed in terms of a Berry curvature. This la-
beling is robust as long as the lattice translational symmetry
is preserved. Similarly, the gap-labeling theorem permits to
associate integer-valued topological invariants to each gap,
which are K-theory invariants. Note they are not strictly speak-
ing Chern numbers which describe the topology of smooth
Riemannian manifolds. This is because quasiperiodic systems
cannot be ascribed to such a smooth manifold. Nevertheless,
there may exist an interpolation between both situations that
could establish a link between Chern numbers and the above
topological numbers appearing in the gap-labeling theorem
[30]. As proved by Bellissard and coworkers [73,75,110],
these integers can be given both a topological meaning and
invariance properties akin in nature to Chern numbers but not
expressible in terms of a curvature, unlike those in periodic
system [cf. Eq. (18)].

APPENDIX B: EQUILIBRIUM TEMPERATURE
FIELD AND HEAT TRANSFER RATE

In the main text, we are only concerned with the heat
transfer rate between two nanoparticles at the opposite ends of
the chain, although in the calculation we take all many-body
dipole-dipole interactions and multiple scattering effects into
account in the presence of other nanoparticles. The chain is
out of thermal equilibrium. In this Appendix, we proceed to
the calculation of equilibrium temperature field when the two
end nanoparticles are at fixed temperatures, with T1 = 310 K
and TN = 300 K, maintained by external thermal baths, and
then compare the equilibrium radiative heat transfer rate as
well as temperature distribution for topologically trivial and
nontrivial chains.

Under thermal equilibrium, except for the particles at the
two ends, the net power absorbed by each particle in the chain
is equal to zero [111–114]:

N∑
j=1, j �=i

P j→i(Tj ) − Pi→ j (Ti ) = 0, i = 2, . . . , N − 1. (B1)

Inserting Eq. (15) into above equation yields

N∑
j=1, j �=i

3
∫ ∞

0

dω

2π
[�(ω, Tj )Ti, j (ω) − �(ω, Ti )T j,i(ω)] = 0,

i = 2, . . . , N − 1 (B2)

which is a highly nonlinear equation due to the temperature
dependence of the Planck oscillator. For convenience, we can
assume the deviation of the temperature of any particle from
some equilibrium state [Teq, . . . , Teq] is quite small. For sim-
plicity, here we assume Teq = 300 K. Then, by introducing the
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thermal conductance from particle j to particle i as [115,116]

Gi j (Tj ) = ∂P j→i

∂Tj
= 3

∫ ∞

0

dω

2π
h̄ω

∂ fBE(ω, Tj )

∂Tj
Ti, j (ω)

=
∫ ∞

0

4ω4χiχ j

c4
h̄ω

∂ fBE(ω, Tj )

∂Tj
Tr[Gi jGi j†]

dω

2π
,

(B3)

we can linearize Eq. (B2),

N∑
j=1, j �=i

Gi j (Teq )Tj − G ji(Teq )Ti = 0, i = 2, . . . , N − 1

(B4)
in which we assume Tj = Teq + �Tj and Ti = Teq + �Ti

with �Tj � Teq and �Ti � Teq, and the relation G ji(Teq ) =
Gi j (Teq ) due to reciprocity is applied. As a consequence,
we get a set of (N − 2) equations for Ti, i = 2, . . . , N − 1.
In a matrix notation, these equations can be written as the
thermal equilibrium temperatures T = [T2, . . . , TN−1]T can
be written as

T = H−1b, (B5)

where the matrix elements are given by

Hi−1, j−1 =
N∑

k=1,k �=i

Gkiδi j − Gi j (1 − δi j ), i, j �= 1, N (B6)

and the column vector is given by

b = [(G21T1 + G2N TN ), . . . , (GN−1,1T1 + GN−1,N TN )]T.

(B7)
With the aid of equilibrium temperature field, we can ob-

tain the total heat transfer rate through the chain by simply
evaluating the total heat absorbed by particle N as [115,117]

Q ≈
N−1∑
j=1

GN, j (Teq )(Tj − TN ). (B8)

The results of temperature distributions for the incommen-
surate lattice β = (

√
5 − 1)/2 and commensurate lattice β =

1
4 are shown in Figs. 11(a) and 11(c), for different modulation
phases φ = 0.2π and π . No qualitative differences led by the
presence of topological edge states in the φ = π scenarios
are observed. Results for total radiative heat flux are also
presented in Figs. 11(b) and 11(d) for the incommensurate
lattice β = (

√
5 − 1)/2 and commensurate lattice β = 1

4 , re-
spectively, as a function of φ. Note we also plot the low-loss
results in these figures. We can see the differences are quite
small between topologically nontrivial and trivial cases. In
a word, the equilibrium temperature field and total radiative
heat transfer rate do not exhibit a similar φ dependence as
PN1

net does. This is expected, as PN1
net (∼10−19 W) is orders of

magnitude smaller the total heat rate (∼10−15 W), and thus
the enhancement of heat transfer between the first and N th
NPs due to topological edge states has very small impacts on
the total heat transfer processes in the entire chain.

Nevertheless, we emphasize that these results for thermally
equilibrium systems do not mean our study is not relevant. Our
study may still provide a method to mediate an enhancement

FIG. 11. Equilibrium temperature distribution and heat rate.
(a) Temperatures of NPs in the β = (

√
5 − 1)/2 chain for φ = 0.2π

and π . (b) Radiative heat rate through the entire chain as a function
of φ for different damping coefficients for the β = (

√
5 − 1)/2 case.

(c) Temperatures of NPs in the β = 1
4 chain for φ = 0.2π and π .

(d) Radiative heat rate through the entire chain as a function of φ for
different damping coefficients for the β = 1

4 case.

and modulation of heat transfer rate between two distant nano-
objects, in which other particles in the chain, maintained at
the same temperature with the low-temperature nano-object
at the end, are used as enabling nanostructures. This may
find applications, for instance, in thermal radiative circuits for
manipulating and transmitting signals [28,118].

APPENDIX C: COMPARISON WITH PERIODIC
MONOATOMIC CHAINS

It is instructive to compare the results in the main text
with a regular periodic chain, that is, the monoatomic chain.
We calculate the band structure of 1D monoatomic chains by
choosing β = 1 in Eq. (1) with a period of d[1 + η cos(φ)].
By this way, we can study the dependence of radiative heat
transfer rate as a function of φ. As expected, from the eigen-
state spectrum shown in Fig. 12(a), no band gap exists in this
simple chain, where all eigenstates demonstrate very small
IPR values, indicating they are extended (Bloch) states.

The net spectral heat rate from the first NP to the last NP,
PN1

net (ω) for φ = 0.5π and π , is plotted in Fig. 12(b). It is seen
the latter case (φ = π ) shows a much larger spectral heat rate
than the former case (φ = 0.5π ). It is also substantially larger
than those in previous cases with topological edge states [cf.
Figs. 3(a), 5(a), and 7(a)]. However, it is soon noted that this
direct comparison is unfair as PN1

net decays with the length of
the chain in power law (L−2 or even faster where L is the
length of the chain) due to dipole-dipole interactions [19].
When φ = π , the period of the regular array is 0.7d and
total length of the chain is much shorter than other chains.
Actually, the lengths of the chains studied in the main text are
always around (N − 1)d , with very small variations (within
1%), corresponding to φ = 0.5π in the regular array.
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FIG. 12. Comparison with regular periodic arrays with β = 1,
N = 100, d = 0.6 µm, and η = 0.3. (a) Longitudinal band struc-
tures. (b) Spectral net heat rate for φ = 0.5π and π and π . (c),
(d) Total net radiative heat rate through the entire chain as a function
of φ for (c) γ = 5 cm−1 and (d) γ = 1 cm−1.

For a fair comparison, we control the period of the
regular chain and define an enhancement ratio of Renh =
PN1

net (L)/PN1
net,reg(L) for any chain investigated in the main text

by dividing its heat transfer rate by that of a regular periodic
chain of the same length PN1

net,reg(L). The results are shown in
Fig. 12(c), and those in the low-loss scenario are given in
Fig. 12(d), which evidence the presence of topological edge
states can lead to an enhancement to radiative heat transfer.

APPENDIX D: EFFECT OF A LARGER η

We further investigate the situation with a large modula-
tion amplitude η = 0.5. By Eq. (1), the smallest interparticle
distance is d (1 − η) = 0.5d > 3a, and thus dipole approx-
imation suffices to demonstrate the many-particle physics.
Figure 13(a) shows the longitudinal band structure for the in-
commensurate lattice [β = (

√
5 − 1)/2]. Due to the increase

of modulation amplitude, the band gaps widen substantially,
and the IPRs of eigenstates within the bulk bands grow sub-
stantially compared to the η = 0.3 case. It can been seen the
majority of bulk states in the spectrum are localized states
with IPR values near or higher than 0.5. This phenomenon
is a consequence of localization transition, a similar behavior
to the conventional off-diagonal AAH model at large modula-
tions [32,63]. Note this transition is a peculiar phenomenon in
1D quasiperiodic AAH model [32,63]. The topological edge
states with IPR values around 0.5, emerging at the two main
gaps, can be observed in this case, as expected. This indicates
the variation of modulation amplitude does not affect the topo-
logical property of the chain. The calculated results of total net
radiative heat transfer rate for γ = 5 and 1 cm−1 are presented
in Fig. 13(b), clearly demonstrating the enhancement brought
by these topological edge states, especially for the low-loss
scenario, as expected.

We then consider the commensurate lattice with β =
1
4 . Due to the large modulations, the band gaps also get
wider compared to the η = 0.3 scenario, due to stronger

FIG. 13. AAH chains with η = 0.5. (a) Longitudinal band struc-
ture for β = (

√
5 − 1)/2. Note there are topological edge states with

IPRs around 0.5 in the two main gaps denoted by very light colors.
(b) Total net radiative heat rate for β = (

√
5 − 1)/2 as a function of φ

under different damping coefficients. (c) Longitudinal band structure
for β = 1

4 . Note there are topological edge states with IPRs around
0.5 in the two main gaps denoted by very light colors. (d) Total net
radiative heat rate for β = 1

4 as a function of φ under different damp-
ing coefficients. (e) Eigenstate spectrum for β = 1

4 and φ = 0.05π .
(f) Dipole moment distributions for the midgap states (state numbers
50 and 51) in the small gap separating the central two bands for
φ = 0.05π .

dipole-dipole interactions in the near field arising from the
reduced interparticle distance. Another feature is that, for a
specific φ, the eigenstates in each band are concentrated in a
smaller range of eigenfrequencies [cf. Fig. 13(e) for the case

FIG. 14. Extinction efficiency Qext of a single SiC NP with a
radius of a = 0.1 µm calculated from the Mie theory, compared with
the result under the electric dipole (ED) approximation.
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of φ = 0.05π ]. The topological edge states traversing the two
main gaps, or TPhPs, can still be observed. We can calculate
the total net radiative heat rate PN1

net,max as a function of φ for
γ = 5 and 1 cm−1, given in Fig. 13(d). The “high-loss” curve
is very similar to that in the η = 0.3 [cf. Fig. 7(b)], while the
“low-loss” one shows a distinct line shape from that in η =
0.3 [cf. Fig. 8(b)], in which PN1

net,max exhibits large values at
small φ’s. This arises from the contribution of the topological
edge states (state numbers 50 and 51) in the central band gap
formed between the central two bands [cf. Fig. 13(e) for the
eigenstate spectrum of φ = 0.05π ]. These topological edge
modes are protected by larger Chern values ν = 2 [34,119].
The dipole moment distributes these states, evidencing the
localization behavior near the chain boundaries [Fig. 13(f)].

APPENDIX E: COMPARISON BETWEEN ELECTRIC
DIPOLE APPROXIMATION AND MIE THEORY

To validate the electric dipole approximation of polariz-
ability for SiC NPs. we compare the results of single-particle
extinction efficiency Qext = Cext/(πa2) calculated by the Mie

theory and the ED approximation, where Cext is the extinc-
tion cross section, shown in Fig. 14. A good agreement is
observed.

Here we also give the expression for the single-particle res-
onance frequency ωres. Inserting the expression of εp, Eq. (2),
into the Eq. (4) yields

α0(ω) =
(
ε∞ω2

L − ω2
T

) − (ε∞ − 1)ω2 − i(ε∞ − 1)ωγ(
ε∞ω2

L + 2ω2
T

) − (ε∞ + 2)ω2 − (ε∞ + 2)iωγ
.

(E1)

Letting ωres =
√

ε∞ω2
L+2ω2

T
(ε∞+2) = 928.5 cm−1 and ω′

res =√
ε∞ω2

L−ω2
T

(ε∞−1) = 993.7 cm−1, we have

α0(ω) = ε∞ − 1

ε∞ + 2

ω′2
res − ω2 − iωγ

ω2
res − ω2 − iωγ

. (E2)

As radiative correction in Eq. (3) is quite small for the radius
under investigation, the single-particle resonance frequency
lies approximately at ω = ωres, which also agrees well with
Mie theory calculation.
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