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Coulomb blockade of chiral Majorana and complex fermions far from equilibrium
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We study charge transport in a single-electron transistor implemented as an interferometer such that the
Coulomb-blockaded middle island contains a circular chiral Majorana or Dirac edge mode. We concentrate
on the regime of small conductance and provide an asymptotic solution in the limit of high transport voltage
exceeding the charging energy. The solution is achieved using an instantonlike technique. The distinctions
between Majorana and Dirac cases appear when the tunnel junctions are unequal. The main difference is
in the offset current at high voltages which can be higher, up to 50% in the Majorana case. It is caused
by an additional particle-hole symmetry of the distribution function of Majorana fermions. There is also an
eye-catching distinction between the oscillation patterns of the current as a function of the gate charge. We
conjecture this distinction survives at lower transport voltages as well.
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I. INTRODUCTION

The effect of the Coulomb blockade in a single-electron
transistor (SET) [1–7], a device where Fermi-liquid leads
are mediated by a quantum dot, plays an essential role in
condensed matter physics, mesoscopics, and open quantum
systems. The Coulomb spectroscopy and transport through a
quantum dot are sensitive to the precise nature of the nonequi-
librium steady state, the mechanisms of relaxation, electronic
interactions, and topological order [8–20]. The “orthodox”
theory of the Coulomb blockade is based on rate equations for-
mulated in the basis of different charged states in the island
[1–3,5]. Such states are well defined for almost isolated quan-
tum dots which have weak tunnel coupling to the leads, i.e.,
with a small dimensionless conductance, g � 1. In this theory,
the distribution function in the island is not affected by the the
coupling to contacts; i.e., the internal relaxation in the island is
assumed to prevail on the characteristic tunneling time scale.
In the multichannel limit with g � 1, when the Coulomb
blockade is weak and the charge is ill defined, the description
via the dissipative Ambegaokar-Eckern-Schön (AES) action
[21,22] for the phase becomes more convenient [8]. In equi-
librium, the saddle points of the Matsubara AES action are
known as Korshunov instantons [23]. These instantons allow
one to take into account charge discreteness and obtain the
residual, exponentially small gate charge oscillations of the
conductance. If the relaxation is weak then the distribution
function in the island is a non-Fermi one at finite voltages. It
causes a nonequilibrium steady state that cannot be captured
by the “orthodox” theory or the imaginary-time technique, and
consequently the real-time Keldysh formalism [24,25] is re-
quired. Important recent achievements include the theoretical
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analysis of strongly nonequilibrium transport using the AES
action [10], and the generalization of Korshunov instantons to
the real-time Keldysh formalism [15] at g � 1. In particular,
the results of Ref. [10] lead directly to the conclusion that the
Coulomb blockade is lifted at transport voltages lower than in
the “orthodox” theory due to the nonequilibrium distribution
function in the island.

In this work, we study the strongly nonequilibrium regime
of high voltages that exceed significantly the charging energy
of an island, and we assume a strong Coulomb blockade;
i.e., the dimensionless conductance is small, g � 1. At low
voltages one thus expects a strong suppression of the charge
transport. At higher voltages the almost Ohmic behavior is
accompanied by the offset (deficit) current and residual gate
charge oscillations. Here, we were able to describe this high-
voltage regime asymptotically exactly. Instead of using the
kinetic equations, which is challenging due to a large number
of relevant charge states, we employ a path-integral technique
and succeed solving the problem by finding a dominant path,
an alternative kind of instanton, for the phase variable.

We apply our solution for calculations of the nonequi-
librium tunneling density of states (TDoS) and current-
voltage relations using the formalism developed by Meir and
Wingreen [26]. The devices under consideration are chiral
interferometers implemented in hybrid structures with su-
perconductors, topological insulators, or quantum anomalous
Hall insulators (QAHIs) [27–29] (see Fig. 1). They have two
Fermi-liquid leads biased by the voltages ±V/2, and tunnel
coupled to the central island. The island hosts a single con-
ducting channel which is either a real Majorana fermion edge
mode (the case when the island is in a proximity-induced
topological superconducting phase) or a complex Dirac one
(the case of a normal island in a quantum Hall topological
insulator state). There is an electrostatic gate that induces an
offset charge in the island, Qg. The charging energy of the
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FIG. 1. Sketch of a single-electron transistor realized as chi-
ral Majorana or Dirac interferometer. Normal metal leads (Ohmic
contacts) cover spinless channels with chiral Dirac fermions, ψL,R,
which are the edges of a quantum anomalous Hall insulator (QAHI)
film. Gate voltage controls the offset charge Qg in the island of capac-
itance C0. The island is in the topological superconducting or normal
state. The chiral mode χ hosts Majorana or Dirac fermions. Tunnel
amplitudes are γL,R, and bias voltages are symmetric, VL(R)=±V/2;
the positive direction of the current is marked by black arrows.

island is Ec = e2/(2C0) with e the electron charge and C0 the
total capacitance of the island. The chiral fermions propagate
with a velocity v along the edge channels. In this case, the
Thouless energy, ETh = 2π h̄v

L (h̄ is Planck’s constant), is noth-
ing but level spacing in the ring of the perimeter L. (Hereafter
we set e = h̄ = 1.) We assume a metallic spectrum of the
edge modes which means that ETh is sufficiently small. The
voltages are limited from above by the energy scale �0—
the absolute value of the superconducting order parameter
induced in the topological part of the island—above which
other conducting channels or two-dimensional (2D) scattering
states become relevant. Ultimately, we work under the follow-
ing assumption:

�0 > eV � {ETh, Ec}. (1)

Moreover, we assume no relaxation to phonons, no electron-
electron scattering, and zero temperature. The only relaxation
mechanism is due to the tunneling to the leads. In this regime
the single-particle distribution function is expected to develop
a multistep structure which will play a substantial role below.

II. MODEL

A. Keldysh action for the Majorana device

The microscopic description of the charge transport is pro-
vided by the Keldysh generating functional

Z[η] =
∫

D[�]D[χ ]D[ϕ]eiS[�,χ,ϕ,η]. (2)

The first path integral is taken over complex fermions, � =
{�L, �R}, collected in Nambu spinors �L = {ψL,k, ψ̄R,−k}
and �R = {ψR,k, ψ̄R,−k} where ψL,k (ψR,k) are Grassmann
fields in left (right) leads; these are chiral states of momenta
k ∈ [−∞,∞]. The second variable χ (x) is a Majorana edge
mode in the island being a real Grassmann field defined on
a ring with a coordinate x ∈ [0, L]. The third one, ϕ, is the
phase of the superconducting order parameter in the island. Z
depends on a pair of counting fields ηL and ηR (source vari-
ables) collected in η = {ηL, ηR}. They generate the charges
Ql that flow from the left (l = L) or right (l = R) lead into

the island during the measurement interval t∈[0; t0]:

Ql = i
∂Z[η]

∂ηl

∣∣∣∣
η→0

. (3)

The total action is

S = Sc + SL + SR + SM + S(tun)
L + S(tun)

R . (4)

In the Keldysh technique, the physical time t ∈ [−∞,∞] gets
doubled, t±, with the index ± denoting the upward and back-
ward parts of Keldysh contour C. Then, the Keldysh rotation
to classical and quantum components of the boson field, ϕcl

and ϕq, is performed: ϕ(t±) = ϕcl(t ) ± ϕq(t )/2.
A coherent dynamics of ϕ is governed by the action Sc =∫
Lc[ϕ]dt where the Lagrangian is

Lc = ϕ̇qϕ̇cl

8Ec
− 1

2
ϕ̇qQg. (5)

Complex fermion dynamics is described by Keldysh
actions, Sl = ∫

C dt (
∫

dk
2π

ψ̄l,ki∂tψl,k − Hl ), where Hl =
h̄v

∫
dk
2π

kψ̄l,kψl,k is a Hamiltonian of chiral fermions and
the lead index is l = L, R. The action in ± basis reads
Sl =∑

σ,σ ′
∫∫

dωdk
(2π )2 ψ̄l,σ [G−1

l,ω,k]σ,σ ′ψl,σ ′ where the inverted
fermion Green function is

G−1
L(R),ω,k = (ω−vk)σ z+iε((σ 0 + σ x ) fL(R),ω − iσ y), (6)

σα are the Pauli matrices, and ε > 0 is an infinitesimal broad-
ening constant. We keep the ± basis for fermions while
performing the Keldysh rotation to the classical and quantum
components for the phase, ϕ. The functions fl = 1−2nl are
determined by zero-temperature Fermi distribution functions
in the leads, nL(R),ω = 1

2− 1
2 sgn(h̄ω∓eV/2). We assume here

that the symmetric voltage bias VL(R) = ±V/2 is applied. The
energies h̄ω of Dirac electrons in the leads are counted from a
chemical potential at zero bias.

We apply a uniform gauge transformation (see
Appendix A) for the complex fermions c(r, t ) in the island,
c(r, t )→e−iμt−i 1

2 ϕ(t )c(r, t ). After the transformation, the
floating phase ϕ(t ) and the yet unknown chemical potential
of the s-wave superconducting island, μ, are eliminated from
the island’s action; they appear instead in the tunneling action
below. One arrives at the stationary Bogoliubov–de Gennes
Hamiltonian, which at low energies [below �0; see Eq. (1)]
reduces to the following effective action for chiral edge
Majorana modes:

SM = 1

2

∑
σ,σ ′

∫ L

0
dx

∫
dtχσ (i∂t+iv∂x )σ z

σ,σ ′χσ ′ . (7)

Here, the Lagrangian is diagonal in the Keldysh space; i.e.,
there is no internal broadening or dissipation. In this case, this
kernel is not invertible which means fully unitary dynamics.
An introduction of an infinitesimal broadening with some
distribution functions is not necessary as it will anyway be
overridden by the coupling to the leads. The latter is described
by the tunnel action for the low-energy modes, where the
above-mentioned gauge transformation and the rotation to the
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Majorana basis is performed,

S(tun)
l [ϕ, η] = γl

∑
σ,σ ′

∫
dtχl,σ (xl )

(
U [ϕ, ηl ]σ,σ ′ψ

(0)
l,σ ′

− U +[ϕ, ηl ]σ,σ ′ψ̄
(0)
l,σ ′

)
. (8)

Here, the Majorana field χ (x) couples to the local fermions in
the leads ψ

(0)
l = ∫

dk
2π

ψl,k at two points, x = xL,R. The tunnel
amplitudes γl are chosen real. The matrix

U [ϕ, ηl ] = e−iμt−i 1
2 ϕcl (t )e−i

ϕq (t )+2ηl z(t )
4 σ z

(9)

captures the gauge transformation mentioned above and the
counting field.The yet unknown chemical potential of the
island, μ, will be found after solving an appropriate kinetic
equation. This transformation also means that all energies in
the island are counted from μ. The charge counting variable
ηl is an amplitude of the auxiliary quantum field, ηl z(t )

2 σ z. It
generates the transmitted charge Ql [ϕ] which is a classical
observable. Further, z(t ) = 1 for t ∈ [0, t0] and z(t ) = 0 oth-
erwise. It switches the charge counting on and off at t = 0 and
t = t0, respectively.

B. Nonequilibrium effective theory for the phase

After the integration over the complex fermions, �, and
then over the Majorana ones, χ , the generating functional (2)
becomes

Z[η] =
∫

D[ϕ]eiSc[ϕ]+ 1
2 tr ln((i∂t +iv∂x )σ z−�[ϕ,η]). (10)

Here, � is the self-energy for Majorana fermions. It reads

�[ϕ,η]x,t,t ′ =
∑

l=L,R

γ 2
l (G ′

l [ϕ]t,t ′−[G ′
l [ϕ]t ′,t ]

T )δ(x−xl ), (11)

where G ′
l [ϕ]t,t ′ = U +

l (t )σ zGl (t−t ′)σ zUl (t ′) is the boson-
dressed Green function of the lead. The self-energy � is
singular at the points where the tunnel contacts are located.
The presence of two contributions to the self-energy (G ′ and
[G ′]T

) reflects the Majorana nature of the island excitations.
In the time domain the local Green functions of the leads read
Gl (t ) = ∫

dω
2π
Gl;ωe−iωt , where

Gl;ω≡
∫

dk

2π
Gl;ω,k = i

4πv
((σ x − σ 0) fl;ω − iσ y). (12)

To analyze the phase dynamics, we develop here an expan-
sion scheme for the logarithm in Eq. (10). A naive expansion
in the small tunneling amplitude γl would force us to intro-
duce an infinitesimal broadening in the island with an arbitrary
distribution function. However, in such an approach a physical
distribution function, dictated by the leads, would emerge only
after the infinite summation of higher-order contributions. In-
stead, we extract from �[ϕ, η] a part with a constant-in-time
classical phase ϕ0, �[ϕ, η] = �[ϕ0, 0]+(�[ϕ, η]−�[ϕ0, 0]).
We transfer the extracted part, �[ϕ0, 0], into the zero-order
propagator [16],

G−1
0 = (i∂t+iv∂x )σ z−�[ϕ0, 0], (13)

which we can invert exactly, and perform an expansion in
δ�[ϕ, η] = �[ϕ, η]−�[ϕ0, 0]. Due to the gauge invariance of
the problem, ϕ0 does not appear in the final results.

We expand the logarithm in Eq. (10) up to the first order
in δ�. After that, δ� itself is expanded up to the linear order
in η since we are interested in the current only. Omitting a
constant term, we obtain the following result for the logarithm
in Eq. (10):

1
2 tr ln ((i∂t+iv∂x )σ z−�[ϕ, η])

≈ iSAES[ϕ]−iηLQL[ϕ]−iηRQR[ϕ]. (14)

The first term in Eq. (14) is the dissipative AES action [21,22],

SAES[ϕ] = i 1
2 tr[G0δ�[ϕ, η = 0]], (15)

and the second and third terms contain the charges Ql [ϕ] [cf.
Eq. (3)] calculated for a certain path, ϕc(t ) and ϕq(t ). These
are given by

Ql [ϕ] = i

2
lim
η→0

∂ηl tr[G0δ�[ϕ, η]]. (16)

We will denote the frequencies related to the island by ε

keeping ω for the leads. This helps us to remember that the
energies on the island are counted from the chemical potential.
Since � is singular in coordinate representation [cf. Eq. (11)],
one needs to know the Green function G0,ε at coincident
coordinates, x → xl and x′ → xl . Comparing the tunneling
self-energy and the ballistic propagator, we conclude that
the weak-tunneling limit corresponds to the condition γl �
v. This limit is fully equivalent to the condition of small
broadening of levels compared to the distance between them,√

γ 2
L +γ 2

R
L � ETh. In this regime, the Green function reads (see

Appendix B)

G0,ε = −i
ETh

2v

∑
n

δ(ε − εn)((σ 0 − σ x ) fM,εn + iσ y), (17)

which involves the four-step function

fM,ε = γ 2
L ( fL,μ+ε− fL,μ−ε )+γ 2

R ( fR,μ+ε − fR,μ−ε )

2(γ 2
L + γ 2

R )
(18)

describing the non-Fermi distribution of Majorana fermions.
It has the symmetry, fM,ε = − fM,−ε , which is preserved for
arbitrary γL and γR.

The function G0,ε is singular at ε = εn where εn =
(n+nν/2)ETh are the energy levels of the island (n ∈ Z and nν

is the number of vortices). To calculate the chemical potential
we neglect the fluctuations of phase and assume the constant
trajectory ϕcl = ϕ0 and ϕq = 0. Then we employ the charge
conservation constraint, QL[ϕ0] + QR[ϕ0] = 0, for t0→∞ [cf.
Eq. (16)] and obtain

μ = γ 2
L − γ 2

R

2
(
γ 2

L + γ 2
R

)V. (19)

Unlike in the Dirac case, in which the distribution function
is a two-step one governed exclusively by the voltages in the
leads, in the current Majorana case there are more steps and
the chemical potential is important.
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III. FORMALISM AND ANALYTICAL RESULTS

A. Dissipative action

We evaluate the AES action of Eq. (15), and obtain

SAES =
∫∫

dtdt ′[u∗
cl u∗

q]t

⎡
⎣ 0 αA

αR iαK
M

⎤
⎦

t−t ′

⎡
⎣ucl

uq

⎤
⎦

t ′

, (20)

where ucl =e− i
2 ϕcl cos ϕq

4 and uq =−ie− i
2 ϕcl sin ϕq

4 are classical
and quantum parts of gauge exponents. In the quasiclassi-
cal limit, the off-diagonal terms in Eq. (20) determine the
dissipative dynamics of the phase. They are given by the re-
tarded (advanced) functions, αR(A)(t ) = ∫

dε
2π

e−iεtαR(A)
ε , with

the spectra

ImαR(A)
ε = ±�

4

∑
n

(
fD,En+ε− fM,En

)
(21)

(see Appendix C). The diagonal term is the Keldysh one re-
sponsible for nonequilibrium fluctuations. Its spectrum reads

αK
M,ε = �

2

∑
n

(
1− fM,En fD,En+ε

)
. (22)

Here, dimensionless � = γ 2
L +γ 2

R
2π2v2 is the coupling strength of the

phase to the dissipative environment. It is the probability for
a Majorana excitation to leave the island after encircling it
once. In the tunneling limit, we have � � 1. Also, the two-
step distribution of Dirac fermions has been introduced:

fD,ε = γ 2
L fL,ε+μ + γ 2

R fR,ε+μ

γ 2
L + γ 2

R

. (23)

In the metallic limit, i.e., small level spacing, we replace the
sum over n by the integral ETh

∑
n →∫

dE , and we obtain the
Ohmic spectrum, ImαR

ε = �
2 ε. The Keldysh kernel reads

αK
M,ε = �

2
(
γ 2

L + γ 2
R

)2

[
γ 2

L γ 2
R (|ε + V | + |ε−V | + 2|ε + 2μ|)

+ γ 4
L (|ε| + |ε + 2μ−V |) + γ 4

R (|ε| + |ε + 2μ + V |)].
(24)

As will be shown below, phase trajectories that contribute
to the path integral have typical time scales ∼E−1

c . One can
show that for ε � Ec the kernel αK

ε can be replaced by its
zero-frequency value, αK

M,ε=0 = �
2 ξM|V |, provided

V � Ecmax{h, h−1}. (25)

Here, the asymmetry parameter is defined as

h = γ 2
R

γ 2
L

. (26)

The parameter ξM is given by ξM = phqh, where

ph = 4h

(1 + h)2
(27)

and

qh = 1 + |1 − h|
2(1 + h)

. (28)

Neglecting the frequency dependence of the kernel αK
M,ε at

high voltages is similar to the common approximation for a
classical noise at high temperatures. In this case, the kernel in
Eq. (20) becomes local, and the AES action assumes the form
SAES = ∫

Ld[ϕ]dt , where the effective dissipative Lagrangian
Ld[ϕ] reads

Ld[ϕ] = �

2

(
iξM|V | sin2 ϕq

4
− iϕ̇q

4
cos

ϕq

2
− ϕ̇cl

2
sin

ϕq

2

)
. (29)

At low voltages, V � Ec max{h, h−1}, the AES kernel be-
comes nonlocal in time, and our approach ceases to be
accurate.

B. Formula for the current and the tunneling density of states

Due to the nonzero Ec no charge accumulation can occur
on the island in the long-time limit. Therefore, at t0→∞
we expect 〈QL〉 = −〈QR〉. Then we are allowed to con-
sider the following symmetrized form for the current: I =
t−1
0

γ 2
R 〈QL〉−γ 2

L 〈QR〉
γ 2

L +γ 2
R

. Here, the average is taken over all trajecto-

ries, 〈O〉 = ∫
D[ϕ]ei

∫
(Lc[ϕ]+Ld[ϕ])dt O[ϕ]. After some algebra

with Eq. (16), we arrive at the formula for the current,

IM = g
∫

νM,ω(nL,ω−nR,ω )dω, (30)

where the dimensionless conductance is g = γ 2
L γ 2

R

4π2v2(γ 2
L +γ 2

R )
. As

shown by Meir and Wingreen [26], the nonequilibrium state
of the island is hidden in the normalized TDoS νM,ω. In the
metallic limit, we obtain

νM,ω = 1− 1

4π

∫∫
ei(ω−ε−μ)τD(τ ) fM,εdεdτ. (31)

The nontrivial contribution in Eq. (31) is provided by

D(τ ) = P<(τ ) − P>(τ ), (32)

where P≶(τ ) = 〈e− i
2 ϕ(τ± )+ i

2 ϕ(0∓ )〉 are the bosonic propagators.
For brevity, the phase variables are written in the ± basis.
The propagators obey the following symmetry: P≶(−τ ) =
(P≶(τ ))∗.

We note that the phase propagators P≷ can be written as
the averages, P<(τ ) = 〈b(0)b†(τ )〉 and P>(τ ) = 〈b†(τ )b(0)〉,
with the Heisenberg bosonic operators b = e

i
2 ϕ and b† =

e− i
2 ϕ . These are the ladder operators of the complex bosonic

mode acting in a space of different charge states. Hence, the
Fourier-transformed function Dω= ∫

D(τ )eiωτ dτ describes
the nonequilibrium excitation spectrum in the capacitor.

C. SET with the Dirac island

So far, we have considered the Majorana edge mode in
the island. Here, we provide the analogous calculations for
a device with a normal island that hosts a Dirac edge mode.
The action SD=∑

σ,σ ′
∫ L

0 dx
∫

dω
2π

χ̄σ (i∂t + iv∂x )σ z
σ,σ ′χσ ′ is ex-

pressed now in terms of a complex field χ �= χ̄ . There
are following distinctions from the Majorana case. First,
the nonequilibrium distribution function has the well-known
double-step structure, fD,ε , which is not particle-hole sym-
metric, i.e., fD,ε �=− fD,−ε , except the limit of fully symmetric
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setup, γL = γR. Second, in the formula for the current,

ID = g
∫

νD,ω(nL,ω−nR,ω )dω, (33)

we have νD,ω = 1 − 1
4π

∫∫
ei(ω−ε−μ)τD(τ ) fD,εdεdτ . Note

that the chemical potential does not influence the result in
the Dirac case. Indeed, introducing f̃D,ε= fD,ε−μ, i.e., counting
the energy from zero, we see that the distribution function
f̃D,ε does not depend on μ. The third distinction is that the
prefactor ξM=phqh in Eq. (29) is replaced by

ξD = ph. (34)

It follows from the Keldysh kernel in the Dirac case, which
reads

αK
D,ε = �

(
γ 4

L + γ 4
R

)|ω| + γ 2
L γ 2

R (|ω − V | + |ω + V |)(
γ 2

L + γ 2
R

)2 . (35)

Similar to the Majorana case, the frequency dependence of
this kernel can be neglected and our approach is accurate if
V � Ecmax{h, h−1}.

D. Path integration and the instanton: Boson propagator

In this section we consider the cases of Majorana and Dirac
in parallel; thus, we omit the indices “M” and “D” in ξ .
Calculation of boson exponents in Eq. (32) is based on the
following representation of the path integral:〈

e− i
2 ϕ(τ± )+ i

2 ϕ(0∓ )
〉=∫

D[ϕ]eiS±[ϕq]+∫
ϕ̇clA[ϕq]dt . (36)

Here, we have introduced

S± = ∓ϕq(0) + ϕq(τ )

4
+1

2

∫ (
iξ�|V | sin2 ϕq

4
+ ϕ̇qQg

)
dt,

(37)
which does not contain classical components of the phase. We
have also introduced

A = ϕ̇q(t )

8Ec
− �

4
sin

ϕq(t )

2
+ θ (t−τ ) − θ (t )

2
, (38)

which couples linearly to ϕcl. The linearity of the action in
Eq. (36) with respect to ϕcl plays the central role in our
solution. We remind that the exclusively linear dependence
on ϕcl is based on two approximations: the high voltage and
the Ohmic spectrum of the island. The linearity in ϕ̇cl al-
lows one to integrate this field out and obtain a functional
δ distribution,

∫
D[ϕcl]ei

∫
ϕ̇clA[ϕq]dt = δ(A[ϕq]). Therefore, the

remaining path integral over ϕq is restricted by a mani-
fold of trajectories satisfying A[ϕq] = 0 with the boundary
condition ϕq(−∞) = 0. Analyzing S± we now restrict the
allowed trajectories. We note that S± has an imaginary part
∼i

∫
sin2 ϕq

4 dt . It provides a selection rule for the trajecto-
ries: exp(iS±) �=0 only if ϕq(+∞) = 4πn, n ∈ Z. We find
that only a single solution of the first-order differential equa-
tion A[ϕq] = 0 satisfies this selection rule, ϕq(t ) = �τ (t ).
Therefore, the result of the path integration for the boson
propagators reads

P≷(τ ) = eiS±[�τ (t )]. (39)

Note that the combination of θ functions in the
right-hand side of the equation for the quantum trajectory,

ϕ̇q (t )
8Ec

−�
4 sin ϕq (t )

2 =− θ (t−τ )−θ (t )
2 , plays the role of an external

force. It switches on at t = 0 and off at t = τ (assuming τ>0).
Consider first the case of zero force when the equation is
uniform, ϕ̇q = 2Ec� sin ϕq

2 , i.e., when t∈[−∞; 0]∪[τ ; ∞]. It
has a set of trivial solutions,

ϕq = 2πn, (40)

and the instantonlike ones,

ϕq = ±4 arctan
(
Aeπ �t

τc
) + 4πn, (41)

with n ∈ Z. Here, the constant A determines the instanton
center and the time scale τc is inversely proportional to the
charging energy, τc = π h̄

Ec
. The instanton has slow dynamics

on the long RC-like time scale, ∼ τc
π�

, due to � � 1.
Consider the second case when the force is switched on

(t ∈ [0; τ ]) and the equation becomes ϕ̇q (t )
8Ec

−�
4 sin ϕq (t )

2 = 1
2 .

We neglect the sine term due to small � � 1 prefactor and
obtain a rapidly growing linear solution

ϕq = 4Ect + B (42)

up to small oscillations with an amplitude ∼�.
We have to match the linear solution (42) in the region

t ∈ [0; τ ] with the solutions in the remaining two regions,
[−∞; 0] and [τ ; ∞]. The analysis shows that, in order to
satisfy the above selection rules, the solution in the region
t < 0 should be of the instanton form (41) and in the other
region, t > τ , the constant one, Eq. (40), with an even n.
The matching conditions (continuity of the solution) uniquely
determine free parameters Aτ and Bτ , as well as the sign of
the instanton function, and the even integer nτ = 2Nτ , where
we added the subscript τ to emphasize the τ dependence. In
particular, we have

Nτ = �τ/τc + 1/2�, (43)

where the floor function �x� returns the greatest integer less
than or equal to x. Note that the integer-valued function Nτ is
odd, Nτ = −N−τ .

After some algebra, we find the final result for the quantum
trajectory at τ > 0:

�τ (t ) =
⎧⎨
⎩

φτ (t ), t < 0
4πNτ + 4Ec(t−τ ), 0 < t < τ

4πNτ , t > τ.

(44)

The view of the solution is shown in Fig. 2 for different τ/τc

ratios. The instanton tail in Eqs. (44) reads

φτ (t ) = 4(−1)mτ arctan

[
eπ �t

τc tan
arccos(cos(2π τ

τc
))

2

]
, (45)

where the discrete -valued function mτ , which determines the
overall sign of Eq. (45), is given by mτ = 1 + (� τ

τc
+ 1

2� +
� τ

τc
�).
Finally, one finds for the boson correlator for arbitrary τ

D(τ ) = 2iei2πQgNτ |cos(Ecτ )| ξ |V |
2Ec sin

(
πτ

τc

)
e−κτ . (46)

This is an oscillating function of τ multiplied by a decaying
envelope determined by κτ = �

4 ξ |V |(|τ |− 1
2Ec

sin(2Ec|τ |)).
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FIG. 2. Schematic view of the quantum trajectory (44). For t < 0
it has the instanton tail φτ (t ) [Eq. (45)], a linear part ∼4Ect at 0 <

t < τ , and a constant value 4πNτ at t > τ . Data shown for (a) τ (a) =
0.45τc, (b) τ (b) = 0.499τc, (c) τ (c) = 0.501τc, and (d) τ (d ) = 1.49τc.

Neglecting small decay κτ in Eq. (46), the following spec-
trum of excitations is obtained:

Dω =
∑

n

Wωδ(ω − ωn). (47)

It is a ladder of levels, ωn = 2Ec(n−Qg− 1
2 ), corresponding

to excitations between the states with energies En and En−1

where En = Ec(n − Qg)2 is the energy of a state with n excess
electrons in the island. (We note that the singularities will be
slightly smoothened by the frequency ∼�Ec when the κτ is
taken into account.) The envelope spectral function Wω is

Wω = −8Ec

∫ τc
2

0
|cosEcτ |ξ |V|

2Ec sin(Ecτ ) sin(ωτ )dτ. (48)

It is an odd function of ω, Wω = −W−ω. Its negative (posi-
tive) values correspond to rates of an absorption (emission) of
an electron by a lead at the energy h̄ω.

In the high-voltage regime we estimate that the weights

Wωn are significant up to n ∼
√

V
Ec

. This estimate for n de-

termines the number of the charge states that participate in the
transport.

E. Asymptotic expressions

Let us come back to the expressions for the currents,
Eqs. (30) and (33), and analyze some important cases.
We focus on the asymptotic behavior at voltages V �
Ec max{h, h−1} and integrate over ε and ω analytically.
In this regime the decay κτ in Eq. (46) is negligible.
The following identities for the Fourier transformations
of distribution functions, fM(D)(τ ) =∫

dε
2π

e−iετ fM(D),ε , are

used: fM(τ ) = −i
γ 2

L cos( 1
2 V τ+μτ )+γ 2

R cos( 1
2 V τ−μτ )

π (γ 2
L +γ 2

R )τ
and fD(τ ) =

−ieiμτ γ 2
L e−iV τ/2+γ 2

R eiV τ/2

π (γ 2
L +γ 2

R )τ
. For the difference in occupation num-

bers in the leads, �nω = nL,ω−nR,ω, we have �n(τ ) =∫
dω
2π

e−iωτ�nω = sin V τ
2

πτ
. Then the currents read

IM(D) = gV − πg
∫

e−iμτD(τ ) fM(D)(τ )�n(−τ )dτ. (49)

The integrals in Eq. (49) can be split into a sum of integrals
over intervals τ ∈ [τc(m − 1

2 ); τc(m + 1
2 )], m∈Z. Their inte-

grands have each a narrow peak in every interval. The peak
at m = 0 is given by a smoothened singularity in �n(τ ). In
this case, D(τ ) ≈ 1 at the relevant time scale of τ ∼ 1

V . The
integral for m = 0 yields the offset current, Ioffs. Note that it
does not depend on Qg and is proportional to Ec. Integrals
over the other m �= 0 peaks are responsible for the part of
the current, Iosc, showing the gate charge oscillations. Their
amplitude is much smaller than that of the offset current. This
means that at high voltages the strong Coulomb blockade is
weakened and the charge on the island is not well defined.
For the calculation of Iosc the boson correlator D becomes
important. In a τ̃ vicinity of the mth peak, where τ = τcm + τ̃ ,
it reads D(τ ) = 2i(−1)m sin(Ecτ̃ )ei2πQgm exp (− ξ

4 |V |Ecτ̃
2).

Therefore, for both systems the current can be written as

IM(D) = gV − IM(D),offs − IM(D),osc. (50)

F. Offset current

The difference between Majorana and Dirac fermions is
most prominent for asymmetric systems. We obtain the fol-

lowing asymptotic results (V � Ecmax{ γ 2
R

γ 2
L
,

γ 2
L

γ 2
R
}) for the offset

current. In the Majorana case we get

IM,offs = g

(
1 +

∣∣γ 2
R − γ 2

L

∣∣
2
(
γ 2

R + γ 2
L

))
Ec. (51)

In comparison, in the Dirac case we find

ID,offs = gEc (52)

for an arbitrary value of γ 2
R/γ 2

L . Therefore, the deficit current
in the Majorana case [cf. Eq. (51)] is up to 3/2 times larger
than that in the Dirac case.

G. Gate charge oscillations

We obtain the following asymptotic result at large voltages
for the Dirac case:

ID,osc = g sgn(V )
sinh 2

ξD√
πξD

√
E3

c

|V |e− |V |
ξDEc

× F
(

V
2Ec

, Qg
) + hF

(−V
2Ec

, Qg
)

1 + h
. (53)

There is an exponential decay of oscillation amplitude as a
function of V . The gate charge oscillation pattern is given by
the function Fx,y = (2mod1(−x + y + 1

2 )−1)2− 1
3 . (The func-

tion mod1(z) returns a fractional part of z.) It is found after
the integration over τ̃ in Gaussian approximation and further
summation over m �= 0 [30].

The function F has discontinuous derivatives. Namely, V
and Qg, which satisfy the condition F ( ±V

2Ec
, Qg) = 1, deter-

mine border lines of the so-called Coulomb diamond in the
differential conductance map. As seen from Eq. (53), there are
two sets of border lines, Q(1,2)

g = ± V
2Ec

+ 1
2 + n (n ∈ Z). In

the asymmetric limit with h � 1 the lines Q(2)
g are suppressed.
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In the Majorana case the result in the general case is more cumbersome:

IM,osc = gsgn(V )

2
√

πξM

√
E3

c

|V |
{ (h−1) sinh

4 μ

V
ξM

1 + h
e

−μ2

Ec |V |ξM F

(
μ

Ec
, Qg

)
+

∑
j,s=±1

h
1−s

2

sinh
2+( j+1)s 2μ

V
ξM

1 + h
e−|V | 1+2( j+1)(s+ μ

V ) μ
V

EcξM

× F

(
jsV + ( j + 1)μ

2Ec
, Qg

)}
. (54)

The terms with j = −1 and s = ±1 in the sum (54) provide
the same border lines, Q(1,2)

g = ±V
2Ec

+ 1
2 + n, as in the Dirac

case. Other terms define three additional sets of lines: Q(3,4)
g =

±V +2μ

2Ec
+ 1

2+n and Q(5)
g = μ

Ec
+ 1

2+n. Note that Q(3,4,5)
g de-

pend on μ = (1−h)V
2(1+h) and, hence, make the patterns more

complicated. We also find that in two particular cases, fully
symmetric (h = 1) and absolutely asymmetric systems (h = 0
or h = ∞), the patterns for ID and IM coincide.

H. Graphical presentation of the results

In Fig. 3 we plot the normalized differential conductance
as a function of the gate charge and transport voltage for

FIG. 3. Normalized differential conductances for the Dirac and
Majorana SETs, 1

g
∂ID,M
∂V , plotted for different asymmetry parameters

h = γR
γL

. Left column [(a)–(d)]: 1
g

∂ID
∂V as functions of V and Qg in the

Dirac case. Right column [(e)–(h)]: 1
g

∂IM
∂V for the Majorana island.

In the symmetric limit h = 1 [(a), (e)], the patterns are identical
with the border lines Q(1,2)

g =±V/Ec+ 1
2 +n (n ∈ Z). In the Dirac case

with h �= 1 [(b)–(d)], the lines Q(2)
g have smaller magnitude. In the

Majorana case [(f)–(h)] the asymmetry causes three additional border
lines Q(3,4,5)

g .

the Dirac [Figs. 3(a)–3(d)] and Majorana [Figs. 3(e)–3(h)]
devices. Data are found after an exact integration over time in
Eq. (49). These plots demonstrate the vanishing of the border
line Q(2)

g at small h in strongly asymmetric Dirac devices
according to asymptotic result (53). Also, we observe the
emerging of three additional border lines [Fig. 3(f)], Q(3,4,5)

g ,
in the Majorana device at h �= 1 predicted by Eq. (54).

In Fig. 3 we used our formalism down to zero voltages.
Quantitatively, the differential conductance at lower voltages,
obtained in our formalism, is not accurate. We are confident,
however, that the pattern is qualitatively correct and reflects
features of the strong Coulomb blockade behavior.

In asymmetric junctions, the exponentially small oscilla-
tory contributions are not symmetric under change of the
voltage sign V → −V , i.e., Iosc(V, Qg) �= −Iosc(−V, Qg). The
exception is the points Qg = n

2 (n ∈ Z) where the poles of Wω

are symmetric with respect to ω = 0. This asymmetry is more
visible at low voltages, as shown in Fig. 4 (blue solid curves).
It points to a possible diodelike behavior of the asymmetric
devices at low V .

In Fig. 5 we plot nonequilibrium TDoS, νM,ω and νD,ω,
which demonstrate a structure of the Coulomb gap. Note that
in the Majorana case we always have a symmetric TDoS
around the chemical potential μ (dashed line) for any h. It
is dictated by the particle-hole symmetry of fM,ε . In Fig. 6
we demonstrate the broadening of the Coulomb gap when the
voltage increases. Shaded regions stand for the energy do-
main, the states from which contribute to the electric current.

IV. DISCUSSION

The instantonlike solution presented in Eq. (44) provides
only the quantum component of the phase. At the same time,
the classical component is not uniquely defined and we have to
integrate over all its realizations. This is precisely the differ-
ence from the nonequilibrium instanton approach developed

FIG. 4. Current-voltage relations ID,M(V ) for SETs with
(a) Dirac and (b) Majorana islands. Solid blue curves in both
panels are shown for Qg = 0.3; they demonstrate the asymmetry of
current-voltage relations at Qg �= n/2 (n ∈ Z). Red dashed curves
correspond to the symmetric ID,M(V ) relations for Qg = 0.
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FIG. 5. Nonequilibrium TDoS in Majorana device νM,ω (dotted
red curves) and in Dirac device νD,ω (solid blue curves). The voltage
and the gate charge are chosen to be V = 5Ec and Qg = 0. Results
are shown for (a) h = 1 (symmetric device, curves match), (b) h =
0.4, and (c) h = 0.05 (highly asymmetric device). In the Majorana
case, the TDoS is always symmetric around the chemical potential μ

(vertical black dashed lines).

in Ref. [15]. This approach is valid for g � 1, i.e., for the
weak Coulomb blockade, and the instanton trajectory fixes
both quantum and classical phase components. In contrast,
in our case g � 1, the Coulomb blockade is strong at low
voltages and is lifted at voltages higher than the charging
energy.

Our approach based on the AES action allows us to re-
produce quantitatively some already known results obtained
within charge representation. This is the offset current, which
is a characteristic feature of charging effects at high volt-
ages. In the Dirac case we found ID,offs = gEc, which fully
coincides with the offset current in the single tunnel junction
with dimensionless conductance g [2]. Another example is
the threshold voltage V = Ec for Qg = 0 and γR = γL, which
is two times lower than that in the “orthodox” theory. This
result can be easily obtained from Ref. [10] and is due to the
nonequilibrium distribution function in the dot. The Coulomb
blockade is lifted above this threshold. We also reproduce the
threshold value V = Ec [see Fig. 3(a)].

One of the central results is the unconventional offset cur-
rent found for the Majorana island, IM,offs = qhgEc, where
the nonuniversal prefactor 1�qh� 3

2 [cf. Eq. (28)] depends
on the asymmetry of the SET. This could serve as an evidence
of the nonequilibrium chiral Majorana fermions in the is-
land. In addition, the gate charge oscillations show distinctive
features in the Majorana case, as shown in Fig. 3(f). Such
measurements could provide an alternative to the interferom-
etry [31–41] or time-resolved transport [42–47] in Majorana
devices.

FIG. 6. Coulomb gap structure at γR = γL, where ν = νM = νD,
for zero offset charge and different voltages: (a) V = 0.2Ec, (b)
V = 3Ec, and (c) V = 9Ec. The shaded areas are the energy windows
−eV

2 < h̄ω < eV
2 relevant for the charge transport.

V. SUMMARY

In this work, we studied the nonequilibrium transport in
single-electron transistors where the strong Coulomb block-
ade is suppressed by large voltages. Two different kinds of
quantum dots were considered. These are the islands with
chiral Dirac or chiral Majorana circular modes. These could
be the edge states of the usual or anomalous quantum Hall
insulators (Dirac) or of the proximity-induced 2D topologi-
cal superconductors (Majorana). The results of this work are
twofold. First, we calculated the nonequilibrium tunneling
density of states and current-voltage relations. We found an
unusual behavior of the offset current in the Majorana case.
There are also distinctive features in the residual gate charge
oscillations of the transport current (Coulomb diamond) in
the Majorana case. Second, on the methodological level, we
developed an instantonlike approach in the Keldysh formalism
in the limit of small conductances and high voltages.
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APPENDIX A: GAUGE TRANSFORMATION

The Bogoliubov–de Gennes (BdG) Hamiltonian of the 2D
topological insulator electrons (c̄↑,↓, c↑,↓) in proximity with
an s-wave superconducting island with the pairing potential
�(t ) reads

H (t ) = 1

2

∑
s,s′

∫
d2r[c̄ c]s

[
HTI−V (t ) isy�(t )
−isy�∗(t ) −HT

TI+V (t )

]
s,s′

[
c
c̄

]
s′
.

(A1)

The Hamiltonian HTI describes the topological part of the
island, s is the spin index, and sy is the Pauli matrix in the spin
space. The pairing potential, �(t ) = �0e−2iμt−iϕ(t ), appears
after a Hubbard-Stratonovich decoupling of an interaction
term in the superconducting island. The superconducting
phase involves the zero mode μ, which is the yet unknown
chemical potential in the superconductor. The nonzero modes
are captured by ϕ(t ). The potential V (t ) appears after an-
other Hubbard-Stratonovich transformation that decouples
the charging energy in the Hamiltonian. It reads as V (t ) =
V0+δV (t ) where V0 is its zero mode and δV (t ) involves all
nonzero ones. The gauge transformation, which allows us
to eliminate the phase dependence from the order parameter
�(t ) and make it real, �(t )→�0, reads as

cs(r, t )→e−iμt−i 1
2 ϕ(t )cs(r, t ), c̄s(r, t )→eiμt+i 1

2 ϕ(t )c̄s(r, t ).
(A2)

As a result, the diagonal part of the BdG Hamiltonian changes
accordingly:

HTI−V (t ) → HTI−(V0 − μ) − (δV (t ) − 1
2 ϕ̇(t )). (A3)

The Anderson-Higgs mechanism in the superconductor sup-

presses the nonstationary term (δV (t ) − 1
2 ϕ̇(t )) in Eq. (A3)

[48]. Thus, we obtain the Josephson relation between the
phase and potential, δV (t ) = 1

2 ϕ̇(t ). The zero modes, V0 and
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μ, are determined by global conditions, e.g., the capacitive
relation between the charge and the potential, or the conser-
vation of current, the latter being the main subject of our
calculation. We arrive at the stationary BdG Hamiltonian (A1)
with HTI−(V0−μ) at the diagonal, which we assume to be
in the superconducting topological phase with the gap �0.
The low-energy excitations of Eq. (A1) are assumed to be
the chiral Majorana edge modes, χ , described by the effective
action (7). Assuming that transport voltages are smaller than
�0 and, possibly, the topological gap, the linear dispersion
of the Majorana eigenstates is not affected by the presence
of (V0−μ) in the BdG Hamiltonian. The gauged away phase,
1
2ϕ(t ) + μt , appears in the tunneling action (8).

APPENDIX B: CALCULATION OF THE GREEN
FUNCTION OF THE CHIRAL FERMIONS IN THE ISLAND

In this Appendix we show that the local Green functions
of chiral fermions at the contact points, G0,ε (xL, xL) and
G0,ε (xR, xR ), are equal and are denoted by G0,ε in Eq. (17).
To derive G0,ε explicitly, consider the Dyson equation for
the coordinate-dependent Green function of the circular chiral
fermions G0(x, t ; x′, t ′):

G−1
0 G0(x, t ; x′, t ′) = σ0δ(x−x′)δ(t−t ′). (B1)

The stationary integral-differential operator G−1
0 , which ac-

counts for the presence of the contacts, is given by Eq. (13).
After the Fourier transformation, Eq. (B1) yields(

(ε+iv∂x )σz−
∑

l=L,R

δ(x−xl )�l,ε

)
Gε (x, x′) = σ0δ(x−x′).

(B2)
We introduced here the self-energies related to the left and
right tunnel contacts, �l,ε = γ 2

l σz[GL,μ+ε−GT
l,μ−ε]σz, where

l = L, R. Substituting here the lead’s Green functions Gl from
Eq. (12), the self-energies read

�l,ε = −i
γ 2

l

2πv

(
(σ0 + σx )

fl,μ+ε − fl,μ−ε

2
− iσy

)
. (B3)

The next step is the Fourier transformation in a basis of eigen-
states of an isolated Majorana edge mode of the length L:

Gε (kn, kn′ ) = L−2
∫ L

0
dx

∫ L

0
dx′Gε (x, x′)e−iknx+ikn′ x′

. (B4)

The eigenstates read eiknx (n ∈ Z) where the wave vectors and
energies are given by kn = εn/v and εn = ETh(n+nv/2), re-
spectively. Here, nv is an integer number, which is determined
by the presence of the Berry phase and the number of vortices
in the superconductor. Performing the direct and then the
inverse Fourier transformations, we obtain two equations for
Gε (xL, kn′ ) and Gε (xR, kn′ ):

[
σz−gε (0)�L,ε −gε (xL−xR)�R,ε

−gε (xR−xL)�L,ε σ0−gε (0)�R,ε

][
Gε (xL, kn′ )
Gε (xR, kn′ )

]
= 1

L(ε − εn′ )

[
eikn′ xLσ0

eikn′ xR σ0

]
. (B5)

The function gε (x) = 1
L

∑
n

eiknx

ε−εn
has been introduced. We need to obtain the expressions for Gε (xL, xL) = ∑

n Gε (xL, kn)e−iknxL

and Gε (xR, xR) = ∑
n Gε (xR, kn)e−iknxR . They follow from Eq. (B5):

[
Gε (xL, xL)
Gε (xR, xR )

]
=

∑
n

1

L(ε−εn)

[
e−iknxL 0

0 e−iknxR

][
σz−gε (0)�L,ε −gε (xL−xR)�R,ε

−gε (xR−xL)�L,ε σz−gε (0)�R,ε

]−1[
eiknxLσ0

eiknxRσ0

]
. (B6)

The obtained Green functions are given by a sequence of peaks near ε = εn. In the limit when the peak width, ∼
√

γ 2
L +γ 2

R

L , is much
smaller than the level spacing, ETh, these can be replaced by δ functions. This condition of small peak broadening is equivalent
to the tunnel approximation, γL,R � v. To obtain the result in this limit, one has to drop all terms in the sum in gε (x) except
those n which correspond to εn being in the vicinity of ε, i.e., the following replacement: gε (x) → eiknx

L(ε−εn ) . Reducing the result
of the matrix inversion in Eq. (B6) to a Lorentzian form and approximating the Lorentzians by the δ functions, we obtain the
result (17):

Gε (xL, xL) = Gε (xR, xR ) = −i

2πv

∑
n

γ 2
L + γ 2

R

L2(ε − εn)2 +
(
γ 2

L +γ 2
R

)2

4π2v2

((σ0 − σx ) fM,ε + iσy)

→ −i
ETh

2v

∑
n

δ(ε − εn)((σ0 − σx ) fM,ε + iσy), (B7)

where the non-Fermi distribution function of the Majorana fermions reads

fM,ε = γ 2
L ( fL,μ+ε − fL,μ−ε ) + γ 2

R ( fR,μ+ε − fR,μ−ε )

2
(
γ 2

L + γ 2
R

) . (B8)
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APPENDIX C: DERIVATION OF THE AES ACTION

The derivation of the AES action (20) from Eq. (15) involves the following transformation under the trace:

tr[G0�[ϕ, η = 0]] =
∫

dtdt ′trσ

[
γ 2

l G0,t ′−t
(
U +

t σ zGl,t−t ′σ zUt ′−Utσ
zGT

l,t ′−tσ
zU +

t ′
)]

= 2
(
γ 2

L + γ 2
R

) ∫
dtdt ′trσ

[
G0,t ′−tU

+
t σ z γ

2
LGL,t−t ′ + γ 2

RGR,t−t ′

γ 2
L + γ 2

R

σ zUt ′

]
. (C1)

We substitute here the Majorana Green function G0 from Eq. (17) and the lead’s Green function Gl from Eq. (12), as well
as the matrix Ut = U [ϕ(t ), ηl = 0] from Eq. (9) [that depends on the field ]). The symmetry of the Majorana Green function,

[G0,−t ]T = −G0,t , has been exploited here. To obtain expression (15) we subtract the divergent stationary part tr[G0�[ϕ =
ϕ0, η = 0]] from Eq. (C1). As a result, after the Keldysh rotation, we obtain the AES action (20) with αR(A) and αK defined by
Eqs. (21) and (22). The distributions fM and fD, which determine the kernels αR and αK , originate from the dot’s and leads’
Green functions, G0 and GL,R.
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