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Collective terahertz fluctuation modes in a polariton laser
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A polariton Bardeen-Cooper-Schrieffer (BCS) state in a semiconductor microcavity is an example of
symmetry-broken states in open systems. Fluctuations of the order parameter are an important tool to characterize
such a state. With the condensate formed by composite particles, the set of zero-momentum fluctuations spans
an infinite-dimensional electron-hole mode subspace. We show that collective fluctuation modes with orbital
angular momentum different from that of the order parameter can be obtained with terahertz radiation, and that
a physical manifestation of such modes, which are not Higgs modes, can be terahertz gain.
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I. INTRODUCTION

Spontaneous symmetry breaking and macroscopic quan-
tum states are important concepts in physics [1,2]. One
system in which these phenomena are well established
are exciton polaritons in semiconductor microcavities (see,
e.g., Refs. [3–31]), where polaritonic and photonic Bose-
Einstein condensation [21–33] and polaritonic Bardeen-
Cooper-Schrieffer (BCS) states [15,34–40] have been dis-
cussed.1 Here, the condensate wave function, or order
parameter, is associated with optically active polaritons,
which facilitates its observation through optical experiments.
These systems are open, dissipative, and pumped, hence the
physics of these symmetry-broken states can be quite dif-
ferent from their counterparts in thermal equilibrium. For
example, the polaritonic order parameter oscillates typically
at a frequency in the visible or near-infrared spectrum (close
to the exciton frequency in the noncondensed state), and
most studies of symmetry-broken states in polaritonic sys-
tems have characterized the properties of these states using
optical probes nearly resonant with the frequency of the order
parameter.

However, interesting and potentially new physical effects
of the macroscopic quantum state can also be obtained from
light fields far detuned from that resonance, for example, from
terahertz (THz) fields. An example utilizing THz radiation
to elucidate the physics of a polaritonic BEC was given in
Ref. [28].

Systematic studies of the fluctuation modes of a many-
particle system, either condensed or in the normal state,
usually involve the system’s linear response, triggered by
physical fluctuations or weak external probes. For the broad
class of condensed systems with complex order parameters,
where symmetries of the phase(s) are broken, much attention

*binder@optics.arizona.edu
1Recently, excitonic Bose-Einstein condensation in bulk semicon-

ductors has been demonstrated [41].

has been paid to the Goldstone (phase) modes and, when
they exist,2 the Higgs (amplitude) modes [42–48]. Polaritonic
condensates involve composite particles with a large number
of internal degrees of freedom (the relative motion of elec-
trons and holes making up the excitonic polarization, which
is coupled to the light field in the cavity). This creates a
rich landscape of possible fluctuation states. If the broken
symmetry is U(1), the only fluctuation mode that can be ex-
pected is a simple phase mode. In general, all other modes
require a more detailed classification, not only in terms of
phase and amplitude fluctuations, as is usually done, but also
electron-hole density fluctuations, as we do here. The density
considered here receives contributions from both the order-
parameter amplitude and the incoherent pumped reservoir.

In this study, we investigate the physics of fluctuation
modes of a polariton laser in the BCS regime triggered by
a THz probe. Extending our work in Ref. [49] to the THz case
and using a many-particle approach based on the diagonal-
ization of the fluctuation matrix, including the electron-hole
Coulomb interaction, we obtain all fluctuation modes induced
by THz radiation and compare them with those resulting
from an “optical” (nearly resonant with the order parameter)
probe. We find that the orbital angular momentum of the
THz-induced fluctuation modes is different from that of the
order parameter and that of the conventional optical fluctua-
tion modes. Both cases, THz and optical, include collective
(discrete) modes in addition to the spectral continua. The
continuum THz-induced modes can yield THz gain, similar
to the case without Coulomb interaction, which we studied in
Ref. [50]. But due to the many-particle Coulomb interactions,
we also find collective (discrete) THz-induced fluctuation
modes (we label them “T” modes). We provide a detailed
characterization of the physics of these modes, including
phase, amplitude, and density fluctuations for each degree
of freedom. Importantly, we find that the new THz-induced

2The conditions for the existence of the Higgs modes are discussed
in Ref. [42].
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collective fluctuation modes yield THz gain which could make
them of broad interest in future applications.

Our semiclassical theoretical approach to the THz-induced
fluctuation modes of a polariton laser operating in the BCS
regime is an extension of previous work [49] that was re-
stricted to probe fields (or fluctuations) with frequencies in the
vicinity of the frequency of the order parameter, which in the
polariton comprises the interband polarization and the light
field in the cavity. The dynamical variables are the interband
polarization p(k) (where k is the electronic wave vector),
the carrier distribution f (k) (same for electrons and holes
since we use equal electron and hole masses and relaxation
rates), and the single-mode cavity laser field E�. We use the
Hartree-Fock (HF) approximation for p(k) and f (k), reduc-
ing their equations of motion to the semiconductor Bloch
equations [51], amended by phenomenological dephasing,
intraband relaxation, nonradiative recombination, and inco-
herent population pump terms. The detailed equations are
given in Sec. II. Below threshold, this theory yields the lower
and upper polariton in the optical response. Above threshold
and in steady state, the order parameter [p(0)(k), E (0)

� ] os-
cillates at the laser frequency h̄ω�, which is approximately
at the fundamental band gap Eg (≈1.5 eV in GaAs). We
denote frequencies similar to Eg as interband frequencies
and distinguish them from THz frequencies, which we call
intraband frequencies, where interband (intraband) refers to
the electronic excitations caused by fields oscillating at the
corresponding frequencies. The complex order parameter has
an arbitrary phase factor eiφ , which is fixed in any given
realization (spontaneous symmetry breaking).

Fluctuation modes of the laser can be triggered by
weak optical-frequency (interband) or THz (intraband)
probes. In Sec. III, the evolution equations of the variables
[p(k), f (k), E ] are expanded to first order in the probe around
the steady-state laser solution. These linear-response equa-
tions are simplified by angular-momentum selection rules: an
optical-frequency probe drives fluctuations in the sector with
orbital angular momentum m = 0, and a THz probe drives the
modes with m = ±1. As detailed in Sec. IV, the equations are
discretized on a radial-k grid and solved by diagonalization of
the fluctuation matrix.

The benefit of this microscopic approach is that we obtain
all fluctuation modes from a many-particle theory within the
HF approximation, including discrete (collective) modes and
continuous spectra, without making any assumptions on the
physics of the fluctuation modes. The THz response (the in-
duced intraband current) is constructed as an expansion in the
eigenmodes of the fluctuation matrix. This, in turn, allows
us in Sec. VI to identify spectral features in the intraband
conductivity, and thus the THz absorption spectrum, and to
associate these features with specific fluctuation modes.

In Sec. IV, we formulate the decomposition of fluctuation
modes into phase, amplitude, and density oscillation compo-
nents. In Secs. V and VI B, we perform an in-depth analysis
of the modes’ oscillation characteristics, and, for most modes,
distinguish them from pure phase (Goldstone) or amplitude
(Higgs) modes.

II. MICROSCOPIC FORMALISM OF ELECTRON,
HOLE, AND PHOTON DYNAMICS

In this section, we write down the microscopic Hamilto-
nian for the system of conduction-band electrons, valence-
band holes, and cavity photons, and the equations of motion
of field expectation values as used in this paper. We use
bold letters to denote position vectors and physical quantities
whose directions are defined in physical space, e.g., wave
vector k, electric field E. An overhead arrow is used to de-
note a finite array of numbers arranged in column vector
form. For two column vectors, �a = (a1, a2, . . . , aN )T , �b =
(b1, b2, . . . , bN )T , the symbol �a T �b denotes a dot product:
�a T �b = ∑N

i=1 aibi.

A. The Hamiltonian

The setup that we consider is an optical microcavity
containing a zero-width quantum well. The fundamental res-
onance frequency of the cavity is close to the quantum well’s
band gap. The system is incoherently pumped to sustain
steady-state lasing. The laser’s fluctuation spectrum is probed
with the linear response to a weak THz field. A coordinate
system is set up in which the z axis is normal to the quantum
well’s plane. Our model Hamiltonian for the electrons, holes,
and cavity photons is

Ĥ =
∑
α,k

εαka†
αkaαk +

∑
λq

h̄ωλqc†
λqcλq − 1√

A
∑

λehq,k

[
�λ

eh(k, q)cλqa†
e,ka†

h,q−k + H.c.
]

+
∑
ναq,k

gν
α

(
k + 1

2
q
)

AT ν (q, t )a†
α,q+kaα,k + 1

2A
∑

k,k′,q′ �=0

∑
μ,μ′

V c
q′a†

μ,ka†
μ′,k′aμ′,k′+q′aμ,k−q′ , (1)

where aek, ahk, and cλq are the annihilation operators for
conduction-band electrons, valence-band holes, and cavity
photons, respectively. k, k′, q, and q′ are two-dimensional
(2D) wave vectors parallel to the quantum well’s plane (all
wave vectors in this paper are in-plane unless specified
otherwise), λ labels the cavity photon spin, and A is the
normalization area in the plane. We consider interband tran-
sitions only between the highest heavy-hole valence band
and the lowest conduction band. So the band subscripts

label the degenerate spin-orbitals: e = ±1/2, h = ±3/2. The
subscript α runs through both electron and hole bands. The
subscripts μ and μ′ in the Coulomb interaction term run over
the degenerate conduction and valence band spin-orbitals,
c = ± 1

2 and v = ± 3
2 , respectively: μ,μ′ ∈ {c, v}. Parabolic

bands are used for the charges: εek = h̄2k2

2me
+ Eg and εhk =

h̄2k2/2mh, where mα is the effective mass in band α (both
me and mh are positive on our case), and Eg is the band
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gap. ωλq is the cavity resonance frequency. The interband
eh-laser interaction term is calculated in the rotating-wave
approximation. Although it is treated as an input param-
eter in the numerical calculations, the interband coupling
strength �λ

eh(k, q) can be given by �λ
eh(k, q) = |dcv(k) ·

ε�λ|
cav(zQW)
√

2π h̄ωλq/εb. The interband dipole moment
is dcv(k) = ieh̄〈c, k|p̂|v, k〉/[m0 Ecv(k)], where m0 is the
free-space electron mass, e is the magnitude of the elec-
tron’s charge (e > 0), the states |c, k〉 (|v, k〉) in the electron
momentum matrix element are conduction (valence) band
Bloch wave functions, and Ecv(k) = εek + εhk. 
cav(zQW)
is the cavity photon mode one-dimensional (1D) wave func-
tion along the z direction evaluated at the position of the
quantum well zQW, εb is the background dielectric func-
tion inside the cavity, and ε�λ is the polarization unit vector
of the optical field. (Some nuances of the relation be-
tween the interband dipole and momentum matrix elements
are discussed in Ref. [52]; see also Ref. [53].) Conserva-
tion of angular momentum in the e = ±1/2 to h = ±3/2
transitions requires (see, e.g., Refs. [40,50]) the “circular
selection rules” dcv(k, q) · ε�λ = dcv(k, q)δ|e+h|,1δe+h,λ where
the angular-momentum labels in the conduction-valence band
picture are related to those in the electron-hole picture via
c = e and v = −h. That is, for a given conduction band, the
corresponding valence band and laser-photon polarization are
fixed.

The THz probe is treated in the Hamiltonian Eq. (1) as
a classical applied vector potential AT (t ). We use a gauge
in which the scalar potential is zero [53] so that ET (x, t ) =
− 1

c ∂AT (x, t )/∂t , with x being the three-dimensional (3D)
spatial coordinates. The probe induces intraband transitions
with the coupling gν

α (k), where ν labels the polarization
state of the THz field. With the approximations of isotropy
and small transverse THz wave vector q 
 k, the coupling
strength is evaluated as

gν
α (k) = − sαe

mαc
h̄k · εT ν, (2)

where εT ν is the polarization unit vector for the THz field and
sα is the sign of the particle’s charge: se = −1, sh = 1. The
intraband electro-magnetic interaction operator, the fourth
term in Eq. (1), states that intraband electronic transitions are
possible for q = 0 if k �= 0. Angular momentum is conserved
between an electron and a THz photon by the factor of h̄k
in Eq. (2), which changes the angular quantum number m by
±1 for the electronic orbital motion. Energy is conserved in
these intraband transitions by changes in an excitonic state,
or as described in this paper, by transitions between the band
and its light-induced counterpart (see also Fig. 1). This in-
teraction does not change the electron or hole spin, of which
its strength is independent; and due to the assumption of
electronic isotropy, its strength is independent of the THz field
polarization. The quasi-2D Coulomb interaction energy is

V c
q ≡ 2πe2

εb

1

|q| + κ0
, (3)

where κ0 is a small, constant screening wave number.
Because typical THz wave numbers q in a dielectric are

much less than a typical electron quasimomentum k, q 
 k, it
was previously found in Ref. [50] that in calculating the THz

CB

VB

ε

k

E* 
g

��
�

Ẽpair 
gap

0

Ẽpair 
gap

UULL

Uh

Ue
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Lh

UhLeLhUe

low k high k

�
���

FIG. 1. Schematic of the parabolic two-band band structure with
the conduction band (CB) in red and the valence band (VB) in
blue, separated by the HF Coulomb-renormalized band gap E∗

g and
further renormalized by the electron-hole interaction and the light
field (dressed bands), see the spectral function in Refs. [36,55].
The BCS renormalization induces a gap with magnitude Ẽ pair

gap , and
separates the CB (VB) into Ue and Le (Uh and Lh, in the hole picture)
branches. UU, LL, LU, and UL transitions are indicated (the latter
two resulting in the decay continuum). Dashed lines denote smaller,
but nonzero, spectral weight for the branch. All vertical transitions
between the dressed bands (both solid and dashed lines) are possible.
The THz-frequency transitions result from those indicated by the
subsequent subtraction of the frequency h̄ω� through coherent wave
mixing.

response (specifically the conductivity σT ) of the quantum
well (QW) it is a very good approximation to take the in-plane
THz field wave vector to be zero, q‖ ≈ 0. Varying the angle
of incidence of the THz probe does affect its transmissivity,
as was shown in Fig. 12 in Ref. [50]. However, this is almost
entirely due to Maxwell’s equations, and their specific results
in Eqs. (A12)–(A16) of Ref. [50], and not because of any
change in the THz-induced conductivity σT . In this paper, we
again use Eqs. (A12)–(A16) of Ref. [50], and the difference
from Ref. [50] arises in the calculation of σT . Therefore, the
effects of the probe geometry on the THz transmissivity have
already been adequately shown in Fig. 12 of Ref. [50], and
it is no longer necessary to consider the effects of changing
the THz angle of incidence. Instead, we simplify the math by
taking the THz probe ET to be normally incident:

ET (z, t ) · εν ≡ ET ν (z, t ) =
∫

dω

2π
ei(qzz−ωt )ET ν (ω), (4)

where qz = √
εbω/c and εν is the polarization unit vector,

equal to ŷ for ν = y or x̂ for ν = x. The quantum well mi-
crocavity’s response to this probe consists of fluctuations with
zero (in-plane) momentum (the steady lasing state before the
THz probe arrives being isotropic in the plane). Accordingly,
only the q = 0 part of �λ

eh(k, q) is in use. We approximate
this relevant part �λ

eh(k, 0) by a function denoted by �λ
eh(k)

that equals a constant for |k| less than a set value kmax and
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zero for |k| > kmax. The numerical value of the constant is
adjusted such that the splitting between the exciton and the
lower polariton (LP) resonance, sometimes called vacuum
Rabi splitting and denoted �R, has a given value consistent
with state of the art microcavities. We also use the notation
ωλ0 ≡ ωλ

cav.

B. Equations of motion of the cavity field, the interband
polarization, and the charge densities

Using the Hamiltonian in Eq. (1), single-time equations of
motion are derived for the slowly varying envelope of the
electron-hole polarization at zero center-of-mass momentum,
peh(k, t ) ≡ 〈ah,−k(t )ae,k(t )〉eiω�t , the occupation functions
fα (k, t ) ≡ 〈a†

α,k(t )aα,k(t )〉, where α ∈ {e, h}, and the enve-
lope of the laser field amplitude (the squared magnitude of
which is the 2D photon density in the designated mode)
E�λ(t ) ≡ (1/

√
A)〈cλ,q=0(t )〉eiω�t . ω� is the laser frequency,

which is obtained from solving the steady-state equations ab-
sent the THz probe. The circular selection rules require
that peh(k, t ) = 0 for (e, h) /∈ {( 1

2 ,− 3
2 ), (− 1

2 , 3
2 )}. In an

equation of motion for fe, the value for the index h in factors

of peh should be chosen so that (e, h) = ( 1
2 ,− 3

2 ) or =(− 1
2 , 3

2 ).
The many-body dynamics is treated at the same approximate
level as the semiconductor Bloch equation (SBE). Photonic
correlations, involving nonfactorizable parts of expectation
values of products of photon operators or products of photon
and charge operators, are ignored. Effects of Coulomb correla-
tions beyond the SBE are modeled by appropriate relaxation
and dephasing terms. The Hamiltonian (1) does not account
for pumping, cavity loss via emission of the laser field, or in-
teractions with the environment, e.g., phonons. These effects
are also modeled phenomenologically, in the same way as was
done in Refs. [40,49,50]. We set me = mh and also assume all
the incoherent relaxation rates are the same for electrons and
holes. These conditions imply fe=−1/2(k, t ) = fh=3/2(−k, t )
and fe=1/2(k, t ) = fh=−3/2(−k, t ). We keep the electron dis-
tribution fe(k, t ) as the dynamical variable for each spin
configuration. This electron-hole symmetry assumption is
made for simplicity. Reverting to the correct mass ratio and
unequal relaxation rates would not change any physical con-
clusions in the paper. Under these approximations, we obtain
the following equations of motion:

ih̄
∂

∂t
peh(k, t ) =

(
h̄2k2

2mr
+ Eg − 2

A
∑

k′
V c

k−k′ fe(k′, t ) − h̄ω� − iγ +
∑

ν

gν (k)AT ν (t )

)
peh(k, t )

− [1 − 2 fe(k, t )]

[∑
λ

�λ
eh(k)E�λ(t ) + 1

A
∑

k′
V c

k−k′ peh(k′, t )

]
, (5)

where gν (k) ≡ gν
e(k) + gν

h(−k) = e
mr c h̄k · εT ν , with the reduced mass mr given by 1

mr
= 1

me
+ 1

mh
,

h̄
∂

∂t
fe(k, t ) = 2Im

{[∑
λ

�λ∗
eh (k)E∗

�λ(t ) + 1

A
∑

k′
V c

k−k′ p∗
eh

(
k′, t

)]
peh(k, t )

}

− γF [ fe(k, t ) − fF (k, t )] − γnr fe(k, t ) − γp[ fe(k, t ) − fp(k)], (6)

and3

ih̄
∂

∂t
E�λ(t ) = (

h̄ωλ
cav − h̄ω� − iγcav

)
E�λ(t ) − NQW

A
∑
keh

�λ∗
eh (k)peh(k, t ). (7)

The approximation of the incoherent-scattering terms in
terms of relaxation rates has been previously described in
detail in Eqs. (B1)–(B8), (B16), and (B17) of Ref. [50]; as
well as in Eqs. (5)–(8) of the Supplemental Material for
[49], and in Eqs. (23)–(26) of Ref. [40]. In Eqs. (5) and
(7) and below, γ is the dephasing rate of e-h pairs, γcav is
the decay rate of the cavity field, and NQW is the number
of quantum wells. In Eq. (6), γF is the thermalization rate,
γp is the incoherent pump rate, and γnr is the nonradia-
tive decay rate. We define the total distribution relaxation
rate γ f ≡ γF + γp + γnr . Incoherent pumping is modeled by
the term −γp[ fe(k, t ) − fp(k)], which drives the distribution

3An alternative to the single-mode equation for the cavity field
based on the propagation of the light through the entire microcavity
structure has been given in Ref. [19].

function fe(k, t ) towards a pump-induced Fermi function
fp(k) at the rate γp. The pump chemical potential μp is
chosen such that the density np = 2

∫
d2k

(2π )2 fp(k), corresponds
to the chosen pump density, which is an input parameter
in this theory. Intraband carrier-carrier scattering drives the
distribution functions towards Fermi functions at the rate γF ,
without changing the total carrier density n(t ) in each band.
This is included via the term −γF [ fe(k, t ) − fF (k, t )]. The
thermal chemical potential μF is chosen at each time such that
n(t ) = 2

∫
d2k

(2π )2 fe(k, t ) = 2
∫

d2k
(2π )2 fF (k, t ). Here, fF (k) and

fp(k) are Fermi distributions with distinct chemical potentials

fx(k; μx ) = 1

e(εk−μx )/kBT + 1
, (8)

where x ∈ {F, p}, and T is an effective e-h temperature, also
set as a parameter.
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III. LINEAR RESPONSE TO A TERAHERTZ PROBE

A. Laser steady state

The stationary solutions are given by taking the ih̄ ∂
∂t terms

and AT ν to be zero in Eqs. (5)–(7). They are denoted with
a superscript (0): f (0)

e (k), p(0)
eh (k), and E (0)

�λ . The use of 0
references that the stationary solutions are zeroth-order in the
perturbing THz field AT ν (t ). We limit ourselves to s-wave
solutions, meaning that all k-dependent functions depend only
on the magnitude of the wave vector, k = |k|. One steady-
state solution, with p(0)

eh (k) = 0 and E (0)
�λ = 0, represents the

nonlasing, “normal” state. When the pump density np is raised
above a threshold, additional solutions, representing the lasing
state, with nonzero p(0)

eh (k), E (0)
�λ , and ω�, appear. Explicit

expressions of these solutions can be found as Eqs. (9)–(14)
in the supplement to Ref. [49], where the stationary frequency
is denoted in that paper by ω0 and in this paper by ω�. In
practice, we obtain the laser solutions numerically by solving
Eqs. (5)–(7) (with AT ν = 0) in time, using a small fluctuation
to trigger the normal-to-lasing phase transition, and evolving
the solution to a steady state.

The laser solution spontaneously breaks a U(1) sym-
metry. The overall phase of the set of complex variables
[p(0)

eh (k), E (0)
�λ ] is not determined by the equations, and there

are infinitely many solutions which are assigned different
values of this overall phase but are otherwise equivalent. For-
mally, one can generalize the concept of a gap function (k)
to the polariton lasing or polariton BCS-like state (where BCS
stands for Bardeen-Cooper-Schrieffer), which alternatively
can be referred to as the effective Rabi frequency �eff (k),

(k) ≡ �eff (k) = �λ
eh(k)E (0)

�λ + 1

A
∑

k′
V c

k−k′ p(0)
eh (k′). (9)

The original T = 0 K BCS state for superconductors, which
follows from a HF theory for Cooper pairs in an interact-
ing Fermi gas is given, for example, on pp. 326–336 of
Ref. [54]. An analogous theory for polaritons was formulated
in Refs. [15,37].

The quasiphenomenological approach for the BCS-like
gap in the polariton laser, as previously formulated in
Refs. [40,49,50], is further corroborated in this paper. The
expressions used there are formally the same as in the standard
BCS theory. We reproduce them here for convenience in the
notation of Ref. [49]:

ξ̃ (k) = h̄2k2

2me
+ �HF

e (k) − 1

2
(h̄ω� − Eg), (10)

where the single-particle Hartree-Fock self-energy is

�HF
e (k) = − 1

A
∑

k′
V c

k−k′ f (0)
e (k′), (11)

and the excitation energies are

Ẽ (k) =
√

ξ̃ 2(k) + |(k)|2. (12)

It is useful to formulate the theory in terms of pair energies
rather than single-particle (electron or hole) energies. This has
been done in Ref. [34], where the HF theory was formulated
in terms of pair energies which are twice the single-particle
energies, ξ pair (k) = 2ξ (k), and similarly the pair excitation
energy is Ẽpair (k) = 2Ẽ (k). We then obtain the pair BCS-like
gap from minimizing Ẽ (k)

Ẽpair
gap = 2 min

k
Ẽ (k). (13)

As will be shown in Sec. IV, the linear THz response can
be formulated as an eigenvalue problem. We then show in
Fig. 3(a) that this quasiphenomenological BCS-like approach
indeed yields the same pair excitation dispersion relation,
Ẽpair (k), as we obtain from the much more rigorous linear-
response spectrum given by the eigenvalues Reεk . Conversely,
the identification of the Reεk UU and LL continua with
Ẽpair (k) enables the interpretation of the finite-frequency lin-
ear excitations as BCS-like excited pairs. The UU and LL
notation and a schematic plot of the renormalized bands are
given in Fig. 1.

B. Linear terahertz response

After a desired steady-state laser solution is prepared as
described in the previous section, we switch on a small
continuous-wave external THz field AT (ω) and calculate
the linear response of the laser to this probe. Specifically,
we write the interband polarization, the charge density,
and the cavity photon field in the presence of AT as
peh(k, t ) = p(0)

eh (k) + p(1)
eh (k, t ), fe(k) = f (0)

e (k) + f (1)
e (k, t ),

and E�λ(t ) = E (0)
�λ + E (1)

�λ (t ), where the perturbative quantities
of p(1)

eh (k, t ), f (1)
e (k, t ), and E (1)

�λ (t ) are taken to be on the order
of AT . Inserting this form of peh(k, t ), fe(k, t ), and E�λ(t ) in
Eqs. (5)–(7) and linearizing around the steady-state solution,
we obtain the first-order equations for p(1)

eh (k, t ), f (1)
e (k, t ),

and E (1)
�λ (t ) in the time domain as

ih̄
∂

∂t
p(1)

eh (k) =
(

h̄2k2

2mr
+ Eg + 2�HF

e (k) − h̄ω� − iγ

)
p(1)

eh (k) − 2

A p(0)
eh (k)

∑
k′

V c
k−k′ f (1)

e (k′)

− [
1 − 2 f (0)

e (k)
][∑

λ

�λ
eh(k)E (1)

�λ + 1

A
∑

k′
V c

k−k′ p(1)
eh (k′)

]
+ 2 f (1)

e (k)

[∑
λ

�λ
eh(k)E (0)

�λ + 1

A
∑

k′
V c

k−k′ p(0)
eh (k′)

]

+
∑

ν

gν (k)AT ν p(0)
eh (k), (14)
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−ih̄
∂

∂t
p(1)∗

eh (k) =
(

h̄2k2

2mr
+ Eg + 2�HF

e (k) − h̄ω� + iγ

)
p(1)∗

eh (k) − 2

A p(0)∗
eh (k)

∑
k′

V c
k−k′ f (1)

e (k′)

− [
1 − 2 f (0)

e (k)
][∑

λ

�λ∗
eh (k)E (1)∗

�λ + 1

A
∑

k′
V c

k−k′ p(1)∗
eh (k′)

]

+ 2 f (1)
e (k)

[∑
λ

�λ∗
eh (k)E (0)∗

�λ + 1

A
∑

k′
V c

k−k′ p(0)∗
eh (k′)

]
+

∑
ν

gν (k)A∗
T ν p(0)∗

eh (k), (15)

ih̄
∂

∂t
f (1)
e (k) =

[∑
λ

�λ∗
eh (k)E (0)∗

�λ + 1

A
∑

k′
V c

k−k′ p(0)∗
eh (k′)

]
p(1)

eh (k) +
[∑

λ

�λ∗
eh (k)E (1)∗

�λ + 1

A
∑

k′
V c

k−k′ p(1)∗
eh (k′)

]
p(0)

eh (k)

−
[∑

λ

�λ
eh(k)E (0)

�λ + 1

A
∑

k′
V c

k−k′ p(0)
eh (k′)

]
p(1)∗

eh (k, t )−
[∑

λ

�λ
eh(k)E (1)

�λ + 1

A
∑

k′
V c

k−k′ p(1)
eh (k′)

]
p(0)∗

eh (k)−iγ f f (1)
e (k),

(16)

ih̄
∂

∂t
E (1)

�λ = (h̄ωcav − h̄ω� − iγcav)E (1)
�λ − NQW

A
∑
keh

�λ∗
eh (k)p(1)

eh (k, t ), (17)

−ih̄
∂

∂t
E (1)∗

�λ = (h̄ωcav − h̄ω� + iγcav)E (1)∗
�λ − NQW

A
∑
keh

�λ
eh(k)p(1)∗

eh (k). (18)

C. Orbital angular momentum selection rules
for terahertz fluctuations

In this section, we expand the linear-response equa-
tions (14)–(18) in an orbital angular momentum basis in
k space. Since the Hamiltonian and the steady state are
isotropic in the plane, one expects the linear “susceptibility”
connecting the fluctuations to the probe to be diagonal in
angular-momentum space. For a q = 0 plane-wave interband
(typically optical-frequency) probe, the angular momentum
of the absorbed photon accounts for the “spin” change in
the unit-cell orbital, and the coupling to the charges’ motion
within the band is circularly symmetric (so-called first-class
dipole allowed transitions with s-like electron-hole enve-
lope function, or in other words, zero angular momentum

associated with the relative electron-hole motion). For the
q = 0 plane-wave intraband THz probe considered here, the
coupling

∑
ν gν (k)AT ν = ∑

ν
e

mr c h̄k · εT νAT ν transfers (one
unit of) angular momentum between the THz photon and
the electron’s intraband motion. In short, the interband and
intraband probes excite respectively (denoting the in-plane
intraband orbital angular momentum by m) the m = 0 and
m = ±1 sectors of the fluctuation modes of the laser.

We expand the fluctuation fields in angular harmonics:


 (1)(k) = 
 (1)(k, θk ) =
∑
m∈Z


 (1)(k, m)eimθk , (19)


 (1)(k, m) = 1

2π

∫ 2π

0
dθk


(1)(k, θk )e−imθk , (20)

where 
 (1) stands for p(1)
eh , f (1)

e , and E (1)
�λ . (Since E (1)

�λ does not depend on k, all components with m �= 0 equal zero.) Expanding
Eqs. (14)–(18) in the angular harmonics, we obtain the equations for each m component of the fluctuation of the interband
polarization,

ih̄
∂

∂t
p(1)

eh (k, m, t ) =
(

h̄2k2

2mr
+ Eg − 2

∫ ∞

0

k′dk′

2π
V 0

k,k′ f (0)
e

(
k′) − h̄ω� − iγ

)
p(1)

eh (k, m, t ) − 2p(0)
eh (k)

∫ ∞

0

k′dk′

2π
V m

k,k′ f (1)
e (k′, m, t )

− [
1 − 2 f (0)

e (k)
][∑

λ

�λ
eh(k)E (1)

�λ δ0,m +
∫ ∞

0

k′dk′

2π
V m

k,k′ p(1)
eh (k′, m, t )

]

+ 2 f (1)
e (k, m, t )

[∑
λ

�λ
eh(k)E (0)

�λ +
∫ ∞

0

k′dk′

2π
V 0

k,k′ p(0)
eh

(
k′)]

+ gBkp(0)
eh (k)[AT x(t )(δ1,m + δ−1,m) − iATy(t )(δ1,m − δ−1,m)], (21)
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the complex conjugate of the interband polarization,

−ih̄
∂

∂t
p(1)∗

eh (k,−m, t ) =
(

h̄2k2

2mr
+ Eg − 2

∫ ∞

0

k′dk′

2π
V 0

k,k′ f (0)
e

(
k′) − h̄ω� + iγ

)
p(1)∗

eh (k,−m, t )

− 2p(0)∗
eh (k)

∫ ∞

0

k′dk′

2π
V m

k,k′ f (1)
e (k′, m, t )

− [
1 − 2 f (0)

e (k)
][∑

λ

�λ∗
eh (k)E (1)∗

�λ δm,0 +
∫ ∞

0

k′dk′

2π
V m

k,k′ p(1)∗
eh

(
k′,−m, t

)]

+ 2 f (1)
e (k, m, t )

[∑
λ

�λ∗
eh (k)E (0)∗

�λ +
∫ ∞

0

k′dk′

2π
V 0

k,k′ p(0)∗
eh (k′)

]
+ gBkp(0)∗

eh (k)[A∗
T x(t )(δ1,m + δ−1,m) − iA∗

Ty(t )(δ1,m − δ−1,m)], (22)

the distribution function,

ih̄
∂

∂t
f (1)
e (k, m, t ) =

[∑
λ

�λ∗
eh (k)E (0)∗

�λ +
∫ ∞

0

k′dk′

2π
V 0

k,k′ p(0)∗
eh

(
k′)]p(1)

eh (k, m, t )

+
[∑

λ

�λ∗
eh (k)E (1)∗

�λ δm,0 +
∫ ∞

0

k′dk′

2π
V m

k,k′ p(1)∗
eh

(
k′,−m, t

)]
p(0)

eh (k)

−
[∑

λ

�λ
eh(k)E (0)

�λ +
∫ ∞

0

k′dk′

2π
V 0

k,k′ p(0)
eh

(
k′)]p(1)∗

eh (k,−m, t )

−
[∑

λ

�λ
eh(k)E (1)

�λ δm,0 +
∫ ∞

0

k′dk′

2π
V m

k,k′ p(1)
eh (k′, m, t )

]
p(0)∗

eh (k) − iγ f f (1)
e (k, m, t ), (23)

the cavity field,

ih̄
∂

∂t
E (1)

�λ
(t ) = (h̄ωcav − h̄ω� − iγcav)E (1)

�λ
(t ) − NQW

∑
eh

∫ ∞

0

kdk

2π
�λ∗

eh (k)p(1)
eh (k, m = 0, t ), (24)

and the complex conjugate of the cavity field,

−ih̄
∂

∂t
E (1)∗

�λ
(t ) = (h̄ωcav − h̄ω� + iγcav)E (1)∗

�λ
(t ) − NQW

∑
eh

∫ ∞

0

kdk

2π
�λ

eh(k)p(1)∗
eh (k, m = 0, t ). (25)

In Eqs. (21) and (22), we define the THz coupling constant
gB ≡ eh̄

2mr c = m0
mr

μB, μB being the Bohr magneton. We have
chosen a linear polarization basis along the x and y axes
for the THz field, writing the components as AT x and ATy.
The angular-momentum component of the screened Coulomb
potential V m

k,k′ is given by

V m
k,k′ = e2

εb

∫ 2π

0
dθ

e−imθ√
k2 + k′2 − 2kk′ cos θ + κ0

,

V c
|k−k′| =

∑
m∈Z

V m
k,k′eim(θk−θ ′

k ), (26)

where k = (k, θk ). The symmetry relations V −m
k,k′ = V m

k,k′ and
V m

k,k′ = V m
k′,k are satisfied. For an alternative formulation of

Eq. (26) and its evaluation in terms of elliptic integrals, see
Appendix B.

Eqs. (21)–(25) show explicitly that the equations for dif-
ferent angular momenta are decoupled. Since the THz source
terms contain only the harmonics m = ±1, only p(1)

eh (k, m =
±1, t ) and f (1)

e (k, m = ±1, t ) are excited in the response.
As shown below, the THz conductivity σT (ω) also contains

only f (1)
e (k, m = ±1, t ). So the equations for m = ±1 form

a closed set sufficient for the THz linear-response problem.
Since there is no THz source term for the m = 0 harmonics,
Eqs. (21)–(25) for m = 0 are homogeneous, and we take as
the solution f (1)

e (k, m = 0, t ) = 0, p(1)
eh (k, m = 0, t ) = 0, and

E (1)
�λ = 0. This is consistent with the selection rule that the

cavity photon fluctuation E (1)
�λ belongs to the m = 0 sector and

so does not appear in the THz (m = ±1) response.

D. Linear terahertz conductivity

The reflectivity and/or transmissivity spectra of the THz
probe are typically measured to study the linear response of
the system. These spectra can be expressed in terms of the
conductivity tensor that connects the THz electric field to the
induced current. In this section, we relate the conductivity to
the density response formulated above.

The THz field propagates normally to the QW, i.e., ET (r, t )
is a plane wave with wave vector q ‖ ẑ and linear polarization
in the x̂ or ŷ directions, εν = x̂ or =ŷ. It induces a two-
dimensional current J(1) in the quantum well. Each (linearly
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polarized) component of the current, J (1)
ν = J(1) · εν , consists

of a paramagnetic part J p(1)
ν and a diamagnetic part Jd (1)

ν ,
which are described in more detail in Ref. [50]. In the fre-
quency domain, the THz field and the induced current in our
2D isotropic setting are related by the conductivity σT ν (ω):

J (1)
ν (ω) = σT ν (ω)ET ν (ω), (27)

where ET ν (ω) is the transmitted field amplitude. Like
the current density, the conductivity can be written as a
sum, σT ν (ω) = σ

p
T ν (ω) + σ d

T ν (ω), of a paramagnetic term
σ

p
T ν (ω) = J p(1)

ν (ω)/ET ν (ω) and a diamagnetic term σ d
T ν (ω) =

Jd (1)
ν (ω)/ET ν (ω). The outgoing (reflected and transmitted)

THz waves are given in terms of the conductivity. We quote
the result here, the derivation being given in Appendix A of
Ref. [50]. The transmission T (ω) and reflection R(ω) coeffi-
cients [|T (ω)|2 being the transmissivity and |R(ω)|2 being the
reflectivity] and the absorptivity A(ω) are given by

T (ω) ≡ E (t )
T ν (ω)

E (i)
T ν (ω)

= 1

1 + β(ω)
, (28)

R(ω) ≡ E (r)
T ν (ω)

E (i)
T ν (ω)

= − β(ω)

1 + β(ω)
, (29)

A(ω) = 1 − |T (ω)|2 − |R(ω)|2

= 2Reβ(ω)

|1 + βR(ω)|2 , (30)

where

β(ω) = 2π

c
√

εb
σT ν (ω).

The THz field amplitudes are denoted E (i)
T ν (ω) for the incident,

E (r)
T ν (ω) for the reflected, and E (t )

T ν (ω) for the transmitted am-
plitudes.

The paramagnetic and diamagnetic conductivities are cal-
culated from Eqs. (25) and (26) of Ref. [50] as

σ
p

T ν (ω) = − 2Sd gBc

ET ν (ω)A
∑

k

(k · εν ) f (1)
e (k, ω), (31)

σ d
T ν (ω) = ie2Sd

ωmrA
∑

k

f (0)
e (k). (32)

Sd is the spin degeneracy factor of the conduction electrons
and valence holes. In terms of the angular-momentum com-
ponents of f (1)

e , σ
p

T ν (ω) is written for ν = y or =x as

σ
p

T ν (ω) = − Sd gBc

ET ν (ω)

∫ ∞

0

k2dk

π
f (1)
e (k, m = 1, ω)ei π

2 δν,y .

Taking into account the different source terms for ν = x and
ν = y, the symmetry σ

p
T x = σ

p
Ty is obtained. The conductivity

does not depend on the phase of ET and has the symmetry
σT ν (ω) = σ ∗

T ν (−ω), which leads to A(ω) = A(−ω) and like-
wise for |R|2 and |T |2.

The Drude model of conductivity is commonly used in
phenomenological analysis of data. In this model, the entire
conductivity is represented as

σ Drude
T ν (ω) = ie2n

(ω + iγD)mr
, n = Sd

A
∑

k

f (0)(k). (33)

where γD accounts for all loss and relaxation processes. The
diamagnetic conductivity in Eq. (32) agrees with σ Drude

T ν (ω)
except for the absence of γD. We think that if a loss rate is
phenomenologically inserted into the diamagnetic conductiv-
ity, its interpretation should be different from that of the Drude
γD. Since in our formulation, many or all dissipative and
relaxation processes are already included in the paramagnetic
conductivity, only the remaining omitted processes should be
represented in a loss rate in the diamagnetic conductivity. In
this paper, we assume all losses are accounted for in σ

p
T ν (ω).

Equations (21)–(23) and (31) enable an interpretation of
the coherent frequency mixing which leads to the paramag-
netic THz response. The rotating wave approximation is not
made for the THz frequencies, so both positive and negative
frequency components ±ωT contribute to the response. In
the THz source term in Eq. (21) [Eq. (22)], the positive and
negative THz frequency components ωT and −ωT both add
coherently to the optical-frequency polarization p(0)

eh (p(0)∗
eh )

with lasing frequency ω� (−ω�), to give the THz-induced po-
larization p(1)

eh (p(1)∗
eh ) with frequency ±ωT + ω� (±ωT − ω�).

Then, in Eq. (23), p(1)
eh (p(1)∗

eh ) coherently mixes frequencies
with p(0)∗

eh and E (0)∗
�λ which have frequency −ω� (p(0)

eh and E (0)
�λ

which have frequency ω�) to give the f (1) frequency com-
ponents ±ωT + ω� − ω� = ±ωT (±ωT − ω� + ω� = ±ωT ).
Finally, Eq. (31) shows that f (1)

e (ωT ) gives the measurable
response via the conductivity σ

p
T ν (ωT ) at the same frequency.

Thus, taking the lasing state as a given, THz transitions occur
as a coherent frequency mixing process between the THz
probe frequency ωT and the lasing frequency ω�. The tran-
sition process for the linear THz interaction is ±ωT + ω� −
ω� = ±ωT , for the positive or negative frequency component
±ωT of the THz probe.

As the THz interaction process includes interband energies,
the positive (negative) frequency response can be identified
with upper hole Uh to or from upper electron Ue transitions
(lower hole Lh to or from lower electron Le transitions), al-
though the observable THz response, i.e., the conductivity,
only occurs at intraband energies. Thus the resonant transi-
tions are shown as interband in Fig. 1. In sum, the positive
(negative) frequency probe is resonant with the UU (LL) tran-
sitions. The decay continuum of eigenvalues results from UL
and LU transitions. To linear order, the intraband probe excites
THz-frequency density fluctuations f (1) and optical frequency
polarization fluctuations p(1), where the difference of the po-
larization fluctuation frequency from the lasing frequency ω�

is also in the THz. The THz probe stimulates absorption or
emission at the same THz frequency but does not change the
optical light field.

IV. MODE DECOMPOSITION
OF THE RESPONSE FUNCTION

Equations (21)–(25) are a system of linear differen-
tial equations which is diagonal in m, but not in k. For
each m, these equations are numerically solved on a dis-
cretized grid in k space. Since we consider only the
m = ±1 channels in this paper, E (1)

�λ = 0 as shown above,
and Eqs. (24) and (25) can be omitted. The discretized
Eqs. (21)–(23) can be written in the following matrix
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form:

ih̄
∂

∂t
�x = M�x + �s(t ), (34)

where �x denotes the column vector

�x(m, t ) =

⎛⎜⎜⎝
�p (1)

eh (m, t )

�p (1)∗
eh (−m, t )

�f (1)
e (m, t )

⎞⎟⎟⎠. (35)

Here �p (1)
eh (m, t ) and �f (1)

e (m, t ) stand for column vectors whose
elements are the values of the functions at the k grid points:
p (1)

eh (ki, m, t ) and f (1)
e (ki, m, t ), i = 1, . . . , Nk , where Nk is the

number of k points. (We use an arrow over a variable to denote
a column vector of variable values over the set of discretized
k points.) We write the source vector in the structural form

�s(t ) =

⎛⎜⎝ �sp(t )
−�s ∗

p (t )

�s f (t )

⎞⎟⎠. (36)

�s(t ) contains the AT (t ) terms in Eqs. (21) and (22). The
dimension of the vectors �x(t ) and �s(t ) is 3Nk ≡ N . The ma-
trix M is a complex-valued N × N non-Hermitian matrix
that is a linear function of the steady-state solution p(0)

eh (k),
f (0)
e (k), and E (0)

�λ . M depends only on the absolute value of the
angular harmonic m, M = M(|m|). The vector �s(t ) is propor-
tional to AT ν (t ). Some symmetries of M and �s are given in
Appendix A.

Response function constructed from eigenvectors

We formulate the response function associated with
Eq. (34) as the inverse operator of ih̄ ∂

∂t − M. Assume �s(t ) is
a pulse in time and �x = 0 initially. Fourier transforming to
frequency space gives

h̄ω�x(ω) = M�x(ω) + �s(ω) ⇒ �x(ω) = [h̄ω − M]−1�s(ω)

≡ F (ω)�s(ω), (37)

where F (ω) is the linear-response matrix. Denote the eigen-
values and eigenvectors of M by λn and �yn, respectively:

M�yn = λn�yn, n = 1, 2, . . . , N. (38)

Since M is not Hermitian, the set of eigenvectors may fail to
span the N-dimensional space of �x(t ), making M nondiago-
nalizable, for some values of the parameters. But this failure of
diagonalizability typically occurs only at a zero-measure set
of points in parameter space [56]. Called exceptional points
(EPs), these points are where two or more eigenvalues and
eigenvectors become the same [56–59] (see also [20]). In our
computations, we do not set the parameters at exactly an EP
but infer the presence and location of an EP by the behav-
ior of the eigenvalues and eigenvectors nearby. We therefore
proceed with our formulation assuming the parameters are
outside of the EP set. Construct the matrix U from the eigen-
vectors as column vectors arranged side by side:

U = (�y1�y2 · · · �yN ) (39)

Since the eigenvectors are linearly independent, U is invert-
ible, and M is diagonalized as

M = UDU −1, D =

⎛⎜⎜⎝
λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λN

⎞⎟⎟⎠. (40)

The linear-response matrix can be written as

F (ω) = [h̄ω − M]−1 = U [h̄ω − D]−1U −1. (41)

In component form, it is

Fi j (ω) =
N∑

n=1

Uin(U −1)n j

h̄ω − λn
. (42)

(If the eigenvalue λn of a mode is real valued, the denominator
should be h̄ω − λn + iη, η ↓ 0.)

Returning to the time domain, Eq. (34) is similarly ex-
panded in the eigenvectors as

ih̄
∂�x
∂t

= UDU −1�x + �s(t ). (43)

Multiplying from the left by U −1 gives

ih̄
∂ �b
∂t

= D�b + �T (t ), �b = U −1�x, �T = U −1�s. (44)

Component-wise, Eq. (44) is

ih̄
∂bn

∂t
= λnbn + Tn(t ), n = 1, . . . , N. (45)

If at the initial time t0, x(t0) = 0, and the source pulse comes
afterwards, then the solution to Eq. (45) is

bn(t ) = − i

h̄

∫ ∞

t0

dt ′ θ (t − t ′)e−iλn (t−t ′ )/h̄Tn(t ′), (46)

or, in matrix form,

�b(t ) = − i

h̄

∫ ∞

t0

dt ′ θ (t − t ′)C(t − t ′) �T (t ′),

C(t − t ′) =

⎛⎜⎜⎜⎝
e− i

h̄ λ1(t−t ′ ) 0 · · · 0
0 e− i

h̄ λ2(t−t ′ ) · · · 0
...

...
. . .

...

0 0 · · · e− i
h̄ λN (t−t ′ )

⎞⎟⎟⎟⎠.

This gives the solution as

�x(t ) =
∫ ∞

t0

dt ′ F (t − t ′)�s(t ′), (47)

where

F (t − t ′) = − i

h̄
θ (t − t ′)UC(t − t ′)U −1,

Fi j (t − t ′) = − i

h̄
θ (t − t ′)

N∑
n=1

Uine− i
h̄ λn(t−t ′ )(U −1)n j . (48)

One can verify that the Fourier transform of the time-domain
response function F (t − t ′) is the frequency-domain response
function defined in Eqs. (41) and (42).
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The response function expressed in terms
of the left and right eigenvectors

U −1 can be expressed in terms of the left eigenvectors of
M. The left eigenvectors �zn, n = 1, . . . , N are defined as

�z †
n M = λ̃n�z †

n or MT �z ∗
n = λ̃n�z ∗

n , (49)

with a set of left eigenvalues λ̃n. Some simple properties of
the left eigenmodes are as follows: The sets of left eigen-
values and right eigenvalues are the same because a matrix
and its transpose have equal determinants: det(λ − MT ) =
det(λ − M ). A left eigenvector and a right eigenvector be-
longing to two different eigenvalues are orthogonal to each
other. Orthogonality is defined in the usual way as in quantum
mechanics: two vectors �a and �b are orthogonal if

�a †�b =
∑

i

a∗
i bi = 0.

The orthogonality proof is similar to that in quantum mechan-
ics. If M�yn = λn�yn and �z †

k M = λk�z †
k , then �z †

k M�yn = λk�z †
k �yn =

λn�z †
k �yn. If λk �= λn, then �z †

k �yn = 0. Eigenvectors belonging
to a degenerate eigenvalue can be orthogonalized within the
degenerate subspace.

Returning to the representation of U −1, we normalize the
eigenvectors by requiring

�z †
n �yn = 1

for each n. Then U −1 is given by

U −1 =

⎛⎜⎜⎜⎜⎜⎝
�z †

1

�z †
2
...

�z †
N

⎞⎟⎟⎟⎟⎟⎠. (50)

The orthonormalization �z †
k �yn = δkn enforces U −1U =

UU −1 = I . The linear-response function can be written
as

F (ω) =
N∑

n=1

�yn�z †
n

h̄ω − λn
, Fi j (ω) =

N∑
n=1

yn,iz∗
n, j

h̄ω − λn
. (51)

The corresponding solution �x(ω) is

�x(ω) =
N∑

n=1

cn(ω)�yn, cn(ω) = �z †
n �s(ω)

h̄ω − λn
. (52)

The corresponding expressions in the time domain are

F (t − t ′) = − i

h̄
θ (t − t ′)

N∑
n=1

�yne−iλn (t−t ′ )/h̄�z †
n , (53)

Fi j (t − t ′) = − i

h̄
θ (t − t ′)

N∑
n=1

yn,ie
−iλn (t−t ′ )/h̄z∗

n, j , (54)

and the solution is

�x(t ) =
N∑

n=1

cn(t )�yn,

cn(t ) = − i

h̄

∫ ∞

t0

θ (t − t ′)e−iλn (t−t ′ )/h̄�z †
n �s(t ′). (55)

V. PHASE AND AMPLITUDE REPRESENTATION
OF THE RESPONSE FUNCTION

The response function F (t ) [or F (ω)] is expressed in
Sec. IV as a function of the eigenvectors of the interband
polarization fluctuation �p (1)

eh (m, t ), its complex conjugate, and
the density fluctuation. Since phase and amplitude modes
of the coherent steady state are of physical interest, (a.k.a.
Goldstone and Higgs modes, respectively) the interpretation
of our numerical results will be helped by switching to a rep-
resentation in terms of the phase and amplitude of �p (1)

eh (m, t ).
This is formulated in this section.

1. Time domain

Write the polarization in amplitude-phase form and write
the amplitude and phase as sums of unperturbed and response
terms:

peh(k, t ) = R(k, t ) eiφ(k,t )

= [R(0)(k, t ) + R(1)(k, t )]ei[φ(0) (k,t )+φ(1) (k,t )]. (56)

Linearize in the first-order response terms:

peh(k, t ) = [R(0)(k, t ) + R(1)(k, t ) + iR(0)(k, t )φ(1)(k, t )]

× eiφ(0) (k,t ) + · · · . (57)

Expand R(1) and φ(1) in angular momentum:

peh(k, t ) =
[

R(0)(k, t ) +
∑

m

[
R(1)

m (k, t )

+ iR(0)(k, t )φ(1)
m (k, t )

]
eimθk

]
eiφ(0) (k,t ). (58)

Comparing Eq. (58) with

peh(k, t ) = p(0)
eh (k, t ) +

∑
m

p(1)
eh (k, m, t )eimθk (59)

gives (R(0) and φ(0) being isotropic)

p(1)
eh (k, m, t ) = eiφ(0) (k,t )[R(1)

m (k, t ) + iR(0)(k, t )φ(1)
m (k, t )

]
.

(60)

Note that because R(1)(k, t ) and φ(1)(k, t ) are real,

R(1)
−m(k, t ) = R(1)∗

m (k, t ), φ
(1)
−m(k, t ) = φ(1)∗

m (k, t ). (61)

2. Frequency domain

The unperturbed laser is assumed to be in a steady state
(e−iω�t has been taken out) so that R(0) and φ(0) are time-
independent. Fourier transform the response quantities with
respect to time. The relations Eq. (61) between m and −m
components in the time domain translate to the following
relations in the frequency domain:

R(1)
−m(k, ω) = R(1)∗

m (k,−ω),

φ
(1)
−m(k, ω) = φ(1)∗

m (k,−ω). (62)

The Fourier transform of Eq. (60) is

p(1)
eh (k, m, ω) = eiφ(0) (k)[R(1)

m (k, ω) + iR(0)(k)φ(1)
m (k, ω)

]
.

(63)
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From Eqs. (62) and (63), we have

p(1)∗
eh (k, − m, − ω)

= e−iφ(0) (k)[R(1)
m (k, ω) − iR(0)(k)φ(1)

m (k, ω)
]
. (64)

Solving for R(1)
m (k, ω) and φ(1)

m (k, ω) from Eqs. (63) and (64)
gives

R(1)
m (k, ω) = 1

2

[
p̃(1)

eh (k, m, ω) + p̃(1)∗
eh (k,−m,−ω)

]
, (65)

φ(1)
m (k, ω) = 1

2iR(0)(k)

[
p̃(1)

eh (k, m, ω) − p̃(1)∗
eh (k,−m,−ω)

]
,

(66)

where

p̃(1)
eh (k, m, ω) = e−iφ(0) (k) p(1)

eh (k, m, ω).

The amplitude response R(1)
m (k, ω) and the phase response

φ(1)
m (k, ω) can be computed from p(1)

eh (k, m, ω) through
Eqs. (65) and (66).

3. Response function

The vectors �x(m, t ) and �s(m, t ) are given in block from in
Eqs. (35) and (36). Their frequency domain counterparts are

�x(m, ω) =

⎛⎜⎜⎝
�p (1)

eh (m, ω)

�p (1)∗
eh (−m,−ω)

�f (1)
e (m, ω)

⎞⎟⎟⎠, (67)

�s(m, ω) =

⎛⎜⎝ �sp(m, ω)
−�s ∗

p (−m,−ω)

�s f (m, ω)

⎞⎟⎠. (68)

Write the left and right eigenvectors as

�yn =
⎛⎝ �Xn

�Yn

�Zn

⎞⎠, �zn =
⎛⎝ �X ′

n�Y ′
n�Z ′
n

⎞⎠, (69)

respectively. With these definitions, Eq. (52) becomes⎛⎜⎜⎝
�p (1)

eh (m, ω)

�p (1)∗
eh (−m,−ω)

�f (1)
e (m, ω)

⎞⎟⎟⎠ =
N∑

n=1

1

h̄ω − λn

⎛⎜⎝ �Xn

�Yn

�Zn

⎞⎟⎠[ �X ′†
n �sp(m, ω)

− �Y ′†
n �s ∗

p (−m,−ω) + �Z ′†
n �s f (m, ω)].

(70)

The interband polarization is written in phase-amplitude form
in Eqs. (65) and (66). We perform the same transformation on
the source vector

�sR(m, ω) = 1

2
(�̃sp(m, ω) + �̃s ∗

p (−m,−ω)),

s̃p(k, m, ω) = e−iφ(0) (k)sp(k, m, ω), (71)

�sφ (m, ω) = 1

2i
(�̃sp(m, ω) − �̃s ∗

p (−m,−ω)), (72)

⇒ �̃sp(m, ω) = �sR(m, ω) + i�sφ (m, ω),

�̃s ∗
p (−m,−ω) = �sR(m, ω) − i�sφ (m, ω). (73)

For the case where E (1)
�λ �= 0, such as with an optical (inter-

band) probe, E (1)
�λ can be written in R and φ components in the

same way as �p (1)
eh . With Eqs. (71)–(73), the coefficient in front

of �yn in Eq. (70) can be written as

cn(ω) = (h̄ω − λn)−1[ �X ′†
n �sp(m, ω)

− �Y ′†
n �s ∗

p (−m,−ω) + �Z ′†
n �s f (m, ω)]

= (h̄ω − λn)−1[( �̃X ′†
n − �̃Y ′†

n )�sR(m, ω)

+ i( �̃X ′†
n + �̃Y ′†

n )�sφ (m, ω) + �Z ′†
n �s f (m, ω)], (74)

where we have defined

X̃ ′
nk = X ′

nke−i �φ(0) (k), Ỹ ′
nk = Y ′

nkei �φ(0) (k). (75)

Taking the sum and difference of the first two equations in
Eq. (70) gives⎛⎜⎝ �R(1)

m (ω)

�α (1)
m (ω)

�f (1)
e (m, ω)

⎞⎟⎠ =
N∑

n=1

cn(ω)

⎛⎜⎜⎝
1
2 ( �̃Xn + �̃Yn)
1
2i ( �̃Xn − �̃Yn)

�Zn

⎞⎟⎟⎠, (76)

where we have defined

α (1)
m (k, ω) = R(0)(k)φ(1)

m (k, ω),

X̃nk = Xnke−iφ(0) (k),

Ỹnk = Ynkeiφ(0) (k).

Equation (76) can also be written in a response function form:⎛⎜⎝ �R(1)
m (ω)

i�α (1)
m (ω)

�f (1)
e (m, ω)

⎞⎟⎠ =

⎛⎜⎜⎝
FRR FRφ FR f

FφR Fφφ Fφ f

Ff R Ff φ Ff f

⎞⎟⎟⎠
⎛⎜⎜⎝

�sR(m, ω)

i�sφ (m, ω)

�s f (m, ω)

⎞⎟⎟⎠, (77)

where the block submatrices are given by

Fi j (ω) =
N∑

n=1

�ani �b†
n j

h̄ω − λn
, i, j = R, φ, f , (78)

⎛⎝�anR

�anφ

�an f

⎞⎠ =

⎛⎜⎜⎜⎝
1
2 ( �̃Xn + �̃Yn)

1
2 ( �̃Xn − �̃Yn)

�Zn

⎞⎟⎟⎟⎠, (79)

⎛⎜⎝�bnR

�bnφ

�bn f

⎞⎟⎠ =

⎛⎜⎜⎝
�̃X ′

n − �̃Y ′
n

�̃X ′
n + �̃Y ′

n

�Z ′
n

⎞⎟⎟⎠. (80)

The classification of a single mode is determined by the
corresponding summand in Eq. (78). We call a mode n
a pure ⎛⎝amplitude

phase
density

⎞⎠
mode if its ⎛⎝�anR

�anφ

�an f

⎞⎠
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FIG. 2. The linear-response eigenvalues εn (written as λn in Eq. (38) and Sec. IV) in the case of (a) an intraband THz probe and (b) an
interband optical probe. The discrete modes differ between (a) and (b), while the spectral continua (UU, LL, and decay) are nearly identical.
The eigenvalues are symmetric under Reε → −Reε. The T modes are the only discrete modes predicted with an intraband probe, while an
interband probe may see G, M, and H modes. (The default parameter values for all figures are given in Sec. VI.)

component is predominant. If none of the �ani components can
be said to clearly dominate, then it is a mixed mode. Collective
modes have eigenvectors distributed over a relatively wide
range of k values, and eigenvalues which are discrete, rather
than part of a continua. To be a Higgs mode, a mode must
be a collective amplitude mode, with �aR � �aφ, �a f ; and to be
a Goldstone mode, a mode must be a collective phase mode,
with �aφ � �aR, �a f . In the figures (see Figs. 8 and 9 below), the
symbols R, α, and f , for a given mode, with or without the
superscript (1), refer to �aR, �aφ , and �a f for a right eigenvector,
and �bR, �bφ , and �b f for a left eigenvector, respectively.

VI. RESULTS AND DISCUSSION

In the following, we present numerical results. Unless
otherwise noted, we use the following parameter values: num-
ber of quantum wells NQW = 1, effective Bohr radius aB =
14 nm, background dielectric constant εb = 16.1, unrenor-
malized band gap EG = 1.562 eV; E2D

B = 12.8 meV, where
the exciton binding energy in 2D is related to the one in
3D via E2D

B = 4E3D
B and E3D

B = h̄2/(2mra2
B) determines the

reduced e-h mass, m−1
r = m−1

e + m−1
h (me = mh in our ap-

proximation); therefore, the effective electron mass is me =
0.121m0, where m0 is the free-electron mass; cavity resonance
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FIG. 3. The real and imaginary parts of the UU continuum eigenvalues εk as a function of the wave number k of the corresponding
eigenvector’s magnitude peak, εk ≡ λn s.t. k = maxk′ | �Xn(k′)|, taken over all n in the UU continuum. [Here, λn and �Xn are defined in Eqs. (38)
and (69), respectively] εk for the THz response matrix is nearly identical. (a) The real part is Reεk = 2Ẽk , twice the excitation or branch energy.
The minimum branch energy, i.e., the BCS gap Ẽ pair

gap , occurs at kBCS . kBCS divides the UU continuum into high- and low-k regions, which are
also indicated in Figs. 2 and 1. (b) Imεk is bounded above by the dephasing −γ and below by ≈ − 1

2 (γ + γ f ), with this minimum at ≈k�. A
second kink occurs near kBCS . In the case where γ f is taken to be γ , Imεk = −γ uniformly.
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FIG. 4. Plot of the eigenvalues, Imε vs Reε, for the THz M(m =
1) matrix, showing the evolution of the modes T0 (above) and T1

(below) for color-coded pump densities np from 0.6/a2
B through

2/a2
B in increments of 0.1/a2

B. The T0 and T1 mode energies are
roughly symmetric with respect to the dashed line at − 1

2 (γ + γ f ).
The collective (discrete) T modes are shown as triangles, connected
by thick lines; and the UU continua are shown as thin solid lines.

frequency h̄ωcav = 1.550 eV, screening wave number κ0 =
9 × 10−3a−1

B , dephasing γ = 0.2 meV, Fermi relaxation rate
γF = 2γ , pump relaxation rate γp = 0.4 meV, nonradiative
decay rate γnr = 10−4 meV, total distribution relaxation rate

γ f = γF + γp + γnr = 0.8001 meV, cavity decay rate γcav =
0.1 meV, effective electron temperature T = 50 K, and inter-
band coupling constant �λ

eh = 64.04 peV m. The default pump
density is np = 1a−2

B . In Figs. 10–13 below, the dephasing is
γ = 0.5 meV, so γF = 1 meV and γ f = 1.4001 meV.

A. Fluctuation spectrum

In Fig. 2 we show the complex eigenvalues, comparing the
new case of intraband fluctuations (fluctuations triggered by
THz fields) with the known spectrum [49] for the case of
interband fluctuations (i.e., fluctuations modes triggered by
interband fields). The interband modes contain the Goldstone
modes G0, Goldstone companion modes G1, discrete collec-
tive modes (M, H), a decay continuum (vertical continuum in
the figure, at the lasing frequency), and positive and negative
frequency spectral continua (almost horizontal in the figure)
with the “hook” feature. See Ref. [49] for more details on the
collective modes in Fig. 2(b) and on the evolution of these
optically induced fluctuation modes from below to above the
lasing threshold. The intraband modes do not contain the
Goldstone modes (because of their different angular momen-
tum), but they do contain collective modes Ti and continua
similar to the interband modes.

The UU and LL continua can be traced back to the
single-particle spectrum (electronic band structure) by noting
that their eigenfunctions are sharply peaked at a given wave
number k, which is then associated with the corresponding
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FIG. 5. Plots of the magnitude of the �p (1)
eh component of some right eigenvectors, i.e., �X in the notation of Sec. V, and denoted δP(k)

here. The eigenvectors are unitless, and each has its own arbitrary scaling factor. Only the T modes are taken from the THz response matrix;
the rest are taken from the optical probe response matrix. (See the supplement to Ref. [49] for details of the optical probe response. The
interband-probe M matrix differs only in having a different constant factor on V 0

k,k′ , in having only m = 0 components, and therefore in having

a nonzero E (1)
�λ .) (a) Collective, discrete-eigenvalue modes. All have minima near the laser k� and the Fermi kF wave numbers. Here, k� is

defined by ξ̃ (k�) = 0, where ξ̃ (k) is defined in Eq. (10); and kF is defined by f (0)
e (kF ) = 1

2 and p(0)
eh (kF ) = 0. Note that k� �= kBCS , where the

BCS gap wave number kBCS is defined as 2Ẽ (kBCS ) = Ẽ pair
gap [see Eqs. (12) and (13)]. (b) An evenly spaced sampling of UU continuum modes,

over a portion of the energy range at which the Ẽ (k) band is doubly degenerate with respect to k. Close to kBCS , the eigenfunctions have
two peaks. These peaks occur at pairs of k values, k1 and k2, for which Ẽ (k1) = Ẽ (k2). For eigenenergies greater than the band where Ẽ (k)
is k-degenerate, the eigenfunction magnitudes are simple k peaks. The LL modes are identical, except for the interchanges δP ↔ δP∗ and
δE ↔ δE∗, where (δP, δE ) and (δP∗, δE∗) correspond to �X and �Y in Eq. (69), respectively. Their δ f components [ �Z in Eq. (69)] are identical.
|δP| and |δE | are greater than |δP∗| and |δE∗| in the UU continuum, while per the interchange symmetry, this is reversed for LL. The THz
response matrix M eigenfunctions are very similar, except they lack the δE and δE∗ components.
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FIG. 6. First-order density (carrier distribution function) re-
sponse | f (1)

e (k, m = 1, ω)|. The curved (yellow) peak location line
corresponds to vertical transitions within, say, the conduction bands
shown in Fig. 1, and the horizontal peak line corresponds to the T
modes. The f (1) = 0 line at 1.35 (2.4) a−1

B is at k� (kF ), defined in the
caption to Fig. 5.

eigenvalue ε. This gives the real part of the eigenenergies vs
k as Reεk = 2Ẽk . The resulting plot, Fig. 3, shows the wave
vector dependence of the energies of the continuum states.
Figure 3(a) shows the real part of the energies vs k, in analogy
to the peak positions of the continuum states in the first-order
density response function shown in Fig. 6. The corresponding
imaginary part is shown in Fig. 3(b). It is then possible to iden-
tify the “low k” hook feature with the single-particle states
created by the light-induced bands at k < kBCS , where kBCS

is the location of the light-induced gap in the single-particle
spectrum, Fig. 1.

Figure 4, similar in format to Fig. 2(a), shows the eigen-
value and T mode evolution with increasing np. For high
enough np, the T0 modes can become unstable (Imε > 0).

Figure 5 shows the eigenvectors for selected modes, with
Fig. 5(a) showing collective modes and Fig. 5(b) continuum
states.

An important consequence of Fig. 2 is the fact that both
interband and intraband spectra show a BCS-like gap. In
both cases, the gap is not only that between the frequency
of the order parameter and excited continuum states (at the
hook-like feature), but also involves collective modes M and
T in the vicinity of the continuum gap. These modes stem
from the strong Coulomb interaction and are not present in a
photon laser, where Coulomb interactions are negligible [50].
In particular, Fig. 2(a) predicts the possibility to experimen-
tally observe the BCS-like gap using THz radiation (for more
details, see Fig. 10).

To further analyze the occurrence of collective modes due
to the many-particle Coulomb interaction, it is helpful to look
at the first-order (in the probe) modification of the carrier
distribution, f (1), as a function of wave vector and frequency,
Fig. 6. In addition to the light-induced band from the single-
particle spectrum, we see a horizontal line at about 8.5 meV
that is due to the excitation of the collective T modes as shown
in Fig. 2. Figure 7 provides a larger-scale view of Fig. 6.
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FIG. 7. Color map of | f (1)
e (k, m = 1, ω)|. Maxima occur at

±2Ẽk , corresponding to the structure in the eigenvalues Reεk ; at
ω = 0 for all k, as is expected from the 1/ω factor present in the
THz source vector �s; and at h̄ω ≈ 2Ẽk�

, from k = 0 to the second
intersection with 2Ẽk , corresponding to the T0 and T1 resonance.
There are two minima, at k = k� and at k = kF for all ω, which
correspond to the minima in |p(0)

eh (k)|.

B. Mode characterization

Conventional discussions of fluctuation modes focus on
whether the modes are phase or amplitude modes [42].
However, in our general theory the fluctuations also in-
volve density fluctuation. To analyze the fluctuation modes
in terms of phase, amplitude, and density fluctuations, we
write each interband variable [i.e., each p(k, m) and E ] as
a complex number z = Reiφ , with R(0)eiφ(0)

the zeroth-order
steady-state solution. The phase φ is varied at first order in
the perturbation, leading to a first-order arc-length variation
α(1) = R(0)φ(1). The first-order (in the external probe) am-
plitude modulation is denoted by R(1). To avoid ambiguities
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FIG. 8. Ratios of the arc length α and density f to the amplitude
components R of selected collective modes (Goldstone, M, and T
according to Fig. 2) for right (R) and left (L) eigenvectors with
averaging over k as described in text.

125309-14



COLLECTIVE TERAHERTZ FLUCTUATION MODES IN A … PHYSICAL REVIEW B 107, 125309 (2023)

−3

−2

−1

0

1

2

3

4

0 0.5 1 1.5 2 2.5 3 3.5 4
−3

−2

−1

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3 3.5 4

−3

−2

−1

0

1

2

3

4

0 0.5 1 1.5 2 2.5 3 3.5 4
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3 3.5 4

L
ef

t
lo

g
1
0

∣ ∣
α

(1
)
/
R

(1
)
∣ ∣

G0
G1
H

Decay
M

UU
T0
T1

R
ig

h
t

lo
g
1
0

∣ ∣
α

(1
)
/
R

(1
)
∣ ∣

G0
G1
H

Decay
M

UU
T0
T1

L
ef

t
lo

g
1
0

∣ ∣
f
(1

)
/
R

(1
)
∣ ∣

k (a−1
B )

G0
G1
H

Decay
M

UU
T0
T1

R
ig

h
t

lo
g
1
0

∣ ∣
f
(1

)
/
R

(1
)
∣ ∣

k (a−1
B )

G0
G1
H

Decay
M

UU
T0
T1

FIG. 9. The base-ten logarithm of the arc length-to-amplitude |α(1)/R(1)| and density-to-amplitude | f (1)/R(1)| ratios as a function of wave
number k for the left and right eigenvectors of selected modes. In the plots of |α(1)/R(1)| for the optical-probe eigenvectors, dashed lines
denote the δE component, and solid lines denote the δP component. The THz-probe modes have no associated δE component, and so only
the δP component of the |α(1)/R(1)| ratio is plotted for T0 and T1. The δE eigenvector components have no defined k dependence, and so their
|α(1)/R(1)| ratios are plotted as constant in k. The figure shows the δE ratios are the asymptotic limit for high k of the δP ratios. The UU and
decay modes are merely example modes taken from their respective continua. All modes except T0 and T1 are taken from the optical probe
response matrix. Many ratios exhibit extrema near k� = 1.35a−1

B . The main outlier in the set is that the |α(1)/R(1)| ratios of the right eigenvectors
show the undamped Goldstone mode G0 to clearly be a phase mode.

stemming from the separate normalization of each left (L)
and right (R) eigenvector, we show the ratios α(1)/R(1) and
f (1)/R(1) for both L and R.

In our many-particle approach, the right eigenvector of a
Goldstone mode has nonzero phase fluctuations [in p(k) and
E ] but zero amplitude and density fluctuations for each k. The
right eigenvector of a Higgs mode has zero phase fluctuations
for each k. Both left and right eigenvectors are needed to
construct the response function. The fluctuation matrix being
non-Hermitian, the left and right eigenvectors for the same
eigenvalue can be quite different. It is hence possible that the
response function may mix the three subsets of amplitude,
phase, and density. For example, an external amplitude fluc-
tuation can create a phase mode if the left eigenvector has
an amplitude component and the right eigenvector a phase
component. See Sec. V for more details.

Figure 8 summarizes our results as means. Rather than
showing the k-resolved results, we show averages over k.
In the horizontal axis, L or R denotes the ratio for the

left or right eigenvectors, respectively. R, α, and f are the
amplitude, arc-length, and density components of the eigen-
vectors, respectively, and 〈α/R〉 and 〈 f /R〉 denote whether
the ratio to R(1) is of the arc length or the density, re-
spectively. In the vertical axis label, the expression 〈x/R〉
denotes

〈x/R〉 ≡
{

1
Nk

∑Nk
i=1 |x(1)(ki )/R(1)(ki )|, for P(1)

|x(1)/R(1)|, for E (1).
(81)

Figure 9 provides the underlying k-resolved data.
Figure 8 gives the justification to call G0 a Goldstone

(phase) mode as the numerical result yields the phase com-
ponent (presented as arc length) of both the interband
polarization and the cavity field four orders of magnitude
larger than the amplitude and density fluctuations. On the
other hand, the collective modes M in the interband response
and T in the THz response are mixed modes since all ratios
(arc length/amplitude, density/amplitude) are approximately
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B . The dashed lines denote the BCS
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gap for the respective pump densities. Note that T is the
ratio of transmitted to incident amplitudes, while |T |2 is the ratio of
intensities. A is the fraction of incident intensity which is absorbed.
A < 0 denotes gain. At higher pump densities, two minima may be
seen in Reσ and A, in the vicinity of the BCS gap. The first valley
corresponds to the frequency of the T0 and T1 modes. As the pump
density drops below that required for the emergence of the T modes,
the second minimum spreads out to become a single broad minimum.

of order 1; they are neither Higgs nor Goldstone modes. We
do not observe pure Higgs modes.

C. Spectroscopic observables

Finally, we use the eigenvectors and eigenvalues to obtain
the intraband conductivity, the real part of which is propor-
tional to the THz absorption. Figure 10 shows extrema in
the conductivity that approximately scale with the BCS-like
gap, hence predicting a THz-based observation of the gap. At
low pump densities, we have one broad extremum stemming
mostly from the continuum states, which, in combination,
lead to a broad THz gain band. At high pump densities (here
1.4a−2

B ), a narrow line becomes visible. This stems from the
two T modes in Fig. 2. They too yield a region of THz gain,
but this gain peak becomes a narrow resonance since the imag-
inary part of their eigenvalues 1

2 (ImεT0 + ImεT1 ) approaches
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FIG. 13. Comparison of the frequencies h̄ω (meV) of the BCS-
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gap and of the minima ωB and ωT of the THz-domain
conductivity ReσT (ω), for varying pump density np. The light red
line denotes the magnitude of the BCS-like gap, Ẽ pair

gap . The dark
blue line shows the frequency h̄ωB for which the real part of the
conductivity Reσ (ω) is a minimum; that is, h̄ωB is defined such
that Reσ (ωB) = min Reσ (ω). For pump densities at which the T
modes can be discerned, the h̄ωB minimum is the broader, deeper,
higher-frequency conductivity minimum. The purple line tracks the
frequency ωT of the first, smaller minimum in Reσ , corresponding
to the T modes. This is assigned ωT = 0 when the peak-finding
algorithm cannot find this minimum, i.e., for pump densities below
the emergence of the T modes. The plot shows that the BCS-like gap
Ẽ pair

gap is closely tracked by the gain maximum, over a wide range of
pump densities, and in particular by the frequency h̄ωT of the T mode
Reσ minimum.

the dephasing [specifically, − 1
2 (γ + γ f ); see Fig. 4], which

can in principle be made very small. As the pump density is
increased or the interband dephasing rate is decreased (beyond
what is plotted here), the T modes yield a dispersive-like fea-
ture in ReσT and a Lorentzian feature in ImσT , with increasing
height-to-width ratios.

Figure 11 provides corresponding data of the imaginary
part. Figure 12 provides data analogous to Fig. 10, but for
a larger selection of pump densities and also showing, in
addition to the real part of the THz conductivity, plots of the
transmission and absorption. Figure 10 shows that the extrema
in the THz conductivity track the polaritonic BCS gap (shown
as vertical dashed lines in that figure). This tracking behavior
is made more apparent and summarized in Fig. 13.

VII. CONCLUSION

In summary, we have shown that, in a polariton laser op-
erating in the polaritonic BCS regime, fluctuations or external
probes far detuned from the laser frequency ω�, i.e., the fre-
quency of the order parameter, can induce fluctuation modes
that are different from those induced by fluctuations or probes
close to ω�. In addition to the importance of their existence,
finding the characteristic properties of these modes can help
with future experimental identification. The fluctuation modes
in this new set have an orbital angular-momentum different
from that of the order parameter; they contain spectral con-

tinua as well as collective modes, but do not contain the
Goldstone modes. The collective modes are shown not to
be pure amplitude (Higgs) modes. All modes can contribute
to THz gain, including collective modes Ti with frequencies
close to the BCS-like gap. The THz gain resonance from
these T modes can, at least in principle, be made arbitrar-
ily narrow, as their width-to-height ratio decreases with the
interband dephasing rate and with increasing pump density.
In this limit, the T0 modes may also become unstable; this
warrants further investigation. The THz gain mechanism pre-
sented here is novel, but experimental verification is needed
and its efficiency should be compared with that of existing
THz emitters. Future comparison of the modes found here
with Bardasis-Schrieffer polaritons defined in thermal equi-
librium systems [60,61] is desirable, as it would enhance the
understanding of fluctuations in lasers, being examples of
condensed open-pumped-dissipative systems. Furthermore, as
discussed in Ref. [40], the experimental observation of the
new modes can help solidify evidence for the polaritonic BCS
states.
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APPENDIX A: SYMMETRY PROPERTIES
OF EIGENVALUES, EIGENVECTORS,

AND SOURCE VECTORS

The matrix M in the linear response Eq. (34) has the fol-
lowing structure:

M =
⎛⎝ A B C̃

−B∗ −A∗ −C̃∗

D̃ −D̃∗ G

⎞⎠, (A1)

where A, B, C̃, D̃, and G are Nk × Nk submatrices. A, −A∗,
and G are submatrices in the �p (1)

eh , �p (1)∗
eh , and �f (1)

e blocks,
respectively. B couples �p (1)∗

eh (t ) to �p (1)
eh (t ), C̃ couples �f (1)

e (t )
to �p (1)

eh (t ), D̃ couples �p (1)
eh (t ) to �f (1)

e (t ), etc. For the case where
E (1)

�λ �= 0, such as with an optical (interband) probe, E (1)
�λ can

be treated as the (Nk + 1)th component of the �p (1)
eh vector, and

these theorems still apply, with certain dimensions changed
from Nk to Nk + 1. The block matrix structure leads to some
symmetries among the eigenvalues and eigenvectors, includ-
ing the following:

Claim 1. Suppose λ is an eigenvalue and

�ζ ≡
⎛⎝ �X

�Y
�Z

⎞⎠
is the corresponding right (left) eigenvector. If the submatrix
G is purely imaginary (which, in this paper, it is), then −λ∗ is
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also an eigenvalue with right (left) eigenvector

�ζ ′ ≡
⎛⎝ �Y ∗

�X ∗
�Z∗

⎞⎠.

Proof. The equations for eigenvalue λ and its right eigen-
vector are

A �X + B �Y + C̃ �Z = λ �X , (A2)

−B∗ �X − A∗ �Y − C̃∗ �Z = λ �Y , (A3)

D̃ �X − D̃∗ �Y + G �Z = λ �Z. (A4)

Take the complex conjugate of each equation and multiply
through by −1. Then switch the order of the first two equa-
tions to get

A �Y ∗ + B �X ∗ + C̃ �Z∗ = −λ∗ �Y ∗, (A5)

−B∗ �Y ∗ − A∗ �X ∗ − C̃∗ �Z∗ = −λ∗ �X ∗, (A6)

D̃ �Y ∗ − D̃∗ �X ∗ − G∗ �Z∗ = −λ∗ �Z∗. (A7)

If G is purely imaginary, −G∗ = G, and comparing
Eqs. (A5)–(A7) with Eqs. (A2)–(A4) shows −λ∗ is an eigen-
value with right eigenvector �ζ ′. If Reλ = 0, then −λ∗ = λ,
and we have �X = �Y ∗ and �Z∗ = �Z .

The transpose MT has the same block structure symmetry
relevant to the proof as M. So the claim is also valid for the
left eigenvector. Explicitly, if �ζ is the left eigenvector, the
transpose eigenvalue equation is

�ζ †M = λ�ζ † ⇔ �X †A − �Y †B∗ + �Z†D̃ = λ �X †, (A8)
�X †B − �Y †A∗ − �Z†D̃∗ = λ �Y †, (A9)

�X †C̃ − �Y †C̃∗ + �Z†G = λ �Z†. (A10)

Repeating the arguments above for the right eigenvector
shows that �ζ ′ is the corresponding left eigenvector for the
eigenvalue −λ∗. �

Of course, an eigenvector is defined only up to an overall
constant. So the eigenvectors of λ and −λ∗ obtained, e.g.,
from computation, may not automatically satisfy the above
relation between �ζ and �ζ ′. Multiplication by an appropriate
overall constant would make the relation valid. The same
caveat applies to the relation between the eigenvector ele-
ments when Reλ = 0.

Claim 2. Consider the block representation Eq. (68) of the
frequency-domain source vector �s(m, ω), and let �z j (|m|) and
�z ′

j (|m|) be the (left) eigenvectors corresponding to a certain
pair of eigenvalues (λ j,−λ∗

j ) and have the block forms as laid
out above in Claim 1. If �s f (m, ω) = −�s ∗

f (−m,−ω), which, in
this paper, follows trivially from �s f = 0, then

−(
�zT

j (|m|)�s(−m,−ω)
)∗ = �z ′T

j (|m|)�s(m,w). (A11)

Proof. Writing

�z j (|m|) =
⎛⎝ �X

�Y
�Z

⎞⎠, �z ′
j (|m|) =

⎛⎝ �Y ∗
�X ∗
�Z∗

⎞⎠,

and �s(m, ω) as above, we have

�z T
j (|m|)�s(m,w)

= �X T �sp(m,w) − �Y T �s ∗
p (−m,−w) + �ZT �s f (m,w),

(A12)

−[
�z T

j (|m|)�s(−m,−ω)
]∗

= − �X †�s ∗
p (−m,−ω) + �Y †�sp(m, ω) − �Z†�s ∗

f (−m,−ω),

(A13)

�z ′T
j (|m|)�s(m, ω)

= �Y †�sp(m, ω) − �X †�s ∗
p (−m,−ω) + �Z†�s f (m, ω).

(A14)

If �s f (m, ω) = −�s ∗
f (−m,−ω), then Eqs. (A13) and (A14) are

equal. �
Claim 2 enables simplification of the coefficients cn(ω) in

Eq. (52).

APPENDIX B: THE ANGULAR-MOMENTUM COULOMB
MATRIX ELEMENTS

There are multiple ways to derive and write Eq. (26) for
the Coulomb matrix elements in the angular-momentum ba-
sis, which is used in Eqs. (21)–(25). The method used in
Eq. (26) is to expand V c

|k−k′| as a Fourier series in the relative
reciprocal space angle θk − θ ′

k . As stated below Eq. (26), the
Coulomb matrix elements notably do not couple different
angular-momentum components. The Coulomb interaction is
independent of the absolute angle in real or reciprocal space,
so by Noether’s theorem, it conserves angular momentum.
Alternatively, that the Coulomb interaction between different
angular harmonics is zero can be shown by explicit evaluation
of the integral.

In substituting Eq. (20) into Eqs. (14)–(16), and then
simplifying, one obtains the multivariable integral for the
Coulomb matrix elements:

V m,m′
k,k′ = 2πe2

εb

∫ 2π

0

∫ 2π

0

dφ dφ′

(2π )2

× ei(mφ+m′φ′ )√
k2 + k′2 − 2kk′ cos (φ − φ′) + κ0

. (B1)

This can be simplified. Using the change of variables (θ, ψ ) =
( 1

2φ − 1
2φ′, 1

2φ + 1
2φ′), this is

V m,m′
k,k′ = e2

πεb

∫ π

−π

dθ
ei(m−m′ )θ√

k2 + k′2 − 2kk′ cos 2θ + κ0

×
∫ 2π−|θ |

|θ |
dψ ei(m+m′ )ψ. (B2)
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For m �= −m′, the ψ integral is evaluated to give

V m,m′
k,k′ = −2e2

πεb(m + m′)

∫ π

0
dθ

sin 2mθ + sin 2m′θ√
k2 + k′2 − 2kk′ cos 2θ + κ0

The integrals over the two domains [0, π
2 ] and [π

2 , π ] cancel

each other, so that V m,m′
k,k′ = 0 for m �= −m′.

For m = −m′, V m,m′
k,k′ is nonzero, and so the matrix elements

can be written as diagonal in m: V m,m′
k,k′ = V m

k,k′δm,−m′ . Evaluat-
ing the ψ integral gives the elements

V m
k,k′ = 2e2

εb

∫ π

0
dθ

cos mθ√
k2 + k′2 − 2kk′ cos θ + κ0

. (B3)

For κ0 = 0, k �= k′, and k(k′) �= 0, Eq. (26) may be repre-
sented in terms of elliptic integrals for the cases m = 04 and

4[62] Eq. (2.571.5), p. 179.

m = 15 as

V m=0
k,k′ = c√

a + b
K (r), (B4)

V m=1
k,k′ = c

b
√

a + b
{(b − a)�(r2, r) + aK (r)}, (B5)

where K (r) is the complete elliptic integral of the first kind,6

� is the complete elliptic integral of the third kind,7 a ≡ k2 +
k′2, b ≡ 2kk′, c ≡ 4e2

εb
, and r ≡ √

2b/(a + b). Equation (26)
can be simply evaluated for k′ = 0, and if κ0 �= 0, for k = k′:

V m
k,k′=0 =

{
2πe2

εb(k+κ0 ) , if m = 0,

0, if m �= 0,
(B6)

V m
k=k′ =

{
2πe2

εbκ0
, if m = 0,

0, if m �= 0.
(B7)

5[62] Eq. (2.571.7), p. 180.
6[62] Eq. (8.112.1), p. 860.
7[62] Eq. (8.111.4), p. 860, with ϕ = π
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