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We explain how Rashba spin-orbit coupling (SOC) in a two-dimensional electron gas (2DEG), or in a
conventional s-wave superconductor, can lead to a large magnetoresistance even with one ferromagnet. However,
such enhanced magnetoresistance is not generic and can be nonmonotonic and change its sign with Rashba SOC.
For an in-plane rotation of magnetization, it is typically negligibly small for a 2DEG and depends on the perfect
transmission which emerges from a spin-parity-time symmetry of the scattering states, while this symmetry is
generally absent from the Hamiltonian of the system. The key difference from considering the normal-state
magnetoresistance is the presence of the spin-dependent Andreev reflection at superconducting interfaces. In
the fabricated junctions of quasi-2D van der Waals ferromagnets with conventional s-wave superconductors
(Feg29TaS, /NbN) we find another example of enhanced magnetoresistance where the presence of Rashba SOC
reduces the effective interfacial strength and is responsible for an equal-spin Andreev reflection. The observed
nonmonotonic trend in the out-of-plane magnetoresistance with the interfacial barrier is an evidence for the

proximity-induced equal-spin-triplet superconductivity.

DOLI: 10.1103/PhysRevB.107.125306

I. INTRODUCTION

The magnetoresistance (MR) is a key figure of merit in
spintronics and its enhancement is associated with the ma-
jor advances in magnetically sensing and storing information
[1-5]. Typically, a large MR is sought in structures with
multiple ferromagnetic regions, where the resulting spin-valve
effect implies that the resistance of the systems depends on the
relative magnetization M orientation of those ferromagnets.

However, as first discovered in 1857 by Lord Kelvin [6],
anisotropic MR (AMR) shows that with spin-orbit coupling
(SOC) there is a change of the electrical resistivity with the
relative direction of the charge current with respect to M of
a single bulk ferromagnet (F), such as Ni or Fe. Another
example of MR with a single F region is the tunneling AMR
(TAMR) [7-10], also a manifestation of the interplay between
SOC and M. Unfortunately, while a single F region simplifies
scaled-down devices both AMR and TAMR are limited by
their small magnitudes (typically <1 % for in-plane M rota-
tion) [10,11].

In this work we explore a possibility for a much larger MR
with a single F region and Bychkov-Rashba, also known as
Rashba SOC [12], in both normal and superconducting states.
The resulting enhanced MR is not only significant for the
potential spintronic applications, but could also distinguish
between the trivial and topological states [11], or provide
a signature of equal-spin-triplet superconductivity, sought to
realize coexistence of ferromagnetism and superconductivity,
dissipationless spin currents, and Majorana bound states for
fault-tolerant topological quantum computing [13-22].

To realize an enhanced normal-state MR, we consider
a lateral geometry from Fig. 1(a). The resulting TAMR is
not determined by highly spin-polarized carriers or a large
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exchange energy in the F region, but by the high interfacial
transmission from the interplay of the Rashba SOC, the barrier
strength at the F/2DEG interface, and the proximity-induced
exchange field, which can reach tens of meV and extend over
tens of nm [23-27].

For a simple spinless case of a square barrier with thickness
d and height V}, a standard expression for transmission 7" with
energy E > Vp is [28,29]

T = (1 + Vg sin®(kd)/[4E(E — Vo)])", (D
z )
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FIG. 1. (a) Lateral geometry, the current flows in the 2DEG.
(b) Action of the time reversal 7 and the space-inversion operator
‘P on the incident wave. By applying the PT operator, the incident
wave on the left is transformed into a transmitted wave on the right.
For a spinless barrier system, the P77 symmetry gives the perfect
transmission. (c) Action of the Po,T operator and the Po, T sym-
metry generalizes the condition from (b) for an incident wave with
an in-plane spin and a barrier with the in-plane magnetization M,
defined by the polar angle ¢.
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where k = /2m(E — Vy)/h is the wave vector. The per-
fect transmission 7' = 1 requires (i) Vp = 0 or (ii) kd = nm,
where n=1,2,3,..., gives the resonance condition. This
well-known behavior [28,29] is usually not connected to the
parity-time symmetry P7, depicted in Fig. 1(b), which satis-
fies both cases (i) and (ii). Such a symmetry, where P is the
parity operator, 7 = IC is the time-reversal operator, and X
is the complex-conjugation operator, which ensures that the
incoming and transmitted spinless waves are identical, up to a

phase.
However, generalization of the perfect transmission for
spin-% carriers, where 7 = —io, K, and o, is the Pauli ma-

trix, is much less explored with SOC and magnetic barriers.
It was recently found that the perfect transmission emerges
when the eigenstates of the F/2DEG Hamiltonian, Hgpgg,
satisfy Po, T, the spin-parity-time symmetry, where [Po, T,
Hgppegl # 0 [11]. Intuitively, the emerging perfect transmis-
sion for the eigenstates of Hgpgg Which satisfy Po, T can be
understood from Fig. 1(c). 7 reverses the spin and motion of
the incident wave, while Po, inverts both the spin (through o)
and position (through P) of the wave. By applying the Po,T
operator the incident wave on the left is transformed to itself,
but as a transmitted wave on the right. Therefore, scattering
states which are eigenfunctions of Po,7 experience perfect
transmission. The resulting in-plane TAMR amplitude
G(p=0)—Glp=m/2)

G(p =m/2)
where the ¢-dependent conductance G is the inverse of the
resistance, G = 1/R, with ¢ defined in Fig. 1(c), can be en-
hanced by one or two orders of magnitude.

To study an enhanced out-of-plane MR in the supercon-
ducting state, we focus on the recent transport experiments
in junctions of quasi-2D van der Waals (vdW) F with con-
ventional s-wave superconductors (S) (Feg 29TaS,; /NbN) [30].
Compared to the normal-state MR, the key difference is the
presence of Andreev reflection at the F/S interface with
Rashba SOC. In this process an incoming electron is reflected
as a hole and the Cooper pair enters the S region. With SOC,
in addition to the conventional Andreev reflection, where
the incoming and reflected particles have an opposite spin,
a spin-flip or equal-spin Andreev reflection is also possible
in which the incoming and reflected particles have the same
spin [31,32]. While the first process is responsible for the
spin-singlet proximity-induced superconductivity, the second
yields the spin-triplet counterpart.

The corresponding anisotropic  behavior, magne-
toanisotropic Andreev reflection (MAAR) can be viewed
as the generalization of TAMR [32-34], which is recovered
in the normal state of the F/S junction for a large bias V,
applied magnetic field B, or a high temperature. From a full
MAAR calculation for the F/S junction, such a TAMR value
can be obtained by taking the superconducting gap to vanish.
Similar to Eq. (2), the out-of-plane MAAR amplitude in F/S
junctions is

TAMR = , @)

GO =0)—GO =m/2)
MAAR, = ) (3)
GO =m/2)
where 6 is the angle defined in Fig. 2. As we later show,
F/S measurements for the MAAR can be orders of magnitude
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FIG. 2. Schematic of the geometry including a quasi-2D vdW
F/S junction Fey,9TaS, /NbN, with an Al,O3 insulating barrier. MR
measurements are performed for an out-of-plane M rotation, defined
by angle 6 with respect to the applied magnetic field B. The interfa-
cial resistance is obtained as V/I.

larger than TAMR in the normal state. This enhancement is
dominated by the spin-flip Andreev reflection with Rashba
SOC at the F/S interface.

Despite the different geometries for the considered
F/2DEG and F/S structures, which also differ by the in-plane
vs out-of-plane rotation of M, we find important common
features and surprising nonmonotonic trends in TAMR in
both systems. Some of these identified trends arise from the
role of Rashba SOC which modifies the effective barrier
strength and determines the condition for perfect transmis-
sion or an enhanced contribution of the spin-flip Andreev
reflection.

Following this Introduction, we explore the structures from
Fig. 1(a). In Sec. II we describe the F/2DEG Hamiltonian,
consider the influence of SOC on the scattering states, and
analyze the conductance which reveals different resonant-
like behavior, peaked at different parameters. The calculation
of in-plane TAMR in Sec. III reveals different trends as a
function of the barrier and SOC strengths as well as the
proximity-induced exchange splitting. In Sec. IV we examine
the superconducting structures from Fig. 2 and describe the
corresponding F/S Hamiltonian, followed by the measured
and calculated conductance using a simple F/S Hamiltonian.
In Sec. V we describe how the predicted influence of the
Rashba SOC on the effective barrier strength provides a good
description of the measured out-of-plane MR and confirms
the evidence for the equal-spin-triplet superconductivity in the
considered heterostructures. In Sec. VI we provide additional
discussion for the relevance of enhanced MR in the normal
and superconducting states and note some open questions for
future work.

II. F/2DEG HAMILTONIAN AND CONDUCTANCE
ANALYSIS

To explore the interplay of the proximity-modified two-
dimensional electron gas (2DEG) and SOC, together with the
magnetic anisotropy of the transport properties, we consider
a model Hamiltonian of the system represented in Fig. 1(a)
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FIG. 3. (a) Schematic of the spin-dependent barrier. Its effective
strength is modified by the proximity-induced exchange field A,.,
shown in a weak SOC limit. (b) 2DEG band structure with the Fermi
energy Er and the effective barrier region (middle) of height V,
and A,.. (c) Corresponding Fermi contours, arrows denote the spin
orientation. Dashed lines: the range of a conserved wave vector k, in
the scattering states. For incident angles exceeding ¢, backscattering
is suppressed.

given by

P«
>+ =@ xPp) 2+ [Vo — Ax(m - 0)]h(x),
2m*  h

4)
where m* is the effective mass, « is the Rashba SOC strength,
2 is the unit vector along the z axis, p = (px, py) is the 2D
momentum operator, o is the vector of Pauli matrices, V; de-
scribes the potential barrier, Ay, and m are the magnitude and
direction of the proximity-induced ferromagnetic exchange
field. The function A(x) = ©(d/2 + x)®(d /2 — x) describes
a square barrier of thickness d. We focus on electrons, not
holes [35-38], with the effective barrier region and typical
band structure shown in Fig. 3. In Fig. 3(a) the resulting spin-
dependent barrier is shown in a weak SOC limit akpr < A,
where kr = +/2m*Ep /h is the Fermi wave vector averaged
over the inner and outer contours in the leads, while Er is
the Fermi energy. The blue (yellow) contours in Fig. 3(c)
denote lower (upper) bands. Inside the barrier the upper band
is irrelevant since its bottom is above Er. The spin orientations
are marked by arrows.

Due to Rashba SOC, the wave functions can be classified
by the helicity index, where A = 1 (—1) refers to the inner
(outer) Fermi contour as depicted in Fig. 3(c). The scattering
states for the finite square barrier model can be written as
Vi (x, ¥) = (1/3/2A)e™ ¢, (x), with sample area A and the
conserved parallel component of the wave vector k, in the
ballistic transport. Right from the barrier, ¢, (x) is a combi-
nation of the two plane waves with transmission coefficients
t,, and 1,5, where A = —A, to describe intraband and interband
scattering processes.

By matching ¢, (x) and d¢,(x)/dx in the regions x <
—d/2, —d/2 <x < —d/2, and x > d /2, we obtain t,, t,;,

Hrpprc =

and the particle current density of the A channel
Jr= Re[v/A(tul* cos gr + I cosg)]. ()

Here, the group velocity of the scattered particle, v =
V(a/R)? +2E /m*, has the same magnitude for the two
bands. This current contains contributions from the intrachan-
nel and interchannel transmissions, where ¢; is the incident
and ¢; the propagation angle of the cross-channel wave with
the conservation of the k, component and ¢; is related to ¢,

by cos g5 = v/ k% - k)%sinzgo,\/k;, where
2m*E  hom*

am*\?
e () S o

In the low-bias limit, i.e., |eV| < Er, we get the expression
for the conductance G; in the A channel [39]

D (2 )
(;)L = zg _% d(p,\kFTA COS @y, (7)

where D is the sample width, k}. the A-channel Fermi wave
vector [E = Ef in Eq. (6)], and the transmission is

T, = Rel|ta2|* + |1,/ (cos 91/ cos ¢2)]. ®)

The total conductance is the sum of the two channels,

G= Z G;. ©)

A==%1

To explore the evolution of the conductance as a function of
the proximity-induced field and its direction, we consider its
normalized value in Eq. (9) expressed in terms of the Sharvin
conductance for the 2DEG system:

oD e’ 2D am*\*  2m* Er
Go_hn\/<h2)+ o (19)

As shown in Fig. 1(c), the Po,7 symmetry leads to
perfect transmission and influences the conductance for the
2DEG system. Specifically, scattering states which satisfy
Po, Tv(x,y) = EY(x,y), with eigenvalues of the form & =
¢, include the perfect transmission either due to effec-
tively vanishing barrier or the resonances expected from the
standing-wave condition. However, Po,7 symmetry is not an
intrinsic symmetry of the system and Po, 7 does not commute
with Hgpopgg in Eq. (4). Instead, the Po, T symmetry emerges
only for certain specific system parameters and scattering
states satisfying

[HrppEG, Po, T 1vr(x,y) =0, (11

where the index R emphasizes that the relation is restricted
only to the cases of the perfect transmission (for vanishing of
the effective barrier or at resonances). This symmetry gener-
alizes a simple case of the perfect transmission in a potential
barrier (or a spinless) system [28].

To understand the relation between conductance, barrier
parameters, and the perfect transmission, we perform a Fermi
contour analysis illustrated in Fig. 4. In the spinless case, with
the better matching between Fermi contours in the lead and
barrier a higher transmission is expected. For a simple 1D
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FIG. 4. Normalized conductance G as a function of A,
for Er =5 meV, Vo = 10 meV, « = 0.093 eV A, and d = 26 nm.
Fermi contours at different A,., m || x: Blue and red circles are in
the lead and the dashed contours in the barrier (only one band exists
at the given E). Each of the three peaks in G satisfies the Po, T
symmetry for the perfect transmission.

geometry (normal incidence or a fixed k,) and § barrier, the
transmission is [40]

T =1/(1+2%), (12)

where Z is the effective barrier strength which combines the
influence of a native barrier and the Fermi wave vectors mis-
match in the two regions [31,33,41,42]. Since the difference
between the lead and barrier Fermi contours is associated
with the effective barrier potential, a larger mismatch between
Fermi contours corresponds to a larger effective Z and thus to
a lower transmission.

We now generalize this situation to a spin-dependent case
in the presence of Ay, and «, as depicted in Figs. 3(b) and
3(c). The effective barrier at the F/2DEG interface becomes
spin dependent since the energy bands in the barrier are split
by the exchange field and spinless Z becomes ZS [33]. For the
situation from Fig. 3, we can decompose the incident spinor in
the basis constructed by the corresponding barrier eigenspinor
(kx,y is the same as in the incident state) for the lower band
x+ and its antiparallel partner from the upper band x, i.e.,
|Xin) = (X1IXin) | X12) + (X1 Xin) | X ). The first term undergoes
a weak effective barrier Z¢ff while the second term experiences
a strong barrrier Z¢.

The effective interfacial barrier is inequivalent for two
helicities (for outer and inner Fermi contours) leading to an
important influence of spin mismatch on transmission, not just
the mismatch of the Fermi contours [33]. Considering that
the direction of the proximity-induced exchange field m [see
Eq. (4)] is determined by ¢, for an in-plane M as depicted in
Fig. 1(c), the effective barrier for |;,) from the outer band of
the lead is

7 o Vo £ \/ (aky + Ay sin @) + (ak, — Ay cos ¢)> —ak.
(13)
Equivalently, for | xi,) from the inner band of the lead

Z5 o Vi £ \/(@k, + Ao sin @) +(aky — Aye cos @)’ + ak.
(14)

In Egs. (13) and (14) the impact of the reflected states is ne-
glected, and this treatment is most accurate for small effective
Z, i.e., for a good matching of Fermi contours. We note that
the effective barrier becomes energy dependent when Ay # 0
and o # 0, opening the possibility for resonant tunneling to
occur when the energy of the incident carrier is such that
Z*" — 0 (or 28" — 0).

Due to the spin mismatch, we need to include a correction
of |(XT|Xin>|2 in the transmission, i.e., T &~ |(X¢|Xin>|2TxTa
where T, is the transmission without the spin mismatch.
We can see from Fig. 1(c) that the spin mismatch is much
smaller for the incident state from the outer lead band (A =
=D, ie, [(xt | Xino 2 = =1 > [(x3 | Xin, » = 1)|, which
indicates that the most of G is contributed by the incident
states from the outer lead band. When the state inside the
barrier is the same (up to a phase) as that in the lead, perfect
transmission is achieved.

With vanishing Rashba SOC, o — 0, outer and inner lead
Fermi contours coincide and the spin-dependent barrier Vi =
Vo &£ Ay from Fig. 3(a) is recovered. We focus on Vj > 0,
V_ =0 leads to the perfect transmission 7y, = 1 from our
discussion above. From Egs. (13) and (14), ZS" o« Vy £ A,
so one can still get 7 — 0 when Vy = A,.. We will further
address the importance of vanishing V_ in F/S junctions. At a
fixed k,, the eigenstate for the perfect transmission 7 (k) =
1 precisely satisfies the Po, 7T symmetry: Po,T ¥ (x,y) =
£ (x,y), with eigenvalue £ = ¢ and an arbitrary phase 7.

This analysis and the relevance of the Po,7T symme-
try can be applied to Fig. 4 with parameters of a typical
InGaAs/InAlAs 2DEG, m* = 0.05mq, where my is the free-
electron mass, and o = 0.093 eVA [43]. It is crucial to note
that Po,7 symmetry arguments for a perfect transmission
pertain to a single k, (single channel), while the geometry
from Figs. 1(a) and 3 corresponds to a 2D system where
the total G reflects the contribution from all allowed k,. In
the spinless case, maximizing G means an overall contour
matching, while even with adding spin our Fermi contour
analysis provides a valuable tool to visualize and understand
various trends in G.

With conserved k,, from Fig. 3(c) we can recognize many
similarities with Snell’s law [42]. We may get propagating or
decaying (evanescent) states in different regions, depending
on the incident angle ¢ and the particular contour (outer,
inner) considered. For example, for carriers from the A = —1
band (outer contour) and incident angles ¢ exceeding the
critical angle,

@ = tarcsin(k; /k_1), 15)

where k, = 1 is given by Eq. (6), the transmission and
reflection to the & = 1 band are not allowed because there are
no such propagating states. In this regime, backscattering is
suppressed while 7, __; is enhanced.

The overall maximum in G(Ay.) is related to the perfect
transmission due to the Fermi contour matching depicted by
the example (2) in Fig. 4. As shown for examples (1) and (3) a
small change in A, leads to worse Fermi contour matching
and reduced G. The origin of the overall peak in G near
Ax. = Vj can be further understood in the small SOC limit.
The barrier contour reduces to a shifted circle with radius
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krp«/(EF + A — Vy)/EF, where we recall that kp is average of
the outer and inner lead circles. The barrier contour can then
be approximated by

[k, — (m*a/B?)sin ¢]* + [k, + (m*a/h*)cos ¢]*
~ Q2m* ) Ep + A — V). (16)

In the region near the Ay, = Vp, both G(¢ = 0) and G(¢ =
7 /2), which correspond to m || x and m || y, reach their max-
ima because of the best matching of Fermi contours between
lead and barrier. The shift of barrier circle is always L to
m and is of the first order in «, while the deformation is a
higher-order correction.

Remarkably, the other local maxima in G, for larger Ay
in Fig. 4, also satisfy the Po,7 symmetry. However, instead
of the contour matching, they are due to standing de Broglie
waves in the barrier and the constructive interference. With
outer and inner lead contours, there are four eigenstates in the
leads with -k, , £k, we can distinguish the following cases:
(1) 4 (4), (i) 4 (2), (iii) 2 (4), and (iv) 2 (2) propagating states
in the leads (barrier) [11].

In cases (i) and (ii) (arising for an incident state from the
inner band of for the outer band and ¢ < ¢.), the perfect
transmission means that no reflected wave should exist in the
left lead, while the state in the right lead should match, up to
a phase, the corresponding one in the left lead. For case (i),
under Po,T symmetry operation, up to a phase, all the propa-
gating states inside the barrier, with x component of the wave
vector k~j, j=1,...,4, remain the same. By matching ¢, (x)
and d¢; (x)/dx, as noted in Sec. II, the resonance condition is
satisfied when

(k; —k)d =2mn;, j=2,3,4 a7
where n; = 1,2, .... However, for the system we consider,

%jd ~ 10 and Eq. (17) only holds in few special cases.

In case (ii) the resonance condition similar to Eq. (17) is not
possible, unless for the normal incidence when m || y. In that
case, the coefficients of the decaying barrier states vanish and
the spins of all scattering states become parallel to each other
which makes the system “spinless” and perfect transmission
becomes possible.

In cases (iii) and (iv), the presence of the decaying states
in the leads can be understood for the incident particle from
the A = —1 band at an angle ¢ > ¢.. Since such decaying
states in the leads do not carry any current [42], as can be
understood from the Snell’s law, the perfect transmission and
the resonance conditions are still possible. In case (iv), under
the symmetry Po, 7 operation, up to a phase, the two propa-
gating states inside the barrier remain the same, while the two
decaying states in the barrier become, up to a phase, the two
decaying states in the leads. The resonance condition is

(ky —k\)d =2nw —8, n=1,2,3... (18)

where for the x component of the propagating wave vectors
in the barrier we assume k, > k;, while the correction § o
(a/h)/m*/Ax. < 1. Since the resonances occur at A,. >
Ep, the magnitude of the propagating barrier wave vector
is much larger than k,. Therefore, the x component of the
propagating barrier wave vector is almost the same for all the
incoming states with different incident angles, which means

the transmission resonances occur for all the incoming states
almost simultaneously when the resonance condition is satis-
fied and thus the maximum G is reached.

The two local maxima in G near Ay, = 20 and 55 meV,
shown in Fig. 4, both correspond to the case (iv) and a large
Ay regime, where for m || x the propagating wave vectors are
ki, ~ F+/2m*A/h. Applying the resonance condition from
Eq. (18) the first (second) of these maxima corresponds to
n =1 (n = 2). However, with large Ay, the correction § in
Eq. (18) is very small such that the resonance condition is
accurately described by the spinless case where 6 = 0.

III. F/2DEG IN-PLANE TAMR

A large value of TAMR, as defined in Eq. (2), has the ori-
gin in the difference for the maximum G(¢ = 0) and G(¢ =
7 /2), that is for the m || x and m || y orientations. In Fig. 4,
for G(¢ = 0) and shown examples (1)-(3), we see the ex-
pected barrier Fermi contour (broken line) shifted downward
(L x). This broken k, symmetry leads to an unusual tunneling
planar Hall effect, where the transverse voltage is maximum
for the M || x, while other Hall effects would vanish [44]. Due
to the same asymmetry, the perfect match for both upper and
lower halves of the circle cannot be achieved simultaneously.
We see in examples (1)—(3) that the upper (lower) half of the
barrier contour tends to match the inner (outer) lead contour
since the spin mismatch is smaller for these states. The best
possible simultaneous match of Fermi contours yields the
large transmission at Ay, = V), resulting in the first peak in G,
even for large o when the barrier contour is strongly deformed
from a circle, as in Fig. 3(c).

As we see from Fig. 4 with multiple peaks in G, there also
exist several resonances which could influence the TAMR. In
the limit of @ — 0, the condition for such resonances can be
derived from Eq. (18) with § =0

2R n?

Axe =Vo — Er + e (19)
for both G(¢p =0) and G(¢ = 7w /2) which correspond to
m || x and m ||y, where n =1, 2,... describes the order
of the resonance that pertains to the case (iv) in Sec. II. In
this situation, of vanishing Rashba SOC, the conductance no
longer depends on the in-plane m and we expect a vanishing
TAMR, as inferred from Eq. (2).

However, already for a small and nonvanishing « the max-
imum G(¢ = 7 /2) is achieved for a different condition when
the barrier circle shares the same size as the outer circle of
the lead [11]. Up to the first order in « the condition leading
to the maximum G(¢ = 7 /2) is given by Ay, = Vo + akp.
When such a condition is satisfied, the barrier Fermi contour
matches the outer lead contour instead of the inner one be-
cause the main G contribution is from the incident particles on
the outer Fermi contour. Correspondingly, near Ay, = Vj, due
to contour matching and the perfect transmission, we expect
enhanced TAMR, as can be seen from Fig. 5.

Furthermore, when o # 0, k, — ky, which determine the
resonance condition in Eq. (18), varies as M 1is rotated. This
means the maxima for G(¢ = 0) and G(¢ = 7 /2) will be
achieved at different A,.. Therefore, similar to the situation
near A,. =V}, an enhanced TAMR will arise from the small
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FIG. 5. (a) Dependence of the TAMR amplitude on the Rashba SOC « and the barrier strength V; for a 2DEG system with a d = 13 nm
thick barrier, Er = 10 meV, and proximity-induced exchange splitting Ay, = 15meV. (b) Dependence of the TAMR amplitude on A,. and
Vj, for the same d and Er as in (a), with o = 0.093 eV A for a typical InGaAs/InAlAs 2DEG. (c) The same as (b), but « = 0.93 eV A. The
blue and red dashed lines in (a) are for the same parameters as the ones in (b) and (c).

difference in the peak conditions. With fixed Er and Vj, up
to the lowest-order correction of «, we can derive the differ-
ence in Ay, at the same order maxima (n) of G(¢ = 0) and

G(p =m/2):
AN o o m* 1P (20)

Unlike the perfect transmission condition due to contour
matching, the difference is now quadratic in «.

With this conductance analysis and nonmonotonic G(A.)
in Fig. 4, a consequence of the collective contributions of
multiple 7 & 1 states corresponding to different propagation
directions of the tunneling carriers, we expect various non-
monotonic TAMR trends and a strong influence of Rashba
SOC. We can see from Fig. 5(a) that increasing o can enhance
both TAMR and the range of V; for such enhancement. How-
ever, if a gets too large (>1.5 eV A), the absolute value of
TAMR decreases, for a large range of V.

The reason for this unexpected trend in TAMR(«) can
be understood from calculated results in Figs. 5(b) and 5(c),
which are shown for two different values of «, as indicated
by blue and red vertical lines in Fig. 5(a). From the previous
discussion of a small-o limit, we know that G peaks near
Ax. = WV and such a peak will be shifted by akr when M is
rotated. The sensitive dependence of G on the M orientation
leads to a large TAMR near the diagonal line in the parameter
space, shown in Figs. 5(b) and 5(c). Since such a shift is
proportional to ¢, by comparing Figs. 5(b) and 5(c) there is
a wider range of the enhanced TAMR for a larger «.

However, if « is too large (compared to Vy /kr and Ay /kr),
the impact of the M orientation becomes negligible, and
TAMR starts to decrease. This can be seen at the lower-left
corner in Fig. 5(c), where the resonant TAMR is much smaller
when both Vyy /kr, Axc/kr < a. Even for a fixed V}, for exam-
ple at 5 meV, we see that with « the absolute value of TAMR
is nonmonotonic and TAMR also changes sign.

The calculated in-plane TAMR reveals various other pe-
culiar trends. For a fixed « [Fig. 5(a)] or Ay./kr [Figs. 5(b)
and 5(c)], we can see that TAMR can be nonmonotonic in
Vo and even change its sign. Furthermore, there is as a clear
nonmonotonic amplitude with A, at a fixed V) in Fig. 5(b).

Different barrier thickness in Fig. 5 (26 nm) from that in Fig. 4
(13 nm) modifies the respective Ay, values for the perfect
transmission. These different TAMR trends in Fig. 5 were
primarily related to the best contour matching, near Ay, = Vj
[as the first peak in G, seen in Fig. 4], while the role of n = 1
resonance can be seen in the lower-right corner in Fig. 5(c).

From the angular dependence of TAMR, it is possible to
obtain valuable information about the interfacial crystallo-
graphic symmetry [23]. For a 2DEG system, in the limit and
Ax./Vo < 1, the leading contribution to the in-plane angular
dependence of G from the two incoming channels with he-
licity A = +£1 is % sin ¢. However, with their opposite signs,
these leading contributions cancel in the total G, which be-
comes significantly smaller, quadratic in the small parameter,
and has a different angular dependence, resulting in

TAMRF2pEG (@) ~ (Axe/Vo)? sin® ¢. (21)

While this angular dependence also coincides with the results
from the surface states of 3D topological insulators, their
junctions with ferromagnets do not have a resonant TAMR
behavior of a 2DEG and thus lead to different trends in Ay
and V, [11].

Another striking signature of the underlying resonant be-
havior of the calculated TAMR is its magnitude. In commonly
considered vertical tunneling devices, the in-plane TAMR is
rather small (typically <1%) even for large carrier spin polar-
ization [7] and exchange energies > eV [8,45,46]. In contrast,
with much smaller proximity-induced exchange fields Ay, ~
10 meV, we find a much larger TAMR in our lateral (pla-
nar) structures >10% even for SOC for a typical InAs-based
2DEG.

As we next focus on the F/S junctions and their supercon-
ducting out-of-plane TAMR analog [recall Eq. (3)], we will
see that some of the calculated nonomonotonic trends, similar
to those we discussed for F/2DEG systems, are experimen-
tally verified, while the analysis of effective barriers allows us
to give simple estimates of the enhanced MR which can even
reach 100% in the measured samples.
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IV. F/S HAMILTONIAN AND CONDUCTANCE

Motivated by the recent experiments demonstrating a large
MR enhancement in F/S junctions [30], depicted in Fig. 2, we
consider a simple model for F/S Hamiltonian Hps. It shares
several similarities with Hppgg in Eq. (4), used to analyze in-
plane TAMR. The key difference in the superconducting state
is the need to simultaneously include the presence of electrons
and holes and the pair potential A, which couples electronlike
and holelike components of the underlying wave function.

Additionally, while Rashba SOC was inherent for whole
2DEG region, in F/S junction it is only an interfacial contribu-
tion, along with the potential barrier, between F and S regions.
Now we study vertical transport and out-of-plane MR [recall
Eq. (3)], which is dominated by the process of Andreev reflec-
tion, introduced in Sec. I and it is the microscopic mechanism
for the superconducting proximity effects [23].

Before specifying Hgss and the resulting equation for quasi-
particle states, it is instructive to note a similarity between
the two-component transport in normal-metal (N)/S junctions
(for electronlike and holelike quasiparticles) and F/N junc-
tions (for spin %, |), which both lead to current conversion,
accompanied by additional boundary resistance [3]. In the
N/S junction Andreev reflection is responsible for the conver-
sion between the normal and the supercurrent, characterized
by the superconducting coherence length, while in the F/N
case a conversion between spin-polarized and unpolarized
currents is characterized by the spin diffusion length. In the
N/S charge transport, A, which couples electronlike and hole-
like states, plays a similar role of the spin-flip potential which
couples 1, | states in the F/N spin transport.

We consider ballistic F/S junction, depicted in Fig. 2,
having a flat interface at z = 0 with potential and Rashba
SOC scattering. Similar to the approach in Sec. II of match-
ing the wave functions for the scattering states in different
regions, we generalize the Griffin-Demers-Blonder-Tinkham-
Klapwijk formalism [40,47-49] to solve Bogoliubov—de
Gennes equation for quasiparticle states HgsW(r) = EW(r),
with energy E [32], where

_ H, AO(2)Lx:
Hers = <A*®(Z)sz2 Hy, ) ’ (22)

with A the s-wave pair potential which, for a homogeneous S
region, is also the value of the superconducting gap, and the
single-particle Hamiltonian for electrons is
o1
He= -2V ——=V — u(z) — Axc(m - 0)O(—2) + Hp,
2 m(z)
(23)

while for holes H, = —o,H}0,. In Eq. (22), m(z) is the effec-
tive mass and w(z) is the chemical potential. The interfacial
scattering is modeled by deltalike potential barrier, with the
effective barrier height V, and width d and the interfacial
Rashba SOC of strength « has different units than Rashba
SOC in F/2DEG [8]:

Hp = [Vod + a(k,6; — ky0y)]6(2). 24)

As in Sec. II, Ay is the exchange spin splitting and
we denote the orientation of the magnetization M by m,

but we now also consider its out-of-plane rotation m =
(sin@ cos ¢, sinf sin ¢, cosH).

Since the in-plane wave vector k| is conserved, the scatter-
ing states for incident spin o electron are given by W, (r) =
e® 1My, (z) in a four-component basis, they include Andreev
and specular reflection, each without and with spin flip, given
by the amplitudes a,, b,, d,, and b, [31].

In the F region, the eigenspinors for electrons and holes are
X8 = (or O and ! = (0, x—o)" with

Xo = (1/3/2)(0/1F 0 cosBe ™, VT —o cosf) , (25)

where 0 = 1 (—1) or 1 () refer to spin parallel (antiparallel)
to M and the z components of the wave vector are

2
k™ = \/ké T OE foAd — kL (26)

with a spin-averaged Fermi wave vector kr [42]. At an in-
terface, with conserved kj, the Hp barrier eigenspinors in the
helicity basis are given by [10,50]

1
= (zFileiy), @)

where y is the angle between kj and k,.

In the S region, coherence factors u, v satisfy w=1-
v2 = (1 ++/E? — A2/E)/2, while the z components of the
wave vector are

2m
g " = \/q% + (—)h—j¢E2 - A=k, (28)

with gr the Fermi wave vector. Similar to Snell’s law [42],
for a large k; these z components can become imaginary
representing evanescent states which carry no net current. The
vanishing of evanescent states at infinity requires Im[k"] < 0,
so the sign of the z component of the wave vectors needs to be
chosen correctly.

From the charge-current conservation, the zero-
temperature differential conductance at applied bias V
can be expressed as [32]

dk
G(V):Z/ znk"%[l—i-Rﬁ(—eV)—Rf;(eV)]. (29)

Here G(V) is normalized by the Sharvin conductance [3]

s EkEA

C0" = 30)
where A is the interfacial area, while the form is different
than the previous expression in 2D [recall Eq. (10)], where
SOC is present in the whole 2D region, not just at an inter-
face. Only the probability amplitudes from the F region are
needed for Andreev R! = Re[(k"  /k¢)as|* + (K /k)|a, |*]
and specular reflection R® = Re[|b, |> + (k% /k¢)|bs|*]. A
finite-temperature correction is straightforward by adding
Fermi functions in Eq. (29), which smear the calculated G(V)
at T = 0 K. The integration kernel in Eq. (29) [1 + Rf, —R]
can be viewed as the effective transmission.

We now turn to the measured bias dependence for differ-
ential conductance dI/dV for a quasi-2D vdW F/S junction
(recall its geometry in Fig. 2), shown in Fig. 6(a) for several
T. Some trends are expected: dI/dV peaks reflect the peaks

125306-7



CHENGHAO SHEN et al.

PHYSICAL REVIEW B 107, 125306 (2023)

)
S 15
>
3
S 10
©
(0]
N
©
E 05}
2
B=0T
00 1 1 1 1 1
4 -2 0 2 4
(b) V(mv)
2.5
-O- DataT=2K
_ Z=08,2.=0
5 20r — 7=08,1=15
S
>
3
3
©
(0]
N
©
£
(@]
z
00 1 1 1 1 1
4 2 0 2 4
V (mV)

FIG. 6. (a) Measured and (b) calculated finite temperature and
B = 0 differential conductance for Fej,9TaS,/NbN junction, nor-
malized to its value at V = 5 mV, corresponding to the normal-state
result. For 7 =2 K comparison, in our calculations we choose
T/T. =0.16,P =0.42, and A = 2.7 meV.

in the density of states, near |eV| = A [40], moving inward
with T as A(T) is also suppressed with 7. While the per-
fect transmission in 1D N/S geometry near V = 0 implies
the doubling of the normal-state conductance [40], since an
incident electron through Andreev reflection contributes to
the transfer of an electron pair across the N/S interface, the
F/S transmission should be diminished, both by the interfacial
barrier, parametrized by Z [recall Eq. (12)], as well by the spin
polarization P = Ay./ur =~ 0.4-0.5, expected for Feg 29TaS,
and measured in a similar Fe( ;¢ TaS, ferromagnet [S1]. Only
a fraction of the incident majority-spin electrons can find the
opposite spin partner for Andreev reflection [42,52].

With the NbN critical temperature 7. = 12.5 K, we focus
ondl/dV atthe lowest T = 2 K and theoretically explore the
role of interfacial properties using dimensional parameters for
barrier strength and Rashba SOC:

Z = Vod Jmpms|(B*\/krqr ), 31)
* = 20 /mpmg/ . (32)

Since we are interested in identifying trends with these in-
terfacial parameters, rather than obtaining the best fit for

dI(V)/dV, we further simplify this approach by considering
the case for mp = mg = m and kp = gr.

Our calculated results are given in Fig. 6(b) and reflect
these simplifications. For example, assuming that kr = gr
and that m is the free-electron mass, the chosen dimensionless
barrier strength Z = 0.8 corresponds to kr = 1.4 x 101 m~!,
consistent with NbN values [53], while V; = 0.5 eV, and
d = 1.7 nm is an average thickness among our studied F/S
samples. The value of Rashba SOC, o« = 5.7 eV A2, which
follows from the choice of A = 1.5, is also consistent with
separate fits of the angular dependence of MR measured near
zero bias in Ref. [30].

By comparing A =0 and 1.5 results at a fixed Z = 0.8
above the gap the changes are very small. However, the in-
clusion of Rashba SOC can strongly enhance the low-bias
conductance. To understand the origin of this SOC effect, and
similar trends from Sec. II, we note that in the normal state for
the barrier region the dispersion is SOC split and shifted by the
barrier potential (assuming Vy > 0). As in Sec. II, a spinor of
an incident electron with k; can be decomposed into barrier
eigenspinors | xo) = (X+|Xo )| x+) + (X=IXo)|x-), where x+
from Eq. (27) has helicity 1. The two helicities have inequiv-
alent effective barriers [recall Egs. (13) and (14)]

Zy =7 + My /2kr. (33)

Since Z, Ak /(2kr) = 0, for positive helicity the barrier is
enhanced Z}: > Z. However, for negative helicity, at Z =
Aky/(2kp), Z_ becomes effectively completely transparent,
such k& can be viewed as “open channels” and are responsible
for a strongly increased dI/dV .

Some peculiar conductance trends can already be under-
stood at V =0 and T = 0 K, where the charge transport in
F/S junctions is determined by conventional and spin-flip
Andreev reflection with opposite and equal spin projection of
the incident and reflected particle, respectively, corresponding
to the spin-singlet and spin-triplet interfacial superconducting
correlations. For G(V = 0) plotted in the plane defined by
Z > 0 and A > 0, a striking behavior was found for |P| < 1
in the triangular region approximately delimited with lines T1
and T2 [33],

T1: » =2Z/J/1—P,

where G is dominated by the spin-flip Andreev reflection and
proximity-induced spin-triplet superconductivity.

Before showing next that a region in G delimited by the
lines T1 and T2 also pertains to the enhanced calculated
MAAR, we comment on relaxing the assumption of equal
masses and Fermi velocities in the F and S regions. In a
simple 1D N/S case, without SOC, different Fermi veloc-
ities F, = (vs/vy) # 1 are known to increase the effective
barrier strength Zesz 2724+ - Fv)2/4Fv > Z? [41]. While
this argument is often used to also ignore a Fermi velocity
mismatch in the F/S case [52], as it is accounted for by simply
enhancing Z, some subtleties exist [31,42]. The mismatch of
effective masses F,, = mg/myp together with the mismatch of
the Fermi wave vectors F; = qr/kr can then be viewed as
determining F, and enhancing the effective Z. In our studies
with SOC, F; # 1 implies that Eq. (33) should be generalized
by replacing kr with /krqr, including in the expression
for open channels and a vanishing Z_. Even with such a

T2: A =27, (34)
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FIG. 7. Amplitude of out-of-plane magnetoanisotropic Andreev
reflection (MAAR), given by Eq. (3) calculated at zero bias and
T = 0 K, shown as a function of interfacial parameters Z and A for
P = 0.47, consistent with Fe ,9TaS,. Lines T1 and T2 are defined in
Eq. (34).

wave-vector mismatch, the spin-triplet contribution remains
enhanced within a triangular region, as long as F;y > /1 — P,
i.e., gr > k. The delimiting lines T1 and T2, for both F;, < 1
and F; > 1, have slopes modified by F; as compared to those
given by Eq. (34).

V. F/S OUT-OF-PLANE MAAR

Just as in the F/2DEG structures, the interplay between
exchange field and Rashba SOC will lead to various non-
monotonic trends [30,32,33,54]. Such trends can be inferred
from Egs. (33) and (34), as well as in the MR, which in F/S
junctions corresponds to the superconducting counterpart of
TAMR, and its term MAAR (recall Sec. I), identified the key
role of the Andreev reflection.

Similar to the significance of the condition for perfect
transmission and contour matching in understanding the ori-
gin of an enhanced TAMR, for MAAR it is important to
identify the influence of open channels [33]. From Eq. (33),
we see that Z, A > 0 yields vanishing Z_ with open channels
located at the Fermi contour of radius

kP = 7/ k. (35)

Open channels give the dominant contribution to G and are
also expected to determine the amplitude of MAAR.

Since evanescent states for large k; do not contribute to G
they should be excluded in open channels. From Snell’s law
[42], for the incident majority-spin electron this implies that
to have propagating scattering states, k; < k is required for
conventional Andreev reflections and kj < g for dominant
spin-flip Andreev reflections [31]. The maximum of the total
G is achieved when the amount of the open channels ock) is

maximized. For kr = gr, in the two limiting cases kl‘l’pe“ =

ky and k""" = kr we recover the conditions for lines T1 and
T2 from Eq. (34), such that the maximum spin-flip Andreev
reflection is located near kl(l)pen =kp,ie., A =2Z.

From the calculated MAAR in Fig. 7 we see that the
triangular region delimited by lines T1 and T2 is also

identifying the region of an enhanced MAAR and confirm-
ing the influence of open channels. Similar to our contour
matching in TAMR, as noted in Sec. II, for a full picture
the role of spin mismatch also needs to be included. Two
characteristic features are easy to see from Fig. 7: (i) a large
MAAR enhancement, which can reach 100 %, and (ii)) MAAR
is nonomontonic with both Z and A, when the other parameter
is kept constant.

To understand (i), we recall that in the triangular region, the
dominant contribution to the total G is from the open channels
that is associated with spin-flip Andreev reflection and spin-
triplet pairing |11). Therefore, the total conductance can be
approximately written as

2 d)/ "
GV =0)~ [ kdk 0 Ry _i(ky, v)
0 F

/4
b4

nren g [ DY g eren 36
~ Kk I o @ o:l( I . Y), (36)

where Ak is the width of the open channels in k| plane, and
y is the angle between kj and kx [recall Eq. (27)]. For out-of-
plane M, R _, (k)*", ) = R%%" does not depend on y due
to the rotational symmetry and we can write

2k‘("penAk|| h.open
G(G = 0) ~ k—ZRO”Zl . (38)
F

For in-plane M, considering the interplay between the
incident electron spin and the barrier eigenspinor, the spin-
flip Andreev reflection of an incident 1 electron is given by
Rﬁzl(kﬁpen, y) ~ Rg’iﬁencosz(y — ¢) [33]. As a result, for in-
plane M, we obtain

k""" Ak GO =0
G<9 - E) ~ ”—HRhfl;e“ — ¥ (39)
2 K2 o= 2

From Eq. (3), this means that MAAR in the triangular region
is 100%, which explains that the previous prediction [32]
can be attributed to spin-triplet superconductivity and is also
consistent with the largest values in the experimental results
for Feg,9TaS,; /NbN junctions with a perpendicular magnetic
anisotropy [30].

Despite our simple theoretical model to include the inter-
play of exchange field and SOC on the proximity-induced
superconductivity in F/S junctions, such a description pro-
vides MAAR which is in a good agreement with the measured
angular dependence of MR in Fig. 8. Remarkably, just as the
variation of Z shows a nonmonotonic MAAR in Fig. 7 and
a huge increase of MAAR at intermediate Z values, which
with Rashba SOC can lead to a vanishing Z_, we see that
this trend in Figs. 8(d), 8(e), and 8(h) is also retained in
the measured results obtained by varying the Al,O3 barrier
thickness (~1-2.5 nm).

While we cannot rule out a non-MAAR contribution in
the measured low-bias MR for Fe( »9TaS,; /NbN junctions, we
can still examine its magnitude from several reported control
measurements [30]. For example, by increasing 7' above T,
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FIG. 8. (a), (b) Atomic force microscope images of 2-nm Al,O;
on Feg 9 TaS; thin flake with rms roughness of ~0.270 nm indicate
that Al,Oj3 is relatively flat and without obvious pin holes or dis-
continuities. (c), (e), (g) Schematic of the incident spin-polarized
electrons tunneling across different effective interfacial barriers with
Rashba SOC into the proximity-induced spin-triplet superconductiv-
ity. (d), (f), (h) The corresponding magnetoresistance (MR) (recall
0 in Fig. 2), for different junction resistance-area products R;S, a
proxy for dimensionless barrier strength Z. Red lines: theoretically
predicted twofold symmetry. The measurements were at 7 = 2 K,
B=9T,andV =1 mV.

MR is drastically reduced from its maximum at ~100% in
Fig. 8(f) and we can attribute the main MR part to a super-
conducting response. By considering MR in Al/Al,O3;/NbN
samples, we no longer have the interplay between the ferro-
magnetism and SOC, responsible for MAAR, but the resulting
small MR of just few % at T =2 K is encouraging that
the presence of vortices at B =9 T has only a modest MR
effect. Taken together, these findings confirm that MAAR is
indeed the dominant source of the measured MR in Fig. 8§,
which further indicates that Fj,9TaS,/NbN junctions pro-
vide an important platform to realize elusive equal-spin-triplet
superconductivity.

VI. DISCUSSION AND CONCLUSIONS

We have shown that Rashba SOC can lead to strongly
enhanced magnetoresistance in junctions with one ferro-
magnet. Both in the normal-state and the superconducting
response the calculated magnetoresistance is characterized by
various nonmonotonic trends. While some of these trends
and an enhanced magnetoresistance have been measured in

superconducting junctions [30,55], experiments in the normal
state are largely unexplored.

To realize magnetic proximity effects for the in-plane
transport, magnetic insulators are desirable [23,56-58]. This
precludes current flow in the more resistive F region
[Fig. 1(a)] and minimizes hybridization with the 2DEG to
enable a gate-tunable proximity-induced exchange splitting
in their respective states. However, as shown in graphene
[59-61] for tunable magnetic proximity effects one could also
employ ferromagnetic metals, separated by an insulating layer
from the 2DEG.

For a suitable materials platform, which would support
large magnetoresistive effects, we could extend our focus on
simple Rashba SOC to a growing class of van der Waals
(vdW) materials. Their heterostructure offers both trans-
port in materials with strong SOC as well 2D ferromagnets
[62—-64] with atomically sharp interfaces and not limited to
lattice-matching constraints. For example, transition-metal
dichalcogenides in addition to their inherent SOC also provide
spin-orbit proximity [65-71] and thereby alter spin textures
and expected TAMR, while 2D ferromagnets support a versa-
tile gate control [72-74].

While we have focused on a longitudinal transport in a very
simple system, the behavior emerging from a spin-parity-time
symmetry of the scattering states with perfect transmission is
important not just in explaining a surprisingly large TAMR,
but also as a sensitive probe to distinguish between trivial and
topological states [11]. It would be interesting to know if our
predicted nonmonotonic trends with interfacial parameters for
TAMR could be also relevant for other transport phenomena
in junctions with a single ferromagnet, such as spin-orbit
torque and spin-Hall magnetoresistance [5,75].

In the superconducting state, the observed large mag-
netoresistance has important implications as it provides an
alternative probe for spin-triplet or mixed singlet-triplet su-
perconductivity [76] and such a large signal is possible to
realize even systems with only a modest SOC and negligible
normal-state magnetoresistance [55]. Since this work shows
that spin-triplet superconductivity, desirable both for super-
conducting spintronics and Majorana bound states [14], is
feasible in simple structures with a single F and S region, it
would also be important to extend its analysis to Josephson
junctions, where enhanced magnetoresistance was predicted
[77], but not connected to the spin-triplet superconductivity,
which was extensively studied in other Josephson junctions
[13,14,78-81].

In our work, the nonmonotonic trends with the interfacial
barrier strength were observed by comparing samples with
different thickness of the (Al,03). It would be desirable to
realize systems in which such changes, as well as the tunabil-
ity of the Rashba SOC strength, could be controlled in the
same sample. A desirable progress is realized in Josephson
junctions where currently there are no ferromagnetic regions,
but the Zeeman splitting is due to an applied magnetic field
[14,82-86]. Related experimental support in junctions with Al
as a superconductor and InAs-based 2DEG already suggests
an observation of topological spin-triplet superconductivity
[84]. In the same sample that both a reentrant supercon-
ductivity with an applied magnetic field and the jump in
the superconducting phase are measured, but an enhanced
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magnetoresistance as another signature of spin-triplet super-
conductivity has not yet been studied.
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