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Symmetry-dependent antiferromagnetic proximity effects on valley splitting
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Various physical phenomena have been discovered by tuning degrees of freedom, among which there is the
“valley” degree of freedom (DOF). The typical valley materials are characterized by two degenerate valley
states protected by time-reversal symmetry (T S). These states indexed by valley DOF have been measured
and manipulated for emergent valley-contrasting physics with the broken valley degeneracy. To achieve the
valley splitting resulting from T S breaking, previous studies have mainly focused on the magnetic proximity
effect provided by the ferromagnetic layer. In contrast, the antiferromagnetic (AFM) proximity effect on the
valley degeneracy has not been widely investigated systematically. In this work, we construct the composite
systems consisting of a transition-metal dichalcogenide monolayer and a proximity layer with specific intraplane
AFM configurations. We extend the three-band model to describe the valley states of such systems. It is shown
that either “time-reversal + fractional translation” or “mirror” symmetry can protect the valley degeneracy.
Additionally, first-principles calculations based on density functional theory (DFT) have been performed to
verify the results obtained from the extended tight-binding (TB) model. The corresponding mechanism of the
valley splitting/degeneracy is revealed through the nondegenerate perturbation. Meanwhile, an extra condition
is proposed to keep the well-defined valley states disentangled from each other through two negative examples
based on degenerate perturbation. Further DFT studies on the effects of the Ueff and interlayer distance are
performed. Manipulating the magnetization of Mo is shown to be feasible and effective for controlling the valley
splitting with the direct overlap tuned by Ueff and the interlayer distance. The TB method introduced in the
present work can properly describe the low-energy physics of valley materials that couple to the proximity with
complex magnetic configurations. The results considerably expand the range of qualified proximity layers for
valley splitting, enabling more flexible manipulation of valley degree.

DOI: 10.1103/PhysRevB.107.125408

I. INTRODUCTION

Two-dimensional (2D) systems provide ideal platforms for
exploring physical phenomena by modifying different degrees
of freedom (DOF). In some 2D materials, especially the H-
phase monolayer transition-metal dichalcogenides (TMDs),
there is the “valley” DOF for electrons in the low-energy
region [1–4]. As the first proposed monolayer in the TMD
family, strong valley-selective photoluminescence in directly
gapped MoS2 was observed with optical pumping [5,6].
Subsequent investigations into valley-contrasting physical
quantities have been reported in many other TMDs (e.g.,
MoSe2, WS2, and WSe2). Electrons with different valley in-
dices can be controllably excited through the helicity of light
[3,7]. With in-plane electric field, the valley degree can be
detected through the valley Hall effects, where carriers at
different valleys transport along opposite boundaries [1,8].
Analogous to spintronics, electronic valley as an information
carrier may open up a new paradigm for data processing and
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storage based on the understanding and precise control of the
valley DOF [9,10].

As an intrinsic nature of materials, the valley degree is
strongly related to the symmetry of the system. One of the
most promising 2D materials for manipulating the valley de-
gree is the H-phase monolayer TMDs with the direct gap
locating at the corners of the hexagonal Brillouin zone (BZ).
This triangular-type lattice consists of pristine cells with one
transition-metal (M) atom centered in the prism formed by the
nearest chalcogen (X) atoms, as shown in Figs. 1(a) and 1(b).
The loss of inversion symmetry and strong spin-orbit coupling
lead to the spin-valley coupled states at the band edges K and
−K . The corresponding spin orientation at the two valleys is
opposite due to the time-reversal symmetry, as schematically
shown in Fig. 1(d). This spin-valley locking relationship is the
key to the observable effects such as the valley Hall effect [8],
valley-contrasting circular dichroism [4], and valley-selective
excitation of excitonic states [5,11,12].

Recently, lifting the valley degeneracy protected by T S
has been implemented for precise control of the valley
effects in such monolayer TMDs. An external magnetic
field was utilized to induce a small valley splitting of 0.1–
0.2 meV/T in previous works [13–15]. In comparison, the
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FIG. 1. (a),(b) Top and side views of the valley material monolayer TMD MX 2 (M = Mo, W; X = S, Se). The purple/yellow spheres
denote the M/X atoms. (c) Brillouin zone and high-symmetry points of monolayer TMD, with red and green points denoting the two valleys.
(d) Schematic conduction and valence bands of MX 2 at two valleys. Spin up and spin down are denoted by red and blue arrows, respectively.
The spin orientations of the two eigenstates with the same energy are opposite at K and −K due to the T S.

magnetic proximity effect could generate giant valley split-
ting, increasing by an order of magnitude to several meV/T, in
semiconductor/ferromagnet hybrids [16–18]. A sizable val-
ley splitting also occurs under the antiferromagnetic (AFM)
proximity effect with an A-type configuration [19]. And the
exchange field was found to be dominated by the interfacial
magnetic layer, where the magnetic moments are ferromag-
netic (FM) coupling. Hence, the proximity effect is still
limited to the case of the FM type.

So far, it is still unclear whether intraplane AFM proximity
would result in the valley splitting of TMD monolayers. The
systems seem to be valley degenerate under the intraplane
AFM proximity effect since the exchange field over the whole
magnetic unit cell is zero. However, the orbital-dependent
exchange paths and distance-dependent magnetic exchange
yield a nonzero effective Zeeman splitting for each atom.
Thus, it is hard to determine whether the valley degeneracy
breaks in terms of the overall effective exchange field. Yet, the
symmetry of the proximity layer offers an effective method to
analyze the problem. If the valley degeneracy remains under
the magnetic proximity effect, there must exist at least one
symmetry that relates the two states featured by (K, σ ) and
(−K, σ ).

In the present paper, we start from the symmetries that
can reverse the spin and momentum simultaneously. Three
special AFM configurations are constructed in Sec. II A. In
Sec. II B, the MoTe2 monolayer has been adopted as the
TMD layer. A three-band TB model is extended with an
additional term to study the proximity effects of the three
specific AFM configurations. In Sec. II C, first-principles den-
sity functional theory (DFT) calculations are carried out to
validate the TB results. In Sec. III A, the vertical “mirror” (σv)
symmetry in the type II and the “time-reversal + fractional
translation” (T tR) symmetry in type I are shown to protect
the valley degeneracy through the symmetry analysis. And
the valley splitting appears as predicted in type III, exhibit-
ing the dependence on the orbital-resolved exchange field. In
Sec. III B, the nondegenerate perturbation theory is adopted
to explain the mechanism of the valley splitting/degeneracy in
the three types of AFM configurations. In order to preserve the

well-defined valley states, another two special configurations,
types IV and V, are constructed as the negative examples.
These two configurations are featured by the reciprocal lattice
vectors through which K and −K fold to the same point.
Based on the degenerate perturbation theory, the constraints
of the AFM configurations are obtained. In Sec. III C, the
dependence of the valley splitting on the interlayer distance
and Ueff parameter has been studied through the DFT calcula-
tions. A larger valley splitting is induced with a larger overlap
between orbitals of the M atoms and the magnetic ones. The
magnetization of the M atom is found to be the key factor
tuned through the interlayer distance and Ueff .

II. METHODS

A. Symmetry analysis for constructing AFM configurations

The degenerate valley states refer to the two states, in-
dexed by different valleys, holding the same eigenenergy
nonaccidentally. In MX 2 (Fig. 1), the valleys locate at K
and −K where bands reach the valence-band maximum and
conduction-band minimum. The T S resulting from the non-
magnetism protects the Kramers’ degeneracy of the two states
specified by opposite momentum and spin orientation. When
the magnetic proximity effect is introduced, the T S is broken.
If the normal degeneracy of valley states remains, at least one
common symmetry other than T S of the TMD monolayer and
proximity layer reverses the momentum and spin indexes of
the valley states.

Based on the symmetry analysis above, two hypothetical
AFM configurations are constructed in Figs. 2(a) and 2(b).
The configuration in Fig. 2(a) keeps the T tR symmetry.
After the intraplane AFM proximity is taken into account,
the enlarged unit cell including two magnetic atoms in real
space corresponds to a downsized irreducible BZ, shown in
Fig. 7(a). Note that the fractional translation of the periodic
AFM configuration is a linear combination of integer multi-
ples of the lattice vectors of the MX 2. The T tR converts the
red points (sites with net spin up) to the green ones (sites with
net spin down) through the tR and then swaps them again with
T . The other configuration [Fig. 2(b)] holds the σv symmetry,
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FIG. 2. (a)–(c) Type I–III intraplane AFM configurations. Red/green points denote the nearest-neighbor exchange field provided by
the spin magnetic moment ↑ / ↓. The spin-quantization axis is normal to the layer. Black points denote the nonproximity effect at the
corresponding sites. Black dashed lines denote the unit cell after intraplane AFM proximity is introduced. (b) Type II is symmetric about
the vertical mirror plane labeled by the blue line. (c) Type III is unchanged under the vertical mirror symmetry combined with T S, which is
not the group element of the TMD layer.

enabling the flipping of the spin z component. The 2 × 2
construction of the unit cell generates a smaller hexagonal
BZ without any rotation, as shown in Fig. 7(b). Both AFM
configurations in Figs. 2(a) and 2(b) are expected to keep the
valley degeneracy. It is worth mentioning that both magnetic
configurations of type I and type II hold the “inversion” sym-
metry. However, when they couple to the TMD monolayer,
the inversion symmetry will never be the group element of
the whole system. On the other hand, the configuration with
neither T tR or σv symmetry [Fig. 2(c)] is considered as well. It
aims to illustrate that the absence of the nontrivial symmetries
of the coupled system is responsible for valley splitting. For
abbreviation, the valley splitting in the following parts refers
to the splitting of the two degenerate valley states defined in
the TMD monolayer. It is quantified by the energy difference
of the top valence band at K and −K , which is given by
�tvb = Etvb(K,↓)–Etvb(−K,↑). The splitting of the lowest
conduction band at two valleys is not included since the results
and analyses follow the same pattern.

B. Tight-binding model

Generally speaking, valley degeneracy or splitting is con-
firmed by eigenvalues of the bands at two valleys. Based on a
three-band TB model for monolayer TMDs [20], the conduc-
tion and valence bands at the ±K valleys are well described
in the minimal basis composed of Mo {dz2 , dxy, dx2−y2}. The
three-band Hamiltonian is expressed as [20]

H0 =
∑

i,α,β,σ

μαβc†
iασ ciβσ +

∑
i, j,α,β,σ

hαβ
i j c†

iασ c jβσ , (1)

with α(β ), σ denoting orbital and spin indices. And i, j
represent neighboring lattice sites. It should be noted that
the on-site energy matrix μαβ is not diagonal because of
the spin-orbit coupling. With the D3h point group taken into
account, the number of independent parameters reduces to
nine. In this work, the TB model is parameterized from the
MoTe2 monolayer [20]. The band structure from this model
is consistent with the DFT calculation as shown in Figs. 3(c)
and 3(d).

To involve the intraplane AFM proximity effect, the ef-
fective exchange field provided by the magnetic proximity is
treated as a staggered on-site energy modifier term [21], which

is given by

H ′ = σz

∑
i,α,σ

Oiαc†
iασ ciασ . (2)

This diagonal on-site correction Oiα represents the energy
shift of orbital α at lattice site i. The unfolded bands are
required to remain the main features under �Oi �= �0 such that
the proximity effect could be viewed as a perturbation to
the three-band model. The orbital-resolved exchange fields
provided by the spin-up and spin-down magnetic moment
are opposite with − �OG = �OR = �O, as shown in Fig. 2. The
zero matrix �OB = (0, 0, 0) eV acts on the nonproximity sites,
denoted by black circles in Fig. 2.

The band structures of the coupled systems are accessible
with the extended three-band Hamiltonian H = H0 + H ′. The
enlarged unit cell results in a smaller BZ and more bands
from the folding process, which increases the difficulty of
locating the original valley states. For clarity, effective bands
in the primitive BZ are obtained via the unfolding tech-
nique [22–25], with the unfolding projection weight WK→k =
〈K|Pk|K〉 [24].

C. First-principles calculations

We perform the first-principles calculations using the
Vienna Ab initio Simulation Package (VASP) [26,27] with
the projector augmented-wave (PAW) method [28] and
Perdew-Burke-Ernzerhof (PBE) functional [29,30] of the
generalized-gradient approximation. In addition to spin-orbit
coupling, correction of the Hubbard U with the rotation-
ally invariant approach for interacting localized Mn 3d
orbitals [31] is included in the calculations. The magnetic
moments are forced to align perpendicular to the layer.
Based on the DFT results, the postprocessed band unfold-
ing calculation is carried out with the plane-wave basis
method [23].

With 1H-type MoTe2 as the TMD layer, the MnO (111)
monolayer terminated with Mn atoms right below Mo atoms is
taken as the proximity layer for two reasons: (i) The additional
bands are disentangled from the original valley states within
the low-energy region. (ii) The effective magnetic field from
the half-filled 3d orbitals of Mn2+ acts on all 4d orbitals of
Mo. A sizable valley splitting in the case of the FM type
is expected. Mn atoms are replaced with Mg atoms at the
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FIG. 3. (a) The triangular lattice formed by M atoms of monolayer MX 2. (b) Band structure of the MoTe2 monolayer obtained from
the three-band TB model. Blue (red) color denotes the spin-down (spin-up) channel. (c) Projected band structure of the freestanding MoTe2

monolayer from the DFT calculation. The shade of the blue (red) circle denotes the weight of the projection on the spin-down (spin-up) {dz2 ,
dxy, dx2−y2 } orbitals.

nonmagnetic sites in type II and type IV to keep the valence
state of the Mn2+ ions unchanged.

Dynamic stability and lattice mismatch are neglected for
the MoTe2/MnO hybrid since it is not the main point of this
work. The structures of the AFM types are transformed from
the FM MoTe2/MnO primitive cell that has been relaxed in
advance with the lattice constant 3.56 Å [17]. In order to show
that the effect of magnetic configuration on interlayer distance
is negligible, the FM type, AFM type I, and AFM type III are
relaxed with only the MoTe2 layer fixed. The van der Waals
interaction is included through the optB88-vdW method [32].
Further calculations are performed to study the effect of Ueff

and Mn-Mo distance d on the valley splitting. The Ueff ranges
from 4 to 7 eV with the “2+” valence state of Mn taken
into account [33,34]. The d is tuned from 3.6 to 4.8 Å. For
one specific Ueff and d , the FM-type structures are partially
relaxed through fixing the d and the pre-optimized MoTe2

monolayer. The structures of the AFM types with the same
Ueff and d are then constructed by enlarging the optimized
unit cell of the FM type. Note that the Mn-Mo distances are
the same in each AFM type. It implies the exactly total zero
magnetization of the Mo 4d orbitals over the supercell. The
systems listed in Tables III and IV keep semiconducting with
Mn exhibiting about 5 μB spin magnetic moment. A 20 Å
vacuum space along the z direction is applied to avoid periodic
slab interaction in all DFT calculations. It is worth mentioning
that the Mo {dz2 , dxy, dx2−y2} remain the dominant orbital
components of the top valence band and the lowest conduction
band at the two valleys in all cases.

III. RESULTS AND DISCUSSION

A. The valley degeneracy and the orbital-dependent
valley splitting

In type I, T tR symmetry reverses the spin z component and
the sign of momentum, transforming the quantum state ψk,↑
to ψ−k,↓ with a translation-induced phase shift. The structure

of the MoTe2/MnO (111) hybrid is constructed, as shown
in Fig. 4. As expected, the Kramers’ degeneracy remains
throughout the whole BZ in the unfolded bands in Figs. 5(a)
and 5(d). The valley splitting is prohibited in type I, where
even the T S is absent.

The two valleys stay degenerate in the unfolded bands in
Figs. 5(b) and 5(e), although T tR does not belong to the
group of type II. The remaining degeneracy is protected by
σv symmetry, which swaps green and red sites in Fig. 3(b).
And the colors denoting spin z components commute as well
since the spin z, as a pseudovector, is parallel to the vertical
mirror plane. Thus, the system will change back to its initial
configuration in real space. When it comes to reciprocal space,
the K of the primitive BZ transforms to −K after the σv

operation in the BZ of the MoTe2 monolayer. Yet, whether
the states at the original valleys are degenerate depends on the
states labeled by folded points from K and −K . As shown in
Fig. 7(b), ±K fold to the corners of the smaller hexagonal BZ.
Apparently, the nearest-neighbor corners are symmetric about
the σv. Thus, the valley states originating from the MoTe2

monolayer stay degenerate in the presence of the type-II AFM
proximity effect.

In type III, the valley splitting is predicted to be induced
in the absence of the two aforementioned special symmetries
which ensure the valley degeneracy. Because no symmetry
exists that reverts the spin and momentum simultaneously, the

FIG. 4. The side and top views of the MoTe2/MnO (111) hybrid.
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FIG. 5. Unfolded bands of the type I, II, and III hybrids. The green dashed frames represent amplified regions. (a),(c),(e) Unfolded bands
from the TB models with �O = (0.3, 0.1, 0.2) eV. The red/blue circles denote unfolded bands with spin ↑ / ↓. For clarity, only the points
with projection weight larger than 3% are plotted. (b),(d),(f) The unfolded bands from the DFT calculations with Ueff = 4 eV and d = 3.6 Å.
The shade and size of the red/blue circles denote the unfolding weight multiplied by the weight of projection on Mo {dz2 , dxy, dx2−y2 } with
positive/negative component.

two valley states remain irrelevant to each other, regardless
of which points ±K fold to. The numerical results verify the
symmetry analyses above. A small valley splitting �1 meV in
the valence band is extracted from the TB model and the DFT
calculation, as shown in Figs. 5(c) and 5(f). The main results
are summarized in Table. I.

The dependence of the valley splitting in the AFM type
III on the orbital-resolved proximity effect is further stud-
ied by tuning the modifier term in the TB model. The three
matrix elements of �O change from 0.005 to 0.300 eV in-
dependently. The valley splitting in Fig. 6 reaches 5.7 meV
at �O = (0.300, 0.005, 0.300) eV and −4.7 meV at �O =
(0.300, 0.300, 0.160) eV. The nearly zero valley splitting ap-

pears in the region where the orbital energy shift is nonzero, as
shown in Figs. 6(b) and 6(c). It is also found that a larger en-
ergy shift of dz2 will lead to a more significant valley splitting
when the valley splitting is nonzero.

TABLE I. Main results of the type I–III TMD/AFM hybrids.

Special Kramers’ Valley
symmetry degeneracy degeneracy

Type I T tR preserved preserved
Type II σv preserved preserved
Type III none broken broken
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FIG. 6. The valley splitting with orbital-dependent energy shift from the TB model. The splitting of the two valleys [�tvb = Etvb(K,↓)
− Etvb(−K,↑)] is normalized by its maximum 5.7 meV at O = (0.300, 0.005, 0.300) eV. (b) The valley splitting with Odxy and Odx2−y2 . Odz2

is fixed at 0.300 eV. (c) The valley splitting with Odz2 and log2(Odxy/Odx2−y2 ).

B. The mechanism of the valley degeneracy/splitting

In order to reveal the mechanism of the valley
degeneracy/splitting in the three AFM types, the nonde-
generate perturbation is adopted. Following the perturbation
treatment, the dependence of the valley splitting on the orbital-
resolved energy shift will be explained with the eigenstates
extracted from the TB model.

The nondegenerate perturbation starts from the construc-
tion of the atomic basis consisting of Mo {dz2 , dxy, dx2}. In
the supercell (SC) composed of the multiple identical prim-
itive cells (PCs), the eigenstate is equivalent to that of the
PC with the corresponding band and momentum index. The
relationship between the momentum of the nith band of the
PC and the mth band of the SC is given by

�ki + �Gi → �κi; |ki, ni〉 → |κ, m〉. (3)

�Gi is the uniform reciprocal translation through which the nith
band indexed by ki in the Brillouin zone of the primitive cell
(PBZ) folds to the mth band indexed by κ in the Brillouin zone
of the supercell (SBZ). Considering that the PC only includes

one Mo atom, the unperturbed basis of the SC is expressed as

|ki, ni〉σ −→ |κi, m〉σ = 1√
Np

∑
�Rp

ei�ki · �Rp
∑

α

cni
α,σ (�ki )|α〉σ

= 1√
NS

∑
�RS

ei�ki · �RS
1√
Nμ

×
∑

α

∑
μ

ei�ki · �Rμcni
α,σ (�ki )|α,μ〉σ .

(4)

Np, NS , and Nμ are the number of the PCs, SCs, and PCs, per
one SC, respectively. The corresponding position is denoted
by �Rp, �RS , and �Rμ. The orbital and spin are denoted by α

and σ . Note that the nondegenerate perturbation to the valley
states is carried out due to the decoupled spin and orbital
space. The first-order perturbation to the energy is expressed
as

E (1)
ni,σ

(�ki = �K ) = 〈κ, m|Ô|κ, m〉σ
= 1

Nμ

∑
α

∑
μ

{∣∣cni
α,σ ( �K )

∣∣2
Oα,μ,σ

}
. (5)

FIG. 7. The PBZ of the MoTe2 monolayer and the SBZ of the three SCs. The sites which the points fold to in the SBZ are denoted by
colored circles. The points folding to the same sites that the K or −K folds to are denoted by colored triangles. (a) The SBZ of the AFM type
I. Each k point in the SBZ corresponds to two points in the PBZ. (b) The SBZ of the AFM type II. Each k point in the SBZ corresponds to four
points in the PBZ. (c) The SBZ of the AFM type III. −K (K) and the other five inequivalent k points in the PBZ are folded to the k3 (−k3) in
the SBZ.
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TABLE II. The spin-up eigenstates of the valence band within
the three-band basis at seven points of the PBZ. The eigenstate of
the valence band at −K is also listed. The zero energy is fixed at the
maximum of the valence band.

|dz2 , ↑〉 |dxy,↑〉 |dx2−y2 , ↑〉 Energy (eV)

|K, ↑〉 0.000 −0.707 0.707i −0.214
|k1, ↑〉 0.654 0.278 + 0.368i −0.541 + 0.261i −0.404
|k2, ↑〉 0.856 0.013 + 0.023i −0.446 + 0.261i −0.361
|k3, ↑〉 0.880 −0.294 − 0.166i −0.170 + 0.287i −0.312
|k4,↑〉 0.856 −0.379 − 0.237i 0.234 + 0.111i −0.361
|k5, ↑〉 0.654 −0.330 − 0.410i 0.511 −0.188i −0.404
|−K, ↑〉 0.000 0.707 0.707i 0.000

Equation (5) yields the zero correction because the antifer-
romagnetism leads to the zero total energy shift over the
whole SC. On the contrary, the nonzero first-order correction
is obtained through the FM or ferrimagnetic proximity effect,
where the net magnetic moment is nonzero. In the case of the
second-order perturbation, the energy correction including the
eigenstates indexed by different momentum in the PBZ may
be nonzero due to the downsized BZ and the proximity effect.

It is given by

∑
n′

E (2)
nin′,σ ( �ki = �K, �ki′ ; �κi )

=
∑

n′

1

N2
μ

∑
α

∣∣cn′
α,σ (�ki′ )∗cni

α,σ (�ki )
∑

μ ei( �K−�ki′ )· �RμOα,μ,σ

∣∣2

En − En′
,

(6)

with En �= En′ and �ki′ + �Gi′ = �κi = �K + �Gi. For the three
AFM types in Fig. 2, all the k points involved in the per-
turbation are shown in Fig. 7. In the AFM type III, −K
(K) corresponds to the other five points folding to the k3

(−k3), as shown in Fig. 7(c). Note that for the correction∑
n′′ E (2)

n j n′′,σ̄ (�k j = − �K, �k j′′ ; �κ j = −�κ ), the sum over n′′ can be

done with �k j′′ = −�ki′ . Since |−�ki′ , n′〉σ̄ is related to |�ki′ , n′〉σ
with the T S, the sign and the absolute value of the second-
order energy correction are the same for the two valley states.
Thus, the valley degeneracy still holds. Up to the third order,

FIG. 8. The simulation of the �tvb based on the third-order perturbation. The eigenstates and the eigenenergies of the folding states are
extracted from the TB results, as listed in Table II. The two k points in (a) and (c) represent the two intermediate states. The corresponding
momentum is labeled in Fig. 7(c). In (a) and (b), the results are normalized by the maximal absolute value of the valley splittings from the
10 paths in (a). Similarly, the normalization in (c) and (d) is carried out with the valley splittings from the 10 paths in (c). (a) The partial
contribution of the 10 paths to the valley splitting with Odxy and Odx2−y2 . The Odz2 is fixed to be 0.300 eV. (c) The partial contribution of the 10
paths to the valley splitting with log2(Odxy/Odx2−y2 ) and Odz2 . (b), (d) The summation of the partial valley splitting in (a) and (c).
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FIG. 9. The structures and the corresponding BZs of the AFM type-IV and type-V configurations. (a) The AFM type IV is symmetric about
the three vertical mirror planes. (b) The AFM type V is unchanged under the inversion combined with time-reversal symmetry. The inversion
center is labeled by the blue star. (c), (d) The BZ of AFM type-IV and type-V configuration. The points folding to the � are denoted by black
triangles.

the expression is given by

E (3)
ni,σ

(�ki = �K ) =
∑
p�=ni

∑
l �=ni

EnilEl pEpni

=
∑
p�=ni

∑
l �=ni

1

Eni − El

1

Eni − Ep

× 〈K|Ô|l〉σ 〈l|Ô|p〉σ 〈p|Ô|K〉σ . (7)

One of the brackets in Eq. (7) is expressed as

〈l|Ô|p〉σ = 1

Nμ

∑
α

cl
α,σ (�kl )

∗cp
α,σ (�kp)

∑
μ

ei(�kp−�kl )· �RμOα,μ,σ .

(8)

In the case of the AFM type I or type II, the symmetry
transformation S (S = T t �R or σv) ensures the following re-
lationship between the states with opposite momentum and
spin:

〈l|Ô|p〉σ =〈l|S†SÔS†S|p〉σ
=〈lS|Ô|pS〉σ̄ , (9)

where |lS〉σ̄ and |pS〉σ̄ are transformed states. It can be inferred
from Eq. (9) that each pair of states (e.g., |l〉σ and |lS〉σ̄ ) par-
ticipating in the unfolding process in Fig. 7 contributes same

energy correction to the corresponding modified valley state
in the AFM type I and type II. Specifically, states transform as
T̂ |l〉σ = | − l〉σ̄ in the AFM type I. Meanwhile, the T S of the
unperturbed system enforces 〈l|Ô|p〉σ = −〈−l|Ô| − p〉∗σ̄ . As
a result, the term EnilEl pEpni + Elni EplEni p in the summation
over p and l is zero in the AFM type I. Without any special
symmetry, a nonzero energy shift appears at two valleys in the
AFM type III. Unlike the second-order term, the sign of the
energy correction is opposite for the two valley states.

Based on the perturbation treatment above, the TB results
in Fig. 6 will be discussed as follows. It is known that
the eigenstates at the band edges of the valence bands are
composed of the {dxy, dx2−y2} orbitals. Thus, it is unusual
that the �tvb of type III depends on the energy shift of dz2 ,
as shown in Fig. 6. In Table II, the orbital components of
the spin-up valence band at K, −K and ki (i = 1, . . . , 5) are
extracted through the three-band TB model. It is revealed
that the large dz2 component is included in the other five
states participating in the third-order perturbation. As a result,
the nominator relevant to the dz2 component is nonzero in
Eq. (7). On the other hand, the failure of the second-order
perturbation is proved again due to the zero inner product
of the dz2 part in Eq. (6). The discussion above is further
validated by simulation of the energy correction contributed
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FIG. 10. (a)–(d) The unfolded bands of the AFM type-IV and type-V configurations. (a), (b) The size and the shade of the red (blue) circles
denote the unfolded weight factorized by the weight of {dz2 , dxy, dx2−y2 } with positive (negative) spin z component. (c), (d) The size and the
shade of the red circles denote the unfolded weight multiplied by the projection on {dz2 , dxy, dx2−y2 }. (e), (f) The spin textures of the projected
top valence band of the MoTe2 monolayer in the reciprocal space. The shade of the colors denotes the projection weight of the specific orbitals
with spin z component. The length of the arrow denotes the size of the projection weight of the specific orbitals with in-plane spin components.
(e) The orbitals for projection are Mo {dxy, dx2−y2 }. M and −M, which participate in the degenerate perturbation in type V, are labeled by
yellow circles. (f) The orbitals for projection are Te px . The region centered at � is magnified with the blue dashed frame, where the nonzero
intraplane spin component at � is labeled by a blue circle. The spin texture projecting on Te py reflects similar property, only differing by the
orientation of the spin. Thus, the projection on py is not included.

from 10 perturbation paths, as shown in Fig. 8. The major
features of the accumulative effect in Figs. 8(b) and 8(d)
agree well with the TB results. To sum up, the third-order
perturbation reveals how the valley splitting happens and
depends on the orbital-resolved proximity effect.

It should be noted that the well-defined valley states will no
longer exist if the two valley points K and −K fold to the same
point �. The AFM type-IV and type-V configurations are
constructed as the negative examples. In both types, the two
valley states fold to �, as shown in Fig. 9. According to the TB
model, the valley degeneracy and valley splitting are predicted
in the AFM type IV and type V, respectively. However, the
nearly zero weight of the band projection on the spin z com-
ponent of {dz2 , dxy, dx2−y2} occurs at K and −K in the DFT
calculation, as shown in Figs. 10(a) and 10(b). Meanwhile,
the weight of the band projection on {dz2 , dxy, dx2−y2} at the
two valleys is nonzero in Figs. 10(c) and 10(d). It indicates
that the two valley states |K,↓〉 and |−K,↑〉 mix with each
other after the introduction of the AFM proximity effects

in Figs. 9(a) and 9(b). In order to explain the anomalous
results, the degenerate perturbation is adopted. The interested
subspace is spanned by two valley states |K,↓〉 and |−K,↑〉.
Up to the second-order degenerate perturbation through the
Lowdin partitioning equation [35], the off-diagonal matrix
element between two valley states is expressed as

λ = H (2)
K,−K = 1

2

∑
l

ÔK,kl Ôkl ,−K

[
1

EK − El
+ 1

E−K − El

]
.

(10)

λ will become nonzero under two conditions. First, there
are points other than K and −K folding to the �. Sec-
ond, common orbital components exist in {|kl〉,−|kl〉}
and {|K,↓〉, |−K,↑〉}. These orbital components of the
{|kl〉,−|kl〉} are further required to include both spin chan-
nels. Then, the eigenstates in the subspace spanned by two
valley states will be in the form of |K,↓〉 + λ∗

|λ| |−K,↑〉
no matter how small the λ is. Consequently, the expecta-
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tion value of the spin operator is zero with an arbitrary
spin-quantization axis.

Based on the analysis above, the spin texture of the top
valence band in the MoTe2 monolayer is extracted to check
the orbital and spin components. As shown in the yellow
circled region of Fig. 10(e), the projection weight of the
{dxy, dx2−y2} with in-plane spin direction is nonzero at M.
Although the {dxy, dx2−y2} component becomes zero at �, a
tiny but nonzero projection on Te {px, py} has been found at
�, as shown Fig. 10(f). The finite in-plane spin component
means both spin-up and spin-down channels are contained for
the projected orbitals. Thus, the folded state |M〉 drives the
mixture of the two valley states in the AFM type V. In type IV,
the mixed states are caused by the folded state |�〉. That is why
the nearly zero weight of projection on Mo{dz2 , dxy, dx2−y2}
with the spin z component occurs in the DFT calculation of the

TABLE III. The top valence-band splitting Vvs and the lowest
conduction-band splitting Cvs of the FM type under different Ueff

values. The splittings are in the unit of meV. The atomic sites of the
oxygen in each structure with fixed Mn-Mo distance under specific
Ueff have been optimized.

Ueff (eV) 7 6 5 4

d (Å) Vvs Cvs Vvs Cvs Vvs Cvs Vvs Cvs

3.6 71.3 112.2 79.3 122.9 87.8 135.0 96.6 148.5
4.0 33.4 60.5 38.0 65.6 43.5 71.4 50.3 79.7
4.4 7.4 27.8 8.9 29.8 11.1 32.5 16.1 40.6
4.8 −4.0 11.8 −3.9 13.0 −2.3 15.3 2.8 21.3

AFM type IV and V. The problem is naturally avoided in the
three-band TB model because the spin space is decoupled with

FIG. 11. (a), (b) The band structures from the TB model. The on-site energy shift is (a) zero and (b) �O = −(0.100, 0.050, 0.050) eV.
Red/blue denotes the spin-up/spin-down channel. (c), (d) The band structures from the DFT calculations of (c) the freestanding MoTe2

monolayer and (d) the MoTe2/MnO hybrids with d = 3.6 Å and Ueff = 4 eV. The magnetic moment of the Mn2+ aligns along the direction
normal to the plane. Red/blue circles represent the projected bands. The shade denotes the weight of projection on Mo {dz2 , dxy, dx2−y2 } with
spin up/spin down.
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FIG. 12. The PDOS on Mn 3d orbitals and Mo 4d orbitals with d = 3.6 Å under different Ueff .

the orbital space, which excludes the degenerate perturbation.
Thus, the construction of the SC where K and −K fold to
the � should be avoided since the second-order degenerate
perturbation couples the two well-defined valley states.

C. The effect of the interlayer distance and Ueff

on the valley splitting

Although the hybrid systems are novel due to the unstable
MnO (111) monolayer, instructive results are also provided
for engineering functional materials. In order to investigate the
method of controlling the valley splitting, the effects of the d
and Ueff on the valley splitting have been studied through
the DFT calculations. In spite of influence from the magnetic
configuration, only a small difference less than 0.1 Å is found
in the relaxed FM type and in the AFM type I and type III with
d = 4.754, 4.807, 4.727 Å, respectively, under Ueff = 4 eV.
The AFM type II is not included because of the additional
effect of atomic substitution. Thus, the magnetic configuration
effect on the interlayer distance is neglected in the following
calculations.

The properties of the FM types are discussed first. Com-
pared to the freestanding MoTe2 monolayer in Fig. 11(c),
the spin-up Mo bands within the low-energy region decrease
in Fig. 11(d) due to the magnetic proximity effect from the
spin-up magnetic moment of the Mn. The DFT results are
consistent with the TB results in Figs. 11(a) and 11(b), where
the on-site energy shift is zero in (a) and negative for spin-up
channel in (b). On condition that the effective exchange field

is provided by spin-up magnetic moment of the Mn, the main
results of FM-type MoTe2/MnO hybrids under different Ueff

and d are summarized in Table III. The top valence-band
splitting (Vvs) and the lowest conduction-band splitting (Cvs)
at the two valleys tend to decrease as the Ueff increases. The
Cvs keeps decreasing, while the Vvs decreases until the sign
flips when the d increases from 4.4 to 4.8 Å. Note that the
proximity effect results from the overlap between the Mo 4d
orbitals and Mn 3d orbitals. That is why the Mo orbitals
with spin parallel to the magnetic moment of the Mn tend
to be lowered in Fig. 11(d) after the introduction of mag-
netic proximity effect. As a result, a larger overlap implies
a larger magnetization of Mo, which means a larger valley
splitting. When Ueff decreases, Mn 3d orbitals tend to be more
delocalized. Then, the magnetization of the Mo 4d orbitals
strengthens due to the larger overlap from the more extensive
3d wave function. It is reflected from the enhanced hybridiza-
tion between the Mn 3d orbitals and Mo 4d orbitals through
the projected density of states (PDOS) in Fig. 12. Similarly,
the valley splitting of the FM type decreases as the d increases
from 3.6 to 4.4 Å with fixed Ueff . When the d is up to 4.8
Å, the magnetization from the direct overlap is significantly
suppressed. On the other hand, the superexchangelike process
(SE) originating from the kinetic energy of electrons lowers
the Mo 4d orbitals with the spin antiparallel to the magnetic
moment of Mn. The mechanism of antiferromagnetism can be
physically described by the virtual hopping process involving
the Mo 4d and the Mn 3d orbitals via Te 5p orbitals [36].
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TABLE IV. The top valence-band splitting Vvs with d = 3.6 Å.

Ueff (eV) 7 6 5 4

Vvs(meV) −0.32 −0.43 −0.64 −0.99

Such high-order term from the perturbation scales as t2
eff
U . The

effective hopping teff = tMn
d p tMo

d p

�
contains the charge transfer en-

ergy �, the hopping term for Mn 3d-Te 5p, and the hopping
term for Mo 4d-Te 5p. Thus, the magnetization from the SE
is negligible in the case of small d compared to that from the
direct overlap. Note that the SE decreases much more slowly
than direct overlap due to the fixed Mo-Te and slowly elon-
gated Mn-Te distances as d increases. When the increasing d
is large enough, the direct overlap decays exponentially and
tends to be zero. The AFM SE subsequently dominates the
magnetization of Mo. That is why the Vvs becomes negative
in the case of d = 4.8 Å for Ueff = 7, 6, 5 eV. By compari-
son, the Cvs remains positive. The difference results from the
specific orbital components. As the main orbital component
of the lowest conduction band at the valleys, Mo dz2 enables
more direct overlap than the in-plane distributed Mo {dxy, dx2}
orbitals.

Analogous to the discussion above, the Vvs in the AFM type
III shares a similar dependence on the d and Ueff . The Vvs of
type IV is extracted under different Ueff . Only the cases with
d = 3.6 Å are shown because the splittings in other insulating
cases are smaller by nearly an order of magnitude. As listed in
Table IV, Vvs increases with the decreasing Ueff . According to
the analysis in Sec. III B, the size of the Vvs partially depends
on the absolute value of each element in �O. Meanwhile, these
spin-up orbital-resolved energy shifts in the AFM type III
are the same as those in the FM type. It is ensured by the
aforementioned construction of the AFM configurations. Con-
sequently, a similar trend of the Ueff -dependent valley splitting
in the FM type is expected to appear in the AFM type III, as
shown in Table IV. With the discussion above, tuning the mag-
netization of Mo is the key to manipulate the valley splitting
in both FM and AFM types. Controllable magnetization can
be obtained through interlayer distance and suitable magnetic
layers with extensive or localized orbitals in real materials.

IV. CONCLUSION

A three-band tight-binding model is extended to investigate
the proximity effect of the intraplane AFM configurations.
Two specific AFM types are predicted to preserve valley
degeneracy resulting from the T tR or σv symmetry. An-
other type with trivial symmetries unsurprisingly breaks
the valley degeneracy. Through symmetry analysis, valley
degeneracy/splitting in the three particular systems is well
explained, which agrees with the unfolded bands from the
TB model and DFT calculations. The effect of the orbital-
dependent energy shift is investigated with the TB model as
well. The mechanism is revealed through the nondegenerate
perturbation theory. Further constraints of the SC are proposed
based on the degenerate perturbation. Beyond the analytical
study, the magnetization of the Mo, which depends on Ueff

and interlayer distance d , is found to be effective to tune the
valley splitting in real materials.

In the present paper, the extended TB model captures
the main features of the composite systems within the
low-energy region, which may pave the way to study the
corresponding quantum states at valleys. It provides a sim-
ple but accurate enough pathway to describe the low-energy
physics for valleytronics, especially in nanoscale systems.
Invalid cases where the well-defined valley states disap-
pear can be avoided with the proposed constraints of the
AFM configurations. We believe that these results are in-
structive for the flexible manipulation of valley states. With
a combination of valleytronics and spintronics, the valley-
splitting states and valley-degenerate states can be switched
by tuning the magnetic structure of the proximity layer. Fur-
thermore, it is known that the number of AFM insulators
is much more than that of the FM ones. Thus, the results
enormously expand the prospect of proximity for valley
polarization.

ACKNOWLEDGMENTS

This work was supported by the National Key R&D
Program of China (Grant No. 2022YFA1402401) and the
National Natural Science Foundation of China (Grant No.
11521404). Computational resources were supported by the
Center for High Performance Computing at Shanghai Jiao
Tong University.

[1] D. Xiao, W. Yao, and Q. Niu, Valley-Contrasting Physics in
Graphene: Magnetic Moment and Topological Transport, Phys.
Rev. Lett. 99, 236809 (2007).

[2] W. Yao, D. Xiao, and Q. Niu, Valley-dependent optoelectronics
from inversion symmetry breaking, Phys. Rev. B 77, 235406
(2008).

[3] T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan,
E. Wang, B. Liu, and J. Feng, Valley-selective circular dichro-
ism of monolayer molybdenum disulphide, Nat. Commun. 3,
887 (2012).

[4] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Cou-
pled Spin and Valley Physics in Monolayers of MoS2 and
Other Group-VI Dichalcogenides, Phys. Rev. Lett. 108, 196802
(2012).

[5] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically
Thin MoS2: A New Direct-Gap Semiconductor, Phys. Rev. Lett.
105, 136805 (2010).

[6] H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui, Valley
polarization in MoS2 monolayers by optical pumping, Nat.
Nanotechnol. 7, 490 (2012).

[7] K. F. Mak, K. He, J. Shan, and T. F. Heinz, Control of val-
ley polarization in monolayer MoS2 by optical helicity, Nat.
Nanotechnol. 7, 494 (2012).

[8] K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, The valley
Hall effect in MoS2 transistors, Science 344, 1489 (2014).

[9] J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L.
Seyler, W. Yao, and X. Xu, Valleytronics in 2D materials, Nat.
Rev. Mater. 1, 16055 (2016).

125408-12

https://doi.org/10.1103/PhysRevLett.99.236809
https://doi.org/10.1103/PhysRevB.77.235406
https://doi.org/10.1038/ncomms1882
https://doi.org/10.1103/PhysRevLett.108.196802
https://doi.org/10.1103/PhysRevLett.105.136805
https://doi.org/10.1038/nnano.2012.95
https://doi.org/10.1038/nnano.2012.96
https://doi.org/10.1126/science.1250140
https://doi.org/10.1038/natrevmats.2016.55


SYMMETRY-DEPENDENT ANTIFERROMAGNETIC … PHYSICAL REVIEW B 107, 125408 (2023)

[10] J. Lee, K. F. Mak, and J. Shan, Electrical control of the valley
Hall effect in bilayer MoS2 transistors, Nat. Nanotechnol. 11,
421 (2016).

[11] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G.
Galli, and F. Wang, Emerging photoluminescence in monolayer
MoS2, Nano Lett. 10, 1271 (2010).

[12] A. C. Dias, H. Bragança, H. Zeng, A. L. A. Fonseca, D.-S.
Liu, and F. Qu, Large room-temperature valley polarization by
valley-selective switching of exciton ground state, Phys. Rev. B
101, 085406 (2020).

[13] Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D.
Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J.
Hone, Z. Li, D. Smirnov, and T. F. Heinz, Valley Splitting and
Polarization by the Zeeman Effect in Monolayer MoS2, Phys.
Rev. Lett. 113, 266804 (2014).

[14] D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, A.
Kormányos, V. Zólyomi, J. Park, and D. C. Ralph, Breaking
of Valley Degeneracy by Magnetic Field in Monolayer MoSe2,
Phys. Rev. Lett. 114, 037401 (2015).

[15] G. Aivazian, Z. Gong, A. M. Jones, R.-L. Chu, J. Yan, D. G.
Mandrus, C. Zhang, D. Cobden, W. Yao, and X. Xu, Magnetic
control of valley pseudospin in monolayer WSe2, Nat. Phys. 11,
148 (2015).

[16] K. L. Seyler, D. Zhong, B. Huang, X. Linpeng, N. P. Wilson, T.
Taniguchi, K. Watanabe, W. Yao, D. Xiao, M. A. McGuire, K.-
M. C. Fu, and X. Xu, Valley manipulation by optically tuning
the magnetic proximity effect in WSe2/CrI3 heterostructures,
Nano Lett. 18, 3823 (2018).

[17] J. Qi, X. Li, Q. Niu, and J. Feng, Giant and tunable valley
degeneracy splitting in MoTe2, Phys. Rev. B 92, 121403(R)
(2015).

[18] L. Ciorciaro, M. Kroner, K. Watanabe, T. Taniguchi, and
A. Imamoglu, Observation of Magnetic Proximity Effect Us-
ing Resonant Optical Spectroscopy of an Electrically Tunable
MoSe2/CrBr3 Heterostructure, Phys. Rev. Lett. 124, 197401
(2020).

[19] G. Yang, J. Li, H. Ma, Y. Yang, C. Li, X. Mao, and F. Yin,
Induced valley splitting in monolayer MoS2 by an antiferromag-
netic insulating CoO (111) substrate, Phys. Rev. B 98, 235419
(2018).

[20] G.-B. Liu, W.-Y. Shan, Y. Yao, W. Yao, and D. Xiao,
Three-band tight-binding model for monolayers of group-VIB
transition metal dichalcogenides, Phys. Rev. B 88, 085433
(2013).

[21] Guo-Yi Zhu, Ziqiang Wang, and Guang-Ming Zhang, Two-
dimensional topological superconducting phases emerged from
d-wave superconductors in proximity to antiferromagnets,
Europhys. Lett. 118, 37004 (2017).

[22] W. Ku, T. Berlijn, and C.-C. Lee, Unfolding First-Principles
Band Structures, Phys. Rev. Lett. 104, 216401 (2010).

[23] V. Popescu and A. Zunger, Extracting E versus �k effective band
structure from supercell calculations on alloys and impurities,
Phys. Rev. B 85, 085201 (2012).

[24] M. Farjam, Projection operator approach to unfolding supercell
band structures, arXiv:1504.04937.

[25] H. Huang, F. Zheng, P. Zhang, J. Wu, B.-L. Gu, and W. Duan, A
general group theoretical method to unfold band structures and
its application, New J. Phys. 16, 033034 (2014).

[26] G. Kresse and J. Furthmüller, Efficiency of ab initio total energy
calculations for metals and semiconductors using a plane-wave
basis set, Comput. Mater. Sci. 6, 15 (1996).

[27] G. Kresse and J. Furthmüller, Efficient iterative schemes for
ab initio total-energy calculations using a plane-wave basis set,
Phys. Rev. B 54, 11169 (1996).

[28] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B
50, 17953 (1994).

[29] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient
Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).

[30] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gra-
dient Approximation Made Simple [Phys. Rev. Lett. 77, 3865
(1996)], Phys. Rev. Lett. 78, 1396(E) (1997).

[31] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys,
and A. P. Sutton, Electron-energy-loss spectra and the structural
stability of nickel oxide: An LSDA + U study, Phys. Rev. B 57,
1505 (1998).

[32] J. c. v. Klimeš, D. R. Bowler, and A. Michaelides, Van der
Waals density functionals applied to solids, Phys. Rev. B 83,
195131 (2011).

[33] V. I. Anisimov, J. Zaanen, and O. K. Andersen, Band theory and
Mott insulators: Hubbard U instead of stoner I, Phys. Rev. B 44,
943 (1991).

[34] S. Mandal, K. Haule, K. M. Rabe, and D. Vanderbilt, System-
atic beyond-DFT study of binary transition metal oxides, npj
Comput. Mater. 5, 115 (2019).

[35] R. Winkler, Spin-orbit Coupling Effects in Two-Dimensional
Electron and Hole Systems (Springer, Heidelberg, 2003).

[36] P. W. Anderson, Antiferromagnetism. Theory of superexchange
interaction, Phys. Rev. 79, 350 (1950).

125408-13

https://doi.org/10.1038/nnano.2015.337
https://doi.org/10.1021/nl903868w
https://doi.org/10.1103/PhysRevB.101.085406
https://doi.org/10.1103/PhysRevLett.113.266804
https://doi.org/10.1103/PhysRevLett.114.037401
https://doi.org/10.1038/nphys3201
https://doi.org/10.1021/acs.nanolett.8b01105
https://doi.org/10.1103/PhysRevB.92.121403
https://doi.org/10.1103/PhysRevLett.124.197401
https://doi.org/10.1103/PhysRevB.98.235419
https://doi.org/10.1103/PhysRevB.88.085433
https://doi.org/10.1209/0295-5075/118/37004
https://doi.org/10.1103/PhysRevLett.104.216401
https://doi.org/10.1103/PhysRevB.85.085201
http://arxiv.org/abs/arXiv:1504.04937
https://doi.org/10.1088/1367-2630/16/3/033034
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.78.1396
https://doi.org/10.1103/PhysRevB.57.1505
https://doi.org/10.1103/PhysRevB.83.195131
https://doi.org/10.1103/PhysRevB.44.943
https://doi.org/10.1038/s41524-019-0251-7
https://doi.org/10.1103/PhysRev.79.350

