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Frenkel polaritons, hybrid light-matter quasiparticles, offer promise for the designing of new optoelectronic
devices. However, their technological implementations are hindered by sensitivity to imperfections. Topology
has been raised as a way to circumvent defects and fabrication limitations. Here, we propose a lattice of
cavities to realize the one-dimensional Su-Schrieffer-Heeger model (SSH) for topological Frenkel polaritons.
By engineering the configuration of the cavities we demonstrate that the SSH topological and trivial phases
can be accessed, which we unravel by employing a dual approach based on classical and quantum theories. We
study the role of inherent vibron modes and fabrication defects in the robustness of the topological phases of
polaritons. Our study demonstrates a simple experimentally realistic setup to realize topological polaritons at
room temperature.
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I. INTRODUCTION

Frenkel excitons have emerged as a successful platform
to realize strongly hybridized phases of light and matter at
room temperature [1,2]. Experimental breakthroughs have
demonstrated the ability to produce many-body phases such
as Bose-Einstein condensation [3–6], superfluidity [7], and
a variety of effects resulting from exciton-polariton [8,9]
and plasmon-exciton-polariton interactions [10–15], includ-
ing lasing [16–18], polariton parametric emission [19], and
oscillation [20,21], among others. The flexibility of these
systems permits the polaritonic control of the internal en-
ergy levels [22,23], has opened up the field of polaritonic
chemistry [24–27], and has encouraged studies beyond the
quasiparticle approach of polaritons [28]. The ultimate control
of strongly coupled light-matter excitations, paired up with
the emerging field of topological photonics, paved the way to
the advent of topological polaritonics [29–31]. This may boost
technological applications in quantum optical circuits [32], in
nonlinear light [33], in chiral and topological lasers [34–36],
and in general where high fabrication precision is challenging
to reach.

The advances in topological photonics and polariton-
ics include breakthrough experiments and theories in the
context of cavity- and circuit-QED systems [37–41], ring res-
onator arrays [42–45], photonic crystals [46–52], microwaves
[53–56], and metamaterials [57–61] in which many intrigu-
ing topological phases have been realized exploiting the
light-matter coupling. Perhaps, the canonical one-dimensional
(1D) model with nontrivial topological properties is the so-
called Su-Schrieffer-Heeger (SSH) chain. SSH models have
already been realized and studied in many systems including
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plasmonic chains [62–66], waveguide QED [67], radiative
heat transfer [68], and polaritons [69–75]. Topological edge
states provide an efficient way to create localized polari-
tonic modes which are protected by their bulk environment.
Room-temperature topological systems are of particular inter-
est because their robustness against fabrication imperfections
may lead to next-generation polariton-based technologies.

Organic excitons are a promising platform in which to
realize topological hybrid phases of light and matter at am-
bient conditions. At room temperature, besides the main
exciton peak, generic organic excitons exhibit vibron modes
and a continuum of excitations that modify the quasiparticle
character of the polaritons [28]. The interplay between the
topological phases and the decoherence sources of the polari-
tons remains so far fairly unexplored.

Here, we theoretically propose a room-temperature setup
for the realization of the SSH model with Frenkel exciton-
polaritons in a one-dimensional lattice of stacked nanocav-
ities. We demonstrate that by alternating the width of the
mirrors it is possible to obtain both trivial and nontrivial topo-
logical polariton phases. For this, we employ a dual approach
based on the transfer matrix method (TMM) combined with
a tight-binding model for a chain of exciton-polaritons. The
TMM, for the appropriate configuration, unveils the emer-
gence of polariton edge states with localized electric field
around the edges of the array. Concomitantly, the reflectance
spectrum of the stack is found to closely resemble that of
an isolated cavity. The correspondence of these branches
with the topologically protected states of the SSH model is
demonstrated by means of the tight-binding formalism for
exciton-polaritons. Our twofold approach is general and pro-
vides a comprehensive tool that enables a deep understanding
of the fundamental aspects of stacks of strongly coupled cav-
ities. We discuss the role of the vibron mode and the effects
of typical lattice imperfections on the topological phases. We
show that the system is robust to fabrication imperfections;
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FIG. 1. Schematic representation of the array of 2N stacked cav-
ities filled with an organic material and its analogy to the 1D SSH
model. Each cavity supports Frenkel exciton-polaritons. The differ-
ent couplings found in the SSH model are realized by alternating
the width of the mirror separating each active layer. (a) Trivial and
(b) topological configuration.

however, the topological edge states are sensible to the break-
down of the quasiparticle picture.

In addition, we discuss the experimental implementation
of our proposal and its robustness against typical fabrication
limitations. Even though we mainly deal with Frenkel po-
laritons, our formalism is applicable to exciton-polaritons in
inorganic materials. This is demonstrated in Sec. VI, where we
consider homogeneously broadened excitons lacking vibronic
coupling.

Our proposal can be implemented in a wide family of
organic polaritons at room temperature and provides there-
fore a valuable guide for future experiments and theories. An
additional value of our proposal stems from the simple and
inexpensive fabrication process combined with a simple and
scalable design.

II. SYSTEM

Our system consists of an array of 2N stacked nanocavities,
as illustrated in Fig. 1. All cavities are loaded with a polymer
matrix mixed with a highly concentrated organic molecule. In
Fig. 2 we show the imaginary part κ (ω) of the refractive index
for a generic organic molecule. It is formed by a principal
electron transition, associated with the zero-phonon exciton
line, strongly coupled to a vibronic sideband. In a typical
organic molecule at room temperature, the vibronic shoulder
is slightly detuned from the main peak and yet overlaps with it
giving rise to a continuum of material excitations that cannot
be disentangled. The cavity length Lc, common to all cavities,
is such that the fundamental optical mode is zero detuned
from the main exciton energy at normal incidence. The width

FIG. 2. Imaginary part of the refractive index. The solid red
curve represents the spectrum of a typical organic molecule with a
principal peak at ωX ≈ 2.32 eV and a second vibron mode around
ωS ≈ 2.5 eV. The dashed blue curve represents an ideal exciton with
an oscillatory strength of 2� = 0.33 eV that peaks at ωX = 2.32 eV
and an exciton linewidth of γX = 0.025 eV.

of the metallic mirrors alternates, as depicted in Fig. 1. Two
configurations are possible.

The trivial configuration, shown in Fig. 1(a), consists of
an array of cavities where the the odd mirrors have a width
of LM,odd whereas the even mirrors’ width equals LM,even,
with LM,odd > LM,even. The topological array is obtained by
switching the order of the mirrors.

Intuitively, we expect that cavities separated by a thin mir-
ror couple more efficiently than those distanced by a thicker
mirror. Thus the trivial configuration allows for the effective
coupling of the cavities by pairs, as in the trivial phase of the
SSH model. On the other hand, for the topological configura-
tion, only the internal cavities of the stack couple efficiently,
whereas the two cavities at the edges of the array appear
isolated, as in the topological phase of the SSH model.

Our proposal is completely general and independent of the
specific organic molecule employed. However, to highlight
the experimental feasibility of our setup, we illustrate our
results for a concrete dye-doped polymer. Erythrosine B (ErB)
has already proved to be a suitable molecule for the realization
of exciton-polaritons at room temperature [28].

III. SSH POLARITONS: A TRANSFER-MATRIX-
BASED APPROACH

We start our theoretical study employing the transfer ma-
trix method. This is a simple yet powerful tool to study light
propagation in multilayer systems with ideal planar and par-
allel interfaces [76]. We remark that the this formalism is not
restricted to planar interfaces and can be adapted to spherical
or cylindrical stratified structures [77,78].

Our setup, illustrated in Fig. 1, consists of 4N + 3 layers:
2N + 1 silver (Ag) mirrors, 2N active layers, and 2 semi-
infinite dielectric media at the ends of the lattice. The specific
active layer used in the following corresponds to polyvinyl
alcohol (PVA) mixed with ErB. Its complex refractive index,
ñErB(ω), is obtained from experimental measurements [28],
and its imaginary part, κErB(ω), is shown in Fig. 2. κErB(ω)

125407-2



TOPOLOGICAL FRENKEL EXCITON POLARITONS … PHYSICAL REVIEW B 107, 125407 (2023)

presents a main exciton at ωX ≈ 2.32 eV and a secondary
peak at ωS ≈ 2.5 eV. Here we take h̄ = 1.

Without loss of generality, we consider both of the latter
media to be air with nAir = 1. The introduction of a substrate
at the end of the array of cavities is straightforward in our
formalism and does not play a significant role for large N .
Its effect is to slightly change the curvature of the polariton
bands, leaving unaltered the topological properties of the sys-
tem. The Ag complex refractive index, ñAg(ω), is taken from
the experimental reported values [79].

The length of all the active layers is fixed to Lc = 140 nm,

and the width of all odd mirrors is Lodd, while for all even
mirrors it is Leven. Plane waves propagating in each layer in-
dexed by l are described by an electric field El (z) = Aleikl z +
Bl e−ikl z. Here, l = 0 denotes the first medium (air); for the
mirrors and the active layers we have 4N + 2 > l > 0, where,
for an odd l , light propagates in a mirror, while for an even
l it propagates in an active layer. Finally, Al and Bl are the
amplitude coefficients for the incoming and outgoing electric
fields in each medium. We write the amplitudes in vectorial
form, vl = [Al , Bl ]T , and connect the coefficients via Maxwell
equations and the appropriate boundary conditions. For s-
polarized waves and light propagating from the lth to the
(l + 1)th medium we obtain Dlvl = Dl+1vl+1. Here, the dy-
namical matrix Dl is given by

Dl =
[

1 1
nl cos θl −nl cos θl

]
. (1)

Through medium l , the phase changes by

Pl =
[

eiφl 0
0 e−iφl

]
, (2)

where φl = kl
zLl , Ll is the length of the medium, and kl

z is the
perpendicular component of the wave vector of the electric
field and it is given by

kl
z = ω

c
nl cos θl (3)

with θl being the angle of incidence of the light field in the lth
medium measured from the z axis, i.e., normal to the stack.

It is convenient to introduce

Ml = DlPlD−1
l ,

to write the total transfer matrix T as

T = D−1
0

(
4N+1∏
l=1

Ml

)
D′

0, (4)

with D0 and D′
0 being the matrices of the interfaces for the air

at the ends of the array.
Finally, the reflectance can be calculated as

R =
∣∣∣∣T (2, 1)

T (1, 1)

∣∣∣∣
2

. (5)

Single cavity. Before we explore the reflectance for the two
configurations shown in Fig. 1, let us recall the reflectance
spectrum for a single cavity. Frenkel polaritons in a single cav-
ity were studied experimentally in Ref. [28]. The reflectance
spectrum for a single cavity of length Lc = 140 nm features
two polariton branches (Fig. 3). The lower polariton arises as a

FIG. 3. s-polarized reflectance for a single cavity having Lc =
140 nm, L1 = 40 nm, and L3 semi-infinite. The dashed red line in-
dicates the energy of the bare exciton peak centered around ωX =
2.32 eV, while the solid black curve corresponds to the bare cavity
photon dispersion.

well-defined quasiparticle. Only at large angles, as it becomes
purely excitonic, does the reflectance of the lower polariton
increase. On the other hand, the upper polariton emerges as an
ill-defined polariton at small angles and only becomes a quasi-
particle at large angles. As discussed in Ref. [28], the blurring
of the upper polariton is an inherent feature of Frenkel polari-
tons and dramatically influences the quasiparticle character of
the polaritons. The separation between the polariton branches
at normal incidence is estimated to be around 2� = 0.33 eV.

Trivial configuration. Let us start discussing the trivial
configuration. We take N = 10, that is, 20 cavities; the width
of all odd mirrors is Lodd = 30 nm, while for all even mirrors
it is Leven = 40 nm. In Fig. 4 we show the reflectance for
this configuration as a function of ω and k|| = ω

c sin θ . Below
the energy of the bare exciton, two polariton bands appear

FIG. 4. s-polarized reflectance for the trivial configuration where
four polariton bands appear with two band gaps above and below the
bare exciton energy.
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FIG. 5. s-polarized reflectance for the topological configuration.
Reflectance minima arise within the two band gaps observed for the
trivial configuration.

separated by a band gap that becomes maximal at normal
incidence and closes for large k|| values. In the limit of infinite
N , both bands form a continuum. However, for finite N a slight
discreteness in the bottom polariton band is expected.

Above the bare exciton energy, two upper polariton bands
arise. As a consequence of the vibronic shoulder of the exciton
absorption, at normal incidence only one of these bands is
clearly resolved. For large k||, the two upper polariton bands
are clearly distinguishable and exhibit a band gap. We note
two facts: (i) The band gaps opened by stacking the cavities
are smaller than the splitting between the two upper and lower
polariton bands, and (ii) these band gaps lie at the spectral
position of the polaritons for a single cavity, shown in Fig. 3.

Topological configuration. We now turn our attention to
the topological configuration illustrated in Fig. 1(b). The re-
flectance spectrum obtained from the TMM is shown in Fig. 5
and exhibits striking features compared with the trivial con-
figuration. In this case, the reflectance minima are located
inside the band gaps found for the trivial configuration and
closely resemble the upper and lower polaritons of the single
cavity, displayed in Fig. 3. Since the upper polariton energy
lies inside of the vibronic continuum of excitations, the re-
flectance spectrum signals an ill-defined upper polariton for
small wave vectors. That is, the breakdown of the polariton
picture prevents the emergence of a well-defined mode lying
inside the band gap above the bare exciton energy. On the
other hand, the lower polariton remains well defined for all
incident wave vectors.

Looking at the spatial distribution of the normalized
electric field intensity, |E (z)/Emax|2, for the topological con-
figuration [shown in Fig. 7(c) as a function of z (blue curve)],
we see that the electric field peaks in the odd cavities whereas
it significantly drops and essentially vanishes inside the even
cavities. The intensity of the electric field in the odd cavities
decays exponentially, which further hints at the topological
character of our setup.

The TMM strongly suggests that our setup is analogous
to the SSH model for exciton-polaritons. However, to explic-
itly unveil the link with the SSH model, in the following

FIG. 6. (a) Eigenvalues for the trivial configuration at normal
incidence: four polariton bands corresponding to the two branches
of the lower and upper polaritons. Shown at top is a cartoon of the
notation employed. (b) Eigenvalues for the topological configuration;
inside the energy gaps of the polariton bands, two edge states per
branch appear. We take 2N = 20 cavities giving 40 eigenvalues.

sections we develop a tight-binding model for the exciton-
polaritons and contrast it to the TMM.

IV. SSH POLARITONS: AN EFFECTIVE
TIGHT-BINDING MODEL APPROACH

The following Hamiltonian describes a set of 2N coupled
cavities that can be arranged in either the trivial or topological
configuration, as illustrated at the top of Figs. 6(a) and 6(b),

Ĥ =
N∑

i=1

ωc(θ )(â†
i âi + b̂†

i b̂i ) + ωX (x̂†
i,Ax̂i,A + x̂†

i,Bx̂i,B)

+ �

N∑
i=1

(â†
i x̂i,A + b̂†

i x̂i,B + H.c.)

−
N∑

i=1

(v(â†
i b̂i + b̂†

i âi ) + w(â†
i+1b̂i + b̂†

i âi+1)). (6)

Here, â†
i and b̂†

i create a cavity photon at sites A and B,
respectively, with energy ωc(θ ) which depends on the incident
angle θ given by the solid black curve in Fig. 3. On the other
hand, x̂†

i,A and x̂†
i,B create excitons with site index i in cavities

A and B, respectively. Here, the energy of the excitons is ωX .

Excitons and photons couple with a strength � only if all
site indices are equal. Adjacent cavities couple through the
tunneling of photons, where the tunneling amplitude is given
by either v or w, depending on the configuration, as illustrated
at the top of Figs. 6(a) and 6(b).

We now study the tight-binding model for the exciton-
polaritons within the SSH model. For reasons which will
become clear later, we take hopping coefficients of v =
0.15 and w = 0.09 for the trivial configuration, whereas for
the topological configuration we simply swap these coef-
ficients, i.e., w = 0.15 and v = 0.09. The SSH model for
exciton-polaritons is a simple quadratic Hamiltonian that can
straightforwardly be diagonalized. For consistency with the
TMM we take N = 10 corresponding to 20 cavities.

Trivial configuration. We start by discussing the trivial
configuration. For clarity, we show in Fig. 6(a) the eigenvalues
of the Hamiltonian in Eq. (6) considering first normal inci-
dence and resonant conditions ωc(θ = 0) = ωX . In this case
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FIG. 7. (a) and (b) Eigenvalues of the SSH model in Eq. (6) as a function of the in-plane momentum k|| illustrated by the red dots. The
energies of the SSH model are plotted on top of the reflectance spectrum for (a) the trivial configuration and (b) the topological configuration.
The white dots are the eigenvalues of Eq. (6) corresponding to edge states and lie at the energies of the bare lower and upper polaritons.
(c) Normalized electric field intensity as a function of z (blue curve) and amplitude of the wave function obtained from the SSH model (red
curve). The gray vertical lines give the position of the center of the cavities.

we observe that the lower and upper polariton states split
leading to four polariton bands: two above and two below
the energy of the bare exciton energy. The lower and upper
polaritons yield to two bands separated by a gap, marked by
the pink area. The Rabi coupling leads to the avoided crossing
(yellow area) that separates the lower from the upper polariton
bands. These four polariton bands display a difference in
their bandwidths. Specifically, the lowest polariton band is
broader than the second polariton band. This feature, also
visible in the TMM calculations, can hardly be explained
within the TMM. Strictly, the information on energy position
and width of gaps, resonances, and edge states is encoded
in Eq. (5) as discussed for photonic systems in Ref. [52].
However, in our system, the nonanalytical expressions for
ñErB(ω) and the complex refractive index of the Ag make it
highly nontrivial and nonintuitive to retrieve such parameters
analytically. Conversely, the tight-binding model provides a
very intuitive physical explanation for it. When photons hy-
bridize with excitons forming polaritons, the photon tunneling
between adjacent cavities depends on the polaritons’ Hopfield
coefficients, i.e., the coupling efficiency of polaritons living
in adjacent cavities depends on the ratio of their photonic and
excitonic components. Thus one expects that polaritons with
a large excitonic component exhibit a weak tunneling leading
to narrow polariton bands. This is the case for the two bands
located around the bare exciton energy. On the other hand,
polaritons with a large photonic component lead to a broad
bandwidth with the consequence of dispersion and enhanced
hopping. In addition, we confirm that the alternating width of
the mirrors creates a composite unit cell [80]. This leads to
different tunneling coefficients v and w, which in turn gives
rise to the two minibands observed both in the TMM and the
tight-binding model.

Formally, these arguments can be read by studying the
hopping terms of the Hamiltonian. For instance, the tunneling
between photons A and B with same site index, i, in the
polariton basis (L̂i,α, Ûi,α ) with α = A, B is

−v(â†
i b̂i + H.c.) = −v(Si,ASi,BL̂†

i,AL̂i,B

+ Ci,ACi,BÛ †
i,AÛi,B + Si,ACi,BL̂†

i,AÛi,B

+ Ci,ASi,BÛ †
i,AL̂i,B + H.c.). (7)

Here, the photon written in the basis of the lower and upper
polariton in terms of the standard Hopfield coefficients is
âi/b̂i = Si,αL̂i,α + Ci,αÛi,α, with S2

i,α + C2
i,α = 1, where

C2
i,α = 1

2

(
1 + ωc(θ ) − ωX

(ωc(θ ) − ωX )2 + 4�2

)
.

Equation (7) stresses that adjacent cavity polaritons can only
couple via their photonic component. Thus states with very
small photonic components have suppressed tunneling and
tend to localize within the corresponding cavities. Such lo-
calization corresponds to the band flattening observed for the
two bands that are close to the bare exciton energy (Fig. 6).
In contrast, for states with a large photonic component, the
tunneling of polaritons becomes essentially the bare photon
term, v, which makes the two polariton bands far detuned
from the exciton dispersive and broad.

We remark that an understanding of the narrowing of the
bands close to the bare exciton line cannot straightforwardly
be read from the TMM. This discussion naturally arises from
the tight-binding formalism providing a deeper insight into the
physical setup.

We can further understand the tight-binding model and
its equivalence to the experimental proposal if we vary the
incident angle θ . In Fig. 7(a) we plot the eigenvalues of the
Hamiltonian (red dots) in Eq. (6) as a function of k||. For
clarity in our comparison we show in the background the re-
flectance spectrum obtained from the TMM. The remarkable
agreement between the TMM and the SSH model for exciton-
polaritons supports our experimental proposal. Furthermore,
we also observe the closing of the lower band gap as the lower
polariton becomes more excitonic at larger incident angles,
in clear agreement with our previous discussion based on the
Hopfield coefficients.

Topological configuration. The topological configuration at
normal incidence yields the eigenvalues in Fig. 6(b). In addi-
tion to the four polariton bands, we observe the appearance of
two edge states located in the middle of the polariton gaps
(pink area) whose energy lies exactly at the energy of the
polaritons sustained by the single cavity:

ωLP/UP(θ ) = 1
2 (ωc(θ ) + ωX ∓

√
(ωc − ωX )2 + 4�2). (8)
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FIG. 8. Reflectance spectrum in the presence of imperfections for (a) N = 10 and (b) N = 4, that is, for 20 and 8 cavities, respectively, for
the topological configuration.

Since we consider resonant conditions, in Fig. 6(b) the edge
states are distanced precisely by 2�.

For varying angle of incidence, we observe in Fig. 7(b) the
persistence of these edge states which remain confined within
the corresponding band gaps. For clarity, we have highlighted
the energy of these states with white markers, whereas the
red dots correspond to the bulk states. In accordance with
our previous analysis, also for the topological configuration
the band gap associated with the lower polariton bands closes
for large angles. This is a consequence of the large excitonic
component of the polaritons. On the other hand, the gap sep-
arating the two upper bands slightly increases at large angles
as polaritons become predominantly photonic.

Finally, in Fig. 7(c) we show the distribution of the wave
function for the edge state along the cavities. The wave func-
tion is only nonzero for the A cavities, whereas it vanishes
for the B cavities. The amplitude of the wave function in the
A cavities decays exponentially with the index site i. At each
site, the state of the polariton retains the maximal coupling
between the excitons and photons, that is, the Hopfield co-
efficients equal to 1/2. The distribution of the amplitude of
the wave function predicted by the tight-binding model for
exciton-polaritons agrees remarkably well with the electric
field intensity obtained with the TMM. It captures both the
vanishing of the light intensity for the B cavities and the
exponential decay observed in the A cavities as a function of z.
Note that the electric field is a continuous function of z where
the wave function is discrete in the index site i.

The SSH model for exciton-polaritons has added remark-
able physical insights to the polariton physics predicted by
the TMM. However, features that extend beyond the single-
particle approach of polaritons are beyond the realm of the
SSH model and hence cannot be captured by this model.
For instance, the breakdown of the upper polariton at normal
incidence, which washes out the band gap of the upper bands,
cannot be obtained within our SSH model for polaritons. This
reflects the need for the dual approach: On the one hand, the
TMM absent of any fitting parameters provides a powerful
tool that gives the reflectance spectrum that should be ex-
perimentally observed but does not link directly to the SSH
model. On the other hand, the tight-binding model allows

us to link the phenomenology of the TMM with the SSH
model and provides deep physical insight, and yet it fails to
contain the full complexity of the system. By combining these
two approaches we obtain the complete picture of the SSH
exciton-polaritons both from a pragmatic experimental point
of view and in terms of the fundamental understanding of the
model.

V. EXPERIMENTAL CONSIDERATIONS: ROBUSTNESS
TO FABRICATION IMPERFECTIONS

In practice, there are experimental considerations that may
limit the realization of the SSH array of polaritons that require
discussion. First, there are incoherent processes such as pho-
ton leaking, nonradiative losses of the excitons, and coupling
to additional excitonic modes. Second, there is an inability
to produce mirrors with uniform widths and cavities with
different lengths. Finally, there are limitations to realizing a
large number of cavities, that is, finite-size effects.

In our TMM formalism, we have included the experimental
values of the refractive index of the active layer; this includes
all of the incoherent matter processes. On the other hand,
the leaking of the photons is naturally included and arises
as a broadening of the photonic lines. Our results discussed
previously demonstrate that the SSH for exciton-polaritons is
very robust to these effects. The topological effects for the
lower polariton bands are well defined at all incident angles.
For the upper polaritons, the breaking of the quasiparticle
picture leads to a blurred region where the edge modes are
hardly visible; however, with the opening of the angle these
states become well defined. In both cases, we have found a
very good agreement with the SSH polaritons treated at the
single-particle level.

To study the effects of fabrication imperfections, we add a
random and different error to all of the widths of both the mir-
rors and cavities. Experimentally, we estimate that the mirrors
and cavities can be realized within an error of circa 4 nm, and
thus we add an error for the fabrication of the mirrors of 5%;
that is, we take Li

M,even/odd = L0
M,even/odd + δLi

M,even,odd, where
L0

M,even/odd is the length of the mirrors discussed previously
and δLi

M,even,odd is a random number taken to be different for
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FIG. 9. s-polarized reflectance for the one-dimensional lattice of cavities containing a material with ideal excitonic response. (a) Trivial
and (b) topological configuration.

each site i. We also consider an error for the cavity lengths
Lc

i = Lc
0 + δLi with L0

c = 140 nm and an error of δLi in the
range (−3.5, 3.5) nm, again, different for each cavity.

The reflectance spectrum adding these fabrication imper-
fections for an array of 20 cavities is shown in Fig. 8(a) for the
topological configuration. We obtain a reflectance that closely
resembles the uniform case in Fig. 5. This indicates that our
proposal is indeed robust to defects in the experimental proce-
dure that may produce mirrors and cavities with small errors
in their widths.

Finally, we study the reflectance spectrum for a set of
eight cavities, that is, N = 4 dimers; here we also retain the
fabrication imperfections discussed above together with the
experimental absorption spectrum of the organic molecules.
The reflectance is shown in Fig. 8(b); we observe clearly the
edge mode of the lower band, whereas the edge mode of the
upper band becomes distinguishable at large angles. Note that
Fig. 8(b) captures all the relevant features of Figs. 5 and 7(b).

Our findings allow us to conclude that our experimental
proposal is robust to the underlying complexity of the exciton
spectrum, inherent fabrication errors, and limited number of
cavities. Therefore it stands as a promising platform to study
the SSH model for organic polaritons at room temperature.

VI. IDEAL EXCITONS

Let us turn our attention to the study of ideal excitons.
Here, the absorption spectrum of the active layer is sin-
gle peaked, and the incoherent processes coming from the
vibronic coupling are removed. This scenario is more com-
monly found in inorganic semiconductors, where however,
incoherent processes from different microscopic origins may
break the quasiparticle picture of the upper polariton [81].
The imaginary part of the refractive index is shown in Fig. 2
with the dashed blue curve, and it consists of a single nar-
row peak centered around ω ≈ 2.32 eV with an oscillatory
strength of 2� = 0.33 eV and a small exciton broadening of
γX = 0.025 eV.

In Fig. 9 we calculate the s-polarized reflectance for the
trivial and topological configurations of the one-dimensional

lattice where the organic material has been replaced by one
with Lorentzian excitonic response. Figure 9(a) corresponds
to the trivial configuration and closely resembles Fig. 7(a).
However, in this case, the upper branches are well defined
even at normal incidence, and the four polariton branches
are clearly visible. As expected, in the absence of the mat-
ter incoherent processes, the two edge states existing in the
topological configuration appear well defined for all incident
angles, as shown in Fig. 9(b).

VII. PERSPECTIVES AND CONCLUSIONS

Frenkel polaritons offer a tunable platform to realize topo-
logical phases of light and matter. The ability to produce
topological states at ambient conditions is a necessary con-
dition to deliver their promise for technological applications
such as integrated quantum optical circuits, nonlinear light,
and chiral and topological lasers.

Moreover, our proposal opens up opportunities for the de-
signing of 2D and 3D topological phases by exploiting the free
lateral sides of the cavity array [82].

In this paper, we have studied a one-dimensional lattice
of nanocavities filled with a dye-doped polymer strongly
coupled to light. By using two approaches, we have demon-
strated the direct analogy between the polariton band structure
of the lattice and the one-dimensional SSH model. First,
we have calculated the propagation of the light field across
the lattice by using the transfer matrix method. The spec-
tra strongly depend on the configuration of the lattice: In
the trivial phase we observed four polariton bands, namely,
two lower bands below the exciton energy separated by a
band gap and two upper bands above the exciton energy
also distanced by a band gap; conversely, in the topological
phase, we obtained two polariton states whose dispersion
falls within the band gaps and whose electric field inten-
sity localizes around the edge cavity, exponentially decaying
within the lattice. In addition, we unveiled the role of the
vibrational modes and fabrication imperfections. While the
system is very robust to the latter, the breakdown of the
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quasiparticle picture dramatically influences the emergence of
the topological edge modes that appear above the bare exciton
energy.

We complemented our analysis with an effective tight-
binding model, which allows us to link the reflectance spectra
with the SSH model. By combining these approaches we
obtained a comprehensive understanding both from the ex-
perimentally relevant picture and with the elementary blocks
of the single-particle polariton topological physics. Our work
provides a valuable benchmark for future theories on lattices
of Frenkel polaritons and realistic experimental implementa-
tions of the SSH model for Frenkel polaritons under ambient
conditions.
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